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Abstract

The primary determinant of an individual’s college attendance is their perceived lifetime

return to college. I develop a method for inferring agents’ perceived returns by exploiting the

dollar-for-dollar relationship between perceived returns and tuition costs in a binary choice

model of college attendance. This method has the advantage of estimating perceived returns

in terms of compensating variation without assuming rational expectations on actual returns.

Estimating the model using both maximum likelihood and moment inequalities, I find that

the scale of the distribution of perceived returns is an order of magnitude lower than past

work has found when assuming rational expectations on income returns. The low variance

I find in perceived returns implies high responses to financial aid. I predict a 2.6 percentage

point increase in college attendance from a $1,000 universal annual tuition subsidy, which

is consistent with quasi-experimental estimates of the effects of tuition assistance on college

attendance. Because I estimate the complete distribution of perceived returns, my results

can be used to predict heterogeneous effects of counterfactual financial aid policies.
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1 Introduction

The existence of government financial aid for college suggests a concern that some individuals

may make suboptimal choices about attending college. This concern is substantiated by studies

such as Cunha, Heckman, and Navarro (2005) that find positive potential returns to college

for many individuals who do not attend.1 Because the actual returns to college are large for

many people, errors in this decision will have economically significant effects on income and

other outcomes. In order to inform policies that seek to affect individuals’ college attendance

decisions, it is not enough to estimate their actual returns to college; it is also necessary to

estimate their perceived returns to college. Policies that cause perceived returns to look more

like actual returns, either by providing information or introducing subsidies, will cause more

efficient allocations of individuals into college.

In this paper I develop and implement a methodology for estimating the distribution of

perceived returns to college. Using my method, I predict heterogeneous effects across the pop-

ulation on attendance for any given counterfactual change in well-publicized tuition subsidies

regardless of whether the policy is applied uniformly across the population or is applied het-

erogeneously according to individuals’ observed characteristics.2 The primary contribution of

this paper is that it is the first to estimate the distribution of perceived returns to college

without depending on estimates of actual returns or assumptions regarding agents’ knowledge

of components of these returns other than pecuniary costs. I do this by estimating the causal

effect of tuition on college attendance and comparing this to estimated relationships between

individual characteristics and college attendance. I find that my estimates of perceived returns

are consistent with the effects of tuition subsidies on attendance that previous studies of natural

experiments have found, suggesting that this method can be used to successfully forecast the

effects of counterfactual policies on college attendance.

The policy problem at hand is that while the socially optimal allocation of individuals into

college requires assignment of individuals based on their actual social returns to college, indi-

viduals’ actual attendance decisions are determined instead by their perceived private returns

to college (and perceived ability to pay). If perceived and actual returns are different in sign

or if individuals believe they are credit constrained, policy interventions that alter individuals’

1There is also evidence of negative returns for some individuals who do attend college.
2The caveat that any such policy must be well-publicized arises from the intuition that individuals will only

respond to a policy if they are aware of its effects.
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college attendance decisions can be welfare-improving. Information frictions interfere with opti-

mal allocations of individuals into college most obviously by driving a wedge between perceived

private returns and actual private returns, but also through interactions with other frictions.

Specifically, information frictions interact with externalities if individuals are at all altruistic

and have imperfect information about other individuals’ preferences, and information frictions

interact with credit constraints if perceived credit constraints are different from actual credit

constraints.

It follows that in order to fully inform policy, we require estimates of both perceived private

utility returns and actual social returns. The social return is comprised of actual private pecu-

niary returns, actual private nonpecuniary returns, and public returns associated with college

attendance. Examples of work on these individual elements include Carneiro, Heckman, and

Vytlacil (2011) who find that college attendance is strongly associated with private pecuniary

returns to college, Oreopoulos and Salvanes (2011) who find that average nonpecuniary returns

to college are potentially even larger than pecuniary returns, and Iranzo and Peri (2009) who

find that pecuniary externalities from college are comparable in magnitude to typical estimates

of private pecuniary returns. Estimates of perceived returns as obtained in this paper thus

contribute a necessary piece of this policy puzzle.

