
Appendix 3: Calibration and Steady State Values (Not
intended for publication)

In this appendix, we show how to calibrate the model and find steady state values of all

endogenous items. The structure follows the Matlab program ‘calibrate_main’ available

from the authors with equations in the program appearing in the same order as in this

appendix. Additionally, this appendix shows the derivation of each equation used in the

program and the method of calibrating items where needed. Some of this is repeated from

the core paper to make this appendix easier to navigate.

Our strategy for calibrating and solving for steady state values requires iterating on a

guess of I
Y
until the capital market clears as required by Equation (14). This is discussed in

the final subsection of this appendix. For now, we assume I
Y

is known and set it equal to

.23, which we later find to clear the capital market. The lack of time subscripts throughout

indicates steady state values. We set r = .038, which is the average value from 1961 to

2018 reported by the World Bank and α=1/3, as is common in the literature. In a steady

state φy = 1 by definition. For our baseline model we consider log preferences (θ = 1) as is

common and set τ` = τs = τ . The program is written to allow these tax rates to differ but

the effects of changing this are modest. Other calibrated items are discussed as they arise

in the calculations below.

A3.1 Depreciation

We use these calibrated values to calculate δk. From the production function, Y
L

=
(
K
L

)α
and from the law of motion for capital, Equation (9), I

L
= δk

K
L
. Together these give

I
L
Y
L

=
δK
L(

K
L

)α
or

K

L
=
(

I
Y

δk

) 1
1−α

. (19)
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With θ = 1, Equation (5) can we written as

ca+1

ca

βa
βa+1

= 1 + r (1− τ) . (20)

Since r = rk − δk = αKα−1L1−α − δk we can write this as

ca+1

ca

βa
βa+1

= 1 + αKα−1L1−α (1− τ)− δk (1− τ)

or (
K

L

)1−α
= (1− τ)α

ca+1
ca

βa
βa+1
− 1 + δk (1− τ)

. (21)

Equation (19) into (21) yields

α (1− τ)
ca+1
ca

βa
βa+1
− 1 + δk (1− τ)

=
I
Y

δk
.

Substituting for ca+1
ca

βa
βa+1

from Equation (20) into this and solving for δk gives

δk =
I
Y
r

α− I
Y

. (22)

From this we set δk = 0.065.

A3.2 Tax Rate, Prices, and Ratios

In this subsection we find the budget clearing tax rate, prices of inputs, and several ratios

that will be needed later. The government budget constraint in Equation (10) simplifies to

τ (nw + nr) + τ`

(
(1− α)Y +

nw+nr−1∑
a=0

sar

)
= geY + guY
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and since
nw+nr−1∑

a=0
sa = K = I

δk
, this is

τ` = (1− z) (ge + gu)
1− α + r 1

δk

I
Y

. (23)

τ

Y
= z (ge + gu)

nw + nr
. (24)

where z is the share of total revenue collected from lump sum taxation. We set ge = Ge
Y

=

0.0535 to match education as a share of output in the data described in Section 3. In

Section 3, we consider different types of non-education expenditures. For our calibration, we

set gu = Gu
Y

= 0.0204 corresponding to the share of output spent on public safety. The value

of δk comes from Equation (22) and other items have already been calibrated. As discussed

in the paper, we set z = 1 in our baseline calibration but consider other values as well.

We can use Equation (19) to find K
L

and from this we find

w = (1− α)
(
K

L

)α
(25)

and
Y

L
=
(
K

L

)α
. (26)

From the goods market clearing condition (Equation (12)) we have

Y = C + I +Ge +Gu

where C =
nw+nr−1∑

a=0
ca so that

C

Y
= 1− I

Y
− ge − gu. (27)

The human capital production function in the steady state can be written as

e

Y
= B

 ne∑
j=1

ηj (gjge)ϕ
 1

ϕ

. (28)
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We set ne = 13 to match the mean years of schooling for workers over the age of 25 in

the United States. Recall that gj is government expenditure on this stage of education so

that Ge,t =
ne∑
j=1

Gj =
ne∑
j=1

gjY . We set each ηj equal to 1
13 and normalize B to 1. Following

Blankenau and Youderian (2015) we set ϕ=−0.78. From Education at a Glance (2018, p.

256) spending per student in lower secondary and upper secondary education are 8 and 15

percent larger than spending on primary education. With education shares summing to

1, this implies that spending on each of the 9 years of kindergarten through eighth grade

is 7.43% of total spending so g1 through g9 are set at 0.0743. The proportionally larger

values of spending in lower and upper secondary education require g10 = g11 = 0.0802 and

g12 = g13 = 0.0854.

