Magnitude of Changes to Divert Commuters to Transit

$\mathrm{E}_{\mathrm{P}}=\frac{-\%}{\%} \quad$ Transit Trips
$-0.33=\frac{20 \%}{X}$
(x) - percent reduction in transit price
$-0.33 x=20 \%$
$x=-60.6 \%$
$\mathrm{E}_{\mathrm{L}}=-\frac{\%}{} \quad$ Transit Trips
$-0.39=\frac{20 \%}{x}$
(x) - percent reduction in line-haul time
$-0.39 x=20 \%$
$x=-51.3 \%$
$\mathrm{E}_{\mathrm{A}}=\frac{-\%}{\%} \quad$ Transit Trips
$-0.71=\frac{20 \%}{x}$
(x) - percent reduction in access time
$-0.71 \mathrm{x}=20 \%$
$x=-28.2 \%$
Thus diversion of commuters to transit requires relatively large reductions in line haul time and price and a relatively small reduction in access time.