A major advantage of the methodology employed in this paper is that because I do not

rely on estimates of actual returns to infer perceived returns, I do not need to parse out the

individual contributions of private pecuniary returns, private nonpecuniary returns, and exter-

nalities (insofar as they are internalized through altruism) to perceived returns. This allows me

to avoid the difficulties involved in estimating these objects as well as the potentially greater

difficulties involved in confidently establishing relationships between them and perceived re-

turns.3 Because the method I use relies on revealed preference arguments regarding observed

college attendance, it naturally obtains estimates in terms of the underlying variable that drives

attendance, namely, perceived utility returns. The conversion of these utility returns into a dol-

lar scale is accomplished with a straightforward assumption on the perceived marginal cost to

students of each dollar of tuition.

Existing research regarding agents’ perceived returns to education relies on elicitation or

3For instance, because this method does not rely on earnings data, it is immune to selection bias from
unobserved earnings for individuals who are not in the workforce. As a result, I have no need to take steps to
correct for it such as excluding women from my sample (as is sometimes done in the literature on returns to
education because of their low labor force participation relative to men).
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estimation (or some combination thereof) of beliefs. Each of these present the researcher with

substantial challenges. Elicitation can suffer from a lack of availability, as common data sources

infrequently contain responses regarding beliefs about all of the objects of interest to researchers,

and can suffer from a lack of reliability, as individuals’ survey responses to questions about their

beliefs may not correspond to the notion of beliefs used by the researcher.4 These concerns

are reduced for common experimental applications in which availability can be addressed by

the experimental design, and reliability is improved both by increased researcher control over

question framing and weaker required assumptions about the relationship between respondents’

responses to questions and their actual beliefs.5 In contrast, estimation of beliefs has the

benefit that it is based on agents’ observed choices rather than potentially unreliable survey

responses, but has the disadvantage that beliefs and preferences cannot be jointly estimated, so

assumptions must be made about agent preferences to estimate beliefs.6 These approaches can

be blended together by using elicited information on the subset of agent beliefs for which such

information is available and reliable and using revealed preference to estimate other beliefs. A

more comprehensive discussion of elicitation and estimation of beliefs can be found in Manski

(2004).

Because of the lack of availability of reliable elicited information on perceived returns to

college in known data sources, I will rely on estimation of beliefs by revealed preference.7 Cunha

and Heckman (2007) provide a valuable overview of related work which estimates heterogeneous

ex ante and ex post returns to various education levels in a variety of environments.8 The method

used in these papers (referred to as the CHN method, after Cunha, Heckman, and Navarro)

relies on estimates of the distribution of ex post (actual) returns to estimate ex ante (perceived)

returns. The main assumption here is that if agents act in accordance with a given component

4Individuals’ responses regarding beliefs may differ from the beliefs sought by the researcher if they are
confused about the question, if demand effects are present, or if interpretation is required to translate responses
from the form in which they are provided by respondents to the form in which they are relevant to the economic
model. The existence of the experimental literature on how best to elicit beliefs such as Trautmann and Van
De Kuilen (2015), further suggests the salience of these concerns.

5Jensen (2010), Zafar (2011), and Wiswall and Zafar (2015) are good examples of experimental research in
which beliefs are elicited and these concerns are minimal. Because these papers use beliefs as predictors of
heterogeneous treatment effects, it is not required that elicited beliefs correspond directly to actual beliefs, but
only that they are a valid proxy for actual beliefs, a much weaker assumption.

6The problems with jointly estimating beliefs and preferences are described in more detail in Manski (1993).
7I am aware of no data source which elicits beliefs about individuals’ net present value lifetime returns to

college, the object of interest regarding college attendance. Even if such a data source existed, the reliability
of responses would be suspect if respondents could conceivably vary in their interpretation of the question. For
instance, if respondents differ in whether they incorporate beliefs about nonpecuniary costs into their responses
about lifetime returns, the resulting distribution of elicited returns would lack a consistent interpretation.