A1.3 Vectors of Relative Human Capital, Discount Rates, and La-

bor Hours

A3.3.1 Relative Human Capital

We next turn to calibrating the sequence of xt,t+a values in Equation (2). Lagos et.al. (2018)

show that lifetime wages increase early in a career and peak at between 20 and 30 years of

work experience. At this point, they are about 90% higher than during the first four years

of work. Since the wage per unit of time is fixed in a steady state, this requires that human

capital accumulates through most of life and then falls. This, in turn, requires an increase

in human capital sufficient to offset depreciation through most of life. We assume this

increase comes simply from gaining more years of work experience. To capture this, we set
xa
h0

= Φ5
(
aΦ6 − Φ7a

)
h1 so that

ha
h0

= (1− δe)a + Φ5
(
aΦ6 − Φ7a

)
. (29)

We set δe= 0.05 as our benchmark and show results for several other parameter choices. We

solve for values of Φ5, Φ6, and Φ7, such that in a steady state equilibrium human capital is
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maximized at age 43 and is 90% higher at that point than at age 22. Additionally, human

capital early in life increases sufficiently to overcome depreciation so that the human capital

profile is a smooth, single-peaked function of age.

Specifically we iterate on Φ6 to satisfy these conditions. For each iteration of Φ6 we set

Φ7 = aΦ6aΦ6−1 at a = 24. Equation (29) is maximized approximately where aΦ6 − Φ7a is

maximized. The expression for Φ7 comes from setting the first derivative of this equal to

zero at a = 24. At age 43, a = 24 since the agent begins working at age 19 with a = 0 and

so is 43 years old 24 years later. We assume human capital at a = 3 is equal to 1.5 this value

at a = 0 i.e. 1 = 1.5
(
(1− δe)3 + Φ5

(
3Φ6 − Φ73

))
. Knowing Φ6 and Φ7, we can solve for

Φ5 using this expression. While human capital may grow rapidly early on, the assumption

likely overstates the early pace of accumulation. However it allows us to succinctly provide

a reasonable pattern of human capital accumulation from ages 22 to retirement at age 62

as demonstrated in the paper. We iterate on Φ6 until
(
(1− δe)24 + Φ5

(
24Φ6 − Φ724

))
=

1.9
(
(1− δe)3 + Φ5

(
3Φ6 − Φ73

))
. If the created time series is maximized prior to age 24,

we increase a by one and repeat. We continue in this way until the created time series is

maximized at age 24. This gives Φ5 = −.0137, Φ6 = 1.73, and Φ7 = 17.9. The Bureau of

Labor Statistics reports an average retirement age of 62 so we set nw = 44. With these

parameters in hand, we use Equation (29) to find the nw× 1 vector of human capital by age

normalized by initial human capital.

A3.3.2 Discount Rates

The steady state counterpart to Equation (5) gives ca+1
ca

= βa+1
βa

(1 + r (1− τ)) . By iteration

on this expression we find
ca
c0

= βa
β0

(1 + r (1− τ)) .a (30)

In the typical case where βa+1
βa

= β so that ca
c0

= (β(1+r(1−τ)))a
β0

, consumption is restricted to

grow at constant rate through adulthood. However, consumption over the life cycle is single-

peaked. We allow for non-monotonicity in consumption by calibrating non-monotonicity in
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the discount parameter. Specifically, we normalize β0 = 1 and assume

βa (1 + r (1− τ))a = (a+ 1)Φ1 − Φ2a. (31)

We use (a+ 1) rather than a in the first right hand side expression so that βa = 1 with

a = 0. To match this, we solve numerically for values of Φ1 and Φ2 such that in a steady

state equilibrium consumption is maximized at c31 and c31 = 1.3c1. Note that since a = 0

at age 19, a = 1 at age 20 and a = 31 at age 50. Specifically, setting the first derivative

of (a+ 1)Φ1 − Φ2a with respect to a equal to 0 at age 50 ( a = 31) gives Φ2 = Φ132Φ1−1 .

Given this relationship, we choose Φ1 to minimize
((

32Φ1 − Φ231
)
− 1.3 (2− Φ2)

)2
. The first

expression is βara at age 50 and the second is this value at age 20 scaled by 1.3. This results

in Φ1 = .148 and Φ2 = 0.0077. According to the Centers for Disease Control and Prevention

(CDC), life expectancy in the United States is nearly 79 years so nr+nw= 79− 18 = 61. We

then use Equation (31) to find the 61× 1 vector of discount rates given by

βa = (a+ 1)Φ1 − Φ2a

(1 + r (1− τ))a .