8This includes Carneiro, Hansen, and Heckman (2001, 2003); Cunha and Heckman (2006); Cunha, Heckman,
and Navarro (2005, 2006); Navarro (2005); and Heckman and Navarro (2007).
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of their real returns (such as the component associated with cognitive ability), they have full

information on that component of returns.9

The estimation of perceived returns to college in this paper relies on the same revealed pref-

erence intuition, but uses estimates of the effect of tuition on attendance from both maximum

likelihood and moment inequalities developed by Dickstein and Morales (2015) (henceforth,

DM) to identify the scale of perceived returns rather than using estimates of real returns.

These methods require the specification of a known relationship only between tuition and per-

ceived returns to college which results in an estimated distribution of perceived returns with

minimal dependence by construction on real returns.10 This improvement occurs because the

methods in this paper provide estimates of perceived returns conditional on agent character-

istics without requiring that the researcher take a stance on whether these characteristics or

their effects on returns are strictly known or unknown to agents, allowing for the possibility

that agents have partial knowledge or even biased beliefs about the associated components of

returns to college.11 Allowing for partial knowledge of each component of returns allows for the

estimated distributions of perceived returns and actual returns to differ in scale, while allowing

for biased beliefs on each component of returns allows the distributions to differ in position.

The plan of the rest of this paper is as follows. Section 2 introduces the empirical model.

Section 3 describes the econometric strategy and the assumptions required for identification.

Section 4 discusses the data used in estimation of the model. Section 5 provides the results and

discusses their implications. Section 6 concludes.

2 Model

The generalized Roy model (1951) provides a helpful framework for considering selection based

on potential outcomes. I define Y1i as agent i’s perceived present value of lifetime income

associated with attending college and Y0i as their perceived present value of lifetime income if

9CHN assume rational expectations when identifying ex ante returns. Specifically, they assume that indi-
viduals’ beliefs about known components of returns are equal to the components’ actual individual-specific true
values and that beliefs about unknown components of returns are equal to their average values. The first of
these assumptions can mistake the scale of perceived returns if agents act on partial information about certain
components of returns, while the second restricts unknown components of real returns from having an effect on
perceived returns, effectively ruling out systemic bias in perceived returns.

10Rational expectations is one example of the assumption on beliefs about tuition. Some assumed dependence
between perceived returns and actual returns is retained by the assumption that agents’ expectations of tuition
can be defined in terms of actual tuition.

11In brief, the methods used in the current paper rely on an accurate assumption about the perceived cost to
students of one dollar of tuition, while the CHN method relies on an accurate assumption about the mappings from
real returns to perceived returns for components of returns depending on whether they are known or unknown.

5



they were to only complete high school. I further define Ci as their perceived cost of attending

college, which includes psychic costs of attending college as well as their preferences over any

other outcomes associated with their education decision (spousal income, health outcomes, etc.).

Given some forecasting variables X, I can express the perceived potential outcomes and costs

for individual i with the following linear-in-parameters production functions:

Y1i =Xiβ1 + ε1i

Y0i =Xiβ0 + ε0i

Ci =XiβC + ˜Tuitioniγ + εCi,

(1)

where agent i’s expected tuition, ˜Tuitioni, contributes only to the perceived pecuniary cost

of college at known marginal rate γ (the marginal percentage of tuition costs actually borne

by students) and ε0i, ε1i, and εCi are mean zero error terms.12 In standard applications of

the Roy Model, an identification issue arises because potential outcomes are only observed for

individuals who make the associated choice, which generates assorted challenges for estimating

the marginal effects {β, γ} as well as the covariances between error terms in counterfactual

states and the cost function. In this setting, because we cannot observe agent beliefs about

earnings or costs for anyone in the sample, none of these parameters can be identified. I will

instead focus my attention entirely on the agents’ discrete choice problem.

Assuming that agents’ utilities are additively separable in inputs, they choose whether to

attend college in order to maximize expected net utility such that:

Si =


1 if u(Y1i − Ci)− u(Y0i) ≥ 0

0 otherwise,

(2)

where Si is an indicator of an agent choosing to attend college. Assuming further that utility

is monotonically increasing, it follows that

Si =


1 if Y1i − Y0i − Ci ≥ 0

0 otherwise.

(3)

12In general, a variable playing the role of tuition can be included in any of the equations so long as its
marginal effect on perceived returns is known to the researcher. It is not necessary for any of the methods used
in this paper that this variable satisfy the commonly invoked exclusion restriction of only affecting costs and not
potential earnings.
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is necessary and sufficient for the condition in equation (2) to hold.13 This allows me to write the

agent’s decision equation in terms of compensating variation. This is useful because perceived

returns in terms of compensating variation are linear in tuition and tuition subsidies, which I will

rely on both in the estimation of perceived returns and in evaluation of policy counterfactuals.

Explicitly defining the perceived return Yi = Y1i − Y0i − Ci, as well as net marginal effects

β = β1 − β0 − βC and εi = ε1i − ε0i − εCi, we can write the perceived return to college in terms

of explanatory variables

Yi = Xiβ − ˜Tuitioniγ + εi, (4)

which provides us with a standard latent variable equation for the college attendance decision.

The empirical goal of this paper is thus to obtain estimates of the distribution of the unobserved

perceived return Y by obtaining information about β, γ, ˜Tuition, and the distribution of ε.

3 Empirical Strategy

It follows from the model that given X, the distribution of Y can be fully described with accurate

values of {β, γ, ˜Tuition, ε}. There are several challenges in obtaining estimates of these objects.

First, I note that either of the individual-specific objects { ˜Tuition, ε} have the potential to fully

explain all observed behavior, leaving the model underidentified if they are left unrestricted.

To address this issue for ˜Tuition, I will assume tuition is a linear function of agent beliefs,

Tuitioni =
˜Tuitioni
λ

+ νi, (5)

in which λ captures agents’ systematic and proportional mistakes in estimation of tuition and ν

is a mean-zero error term independent of actual tuition that describes any part of actual tuition

costs that agents are unaware of when they decide whether to attend college.14 When λ = 1,

this is a rational expectations assumption on tuition. To address the underidentification issue

13In the language of price theory, we can describe {β1, β0} as prices on agent characteristics X in the college
sector and non-college sector, respectively. Then, the perceived return estimated is the compensating variation
for an agent for the change in prices from the college sector to the non-college sector given switching costs given
by {ε1i, ε0i, Ci}. Because the compensating variation is by definition linear in dollars, it provides a conceptual
framework that is vital to the identification strategy (which relies on a constant effect of tuition on perceived
returns) while also directly addressing the relevant policy issue of the tuition subsidy or tax required to alter
individuals’ attendance decisions.

14This restriction nests that of Dickstein and Morales (2015) that Tuition must be a mean-preserving spread

of ˜Tuition under the assumption λ = 1. It also nests CHN’s assumption that either Tuitioni = E[Tuition] or

Tuitioni = ˜Tuitioni. Note that the assumption that E[νi] = 0 is purely for convenience and has no substantive
effect on the estimation of the model. While I can’t separately identify any common systematic additive error in
agent expectations over tuition, it will be captured by the constant in the perceived returns equation if it exists.
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from idiosyncratic εi, I follow the common binary choice assumption that it is drawn from a

normal distribution:

εi|(Xi, Tuitioni) ∼ N (0, σ2). (6)