A3.3.3 Labor Hours

We set labor hours on average to be one third and choose parameters to match this. Our

choice of one third is close to the 31.5% of time spent working found by Somme and Rupert

(2007) for individuals aged 16-64. Since we leave out those under 18, who work fewer hours,

one third is roughly consistent with this. Like consumption, hours worked are non-monotonic

across the life cycle. Because of this, our estimation strategy for γa is similar to our strategy

for βa. Specifically, we hold average hours equal to to one third but allow hours worked

before normalization in any period, la, to vary according to

la = (a+ 1)Φ3 − Φ4 (a+ 1) . (32)
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The Bureau of Labor Statistics reports that hours worked peak between ages 35-44 and

at this point are 65% higher than average hours worked for those aged 20-24. We take the

midpoint of these time intervals and calibrate hours worked to match these features of life-

cycle labor hours. We solve numerically for values of Φ3 and Φ4 such that in a steady state

equilibrium hours worked peak at age 40 (with a = 21) and are then 65% percent higher

than at age 22. Specifically, setting the first derivative of (a+ 1)Φ3 −Φ4 (a+ 1) with respect

to a+ 1 equal to 0 at age 40 gives Φ4 = Φ322Φ3−1 . Given this relationship we choose Φ3 to

minimize ((22− Φ422)− 1.65 (4− 4Φ2))2. The first expression is la at age 40 and the second

is this value at age 22 scaled by 1.65. This results in Φ3 = 0.619 and Φ4 = 0.188. We then

use Equation (32) to find the 44× 1 vector of normalized labor hours

`a = 1
3

(a+ 1)Φ3 − Φ4 (a+ 1)
nw−1∑
a=0

(
(a+ 1)Φ3 − Φ4 (a+ 1)

) . (33)

This assures labor hours peak at the correct time period and at the correct level while

equaling one third of available time on average.

A3.4 Levels of Total Labor, Capital, Output and Consumption, and

Education Spending

From Equation (13) we have

L = h0

nw−1∑
a=0

`a
ha
h0

so that from Equation (1)

L = eµ
nw−1∑
a=0

`a
ha
h0
.

Thus

L =
((

e
Y
L
Y

1
L

)µ) nw−1∑
a=0

`a
ha
h0

67



or

L =
(((

Y

L

e

Y

)µ) nw−1∑
a=0

`a
ha
h0

) 1
1−µ

.

We set µ = 0.85 as our benchmark and show results for several other parameter choices. We

can then find L from Equations (26), (28), (29) and (33).

From this and Equation (19) we find

K =
(
K

L

)
L (34)

which is sufficient to find

Y = KαL1−α. (35)

From Equation (27) we have

C =
(
C

Y

)
Y (36)

and from Equation (28) we have

e =
(
e

Y

)
Y. (37)

Furthermore, we can find the lump sum tax from Equation (24).

A3.5 Vectors of Consumption, Labor Disutility, Human Capital and

Savings

A3.5.1 Consumption

To find c0 note from Equation (30) that

C =
nw+nr−1∑

a=0
ca = c0

nw+nr−1∑
a=0

βa (1 + r (1− τ))a (38)
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so

c0 = C
nw+nr−1∑

a=0
βa (1 + r (1− τ))a

(39)

which can be calculated from Equation (36) and calibrated parameters. Then from Equation

(30) and β0 = 1 we have

ca = βa (1 + r (1− τ))a c0 (40)

yields the 61× 1 vector of consumption values.

A3.5.2 Human Capital

From Equations (1), (29), and (37) we find

ha =
(
(1− δe)a + Φ5

(
aΦ6 − Φ7a

))
eµ (41)

which generates the 44× 1 vector of human capital.

A3.5.3 Disutility From Labor

We choose the corresponding 44 × 1 sequence of γa values from the steady state analog to

Equation (6) ,

γa = wha (1− τ)
ca`νa

, (42)

which is calculated from Equations (7), (23), (33), (38) and (41). In doing so we set ν = 1
3

so that the Frisch elasticity of labor supply is in the middle of the range commonly used by

macroeconomists (Peterman 2016).

A3.5.4 Savings

To find savings we set sa−1= 0 with a = 0 and sa= 0 when a = 60. Together these mean

that agents begin and end life with no savings. Otherwise, the 61 × 1 vector of saving is

calculated from Equation (4) such that
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sa = waha`a (1− τ) + sa−1 (1 + ra (1− τ))− ca. (43)

A3.6 Capital Market Clearing

Finally, recall that we have, to this point, guessed at the value of I
Y
. We iterate through this

entire calibration until
nw+nr−1∑

a=0
sa = K

using Equations (34) and (43) so that the capital market clears as required by Equation (14).

As mentioned above this gives I
Y

= .23.
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