These assumptions are sufficient to secure estimates of a utility measure of perceived returns

across the population, Y ∗ = Y
σ by estimating {β∗, γ∗} = {βσ ,

γ
σ} by maximum likelihood, but

will fail to price perceived returns in dollars as is necessary to determine the effects of tuition

subsidies or taxes on attendance. This is due to reliance on binary choice outcomes rather than

directly observing agents’ forecasts of potential outcomes.15 Given my assumptions that actual

tuition affects perceived tuition at constant marginal rate λ and that perceived tuition affects

perceived returns at constant marginal rate γ, I secure estimates of perceived returns scaled

in dollars by estimating a value for γ and assuming λ = 1 (rational expectations on tuition),

which imply values for the residual parameter vector {β, σ}.16 Note that I do not need to

make any assumption on the mean of ν, as this will be absorbed by the model constant in the

perceived returns equation. Intuitively, if individuals are additively mistaken about the cost

of college, this is indistinguishable from a shift in the distribution of perceived returns. The

simple assumption λ = γ = 1 implies that a dollar increase in tuition is perceived by agents to

cost them a dollar.17 Finally, as this is fundamentally a forecasting model, in general it is not

necessary that any of the parameters have a causal interpretation, but rather than the chosen

value of any one parameter within {β, γλ, σ} corresponds to the hypothetical value it would

take on in the forecasting equation of the latent variable:

Yi = Xiβ − Tuitioniγλ+ εi. (7)

In practice, I will need causal first stage estimates of the effect of tuition on attendance because

the values of λ and γ that I use have causal interpretations. I choose λ = 1 with a rational

expectations assumption on tuition (but not on the component of the error term that is corre-

15This problem arises because of the commonly known issue of binary choice models being underidentified by
one parameter. This can be addressed by the normalizing assumption σ = 1 if the scale of the latent variable
Y is irrelevant, as is the case for applications relating to the causes or prediction of choice outcomes. In these
cases, it is common to work exclusively with the scale-invariant version of the latent variable, Y ∗ = Y

σ
.

16In other words, if the relationship between tuition and perceived returns in dollars is known, then the ratio
of the marginal effects of X on attendance and marginal effects of tuition on attendance provides the relationship
between X and perceived returns in dollars. Mathematically speaking, ∂Y ∗

∂X
/ ∂Y ∗

∂Tuition
= ∂Y

∂X
/ ∂Y
∂Tuition

. Given the
left-hand side of this equation provided by the first stage estimates of the discrete choice model and the term

∂Y
∂Tuition

= γλ where γ and λ are exogenous to the model, the term ∂Y
∂X

is provided by simple algebra.
17If agents’ beliefs are multiplicatively biased, λ 6= 1 and if they do not bear the full brunt of tuition costs,

γ 6= 1. The estimation of γ is covered in Appendix D.
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lated with tuition), and I estimate γ from the proportion of tuition costs paid by parents and

other relatives as reported in my data.

3.1 Full Information with Exogenous Tuition

It is helpful to begin by describing how one could estimate the model if agents had perfect

foresight over tuition and tuition were independent of the error term in the decision equation.

Formally, this amounts to assuming that ˜Tuitioni = Tuitioni ∀i, which amounts to assuming

that λ = 1 such that there is no systematic bias in beliefs about tuition, and that νi = 0 ∀i

such that there is no random error in agents’ beliefs about tuition. If this assumption holds, I

can directly replace the otherwise unobserved object of interest ˜Tuitioni with data on tuition.

The additional assumption that tuition is independent of ε will be violated if individuals with

higher than expected perceived returns go to more expensive colleges or receive larger scholar-

ships. If these assumptions hold, I can interpret the estimated relationship between tuition and

attendance as causal such that it is consistent with my calibrated value for the effect of tuition

on perceived returns. In this case, the decision rule is

Si =


1 if Xiβ − Tuitioniγ + εi ≥ 0

0 otherwise.

(8)

The assumption of normally distributed errors allows me to write the probability of selection

into college as

Pr(Si = 1|Xi, Tuitioni) = Φ
(Xiβ − Tuitioniγ

σ

)
, (9)

where Φ(·) denotes the standard normal cdf. We can thus estimate the parameters ψ∗ =

{β∗, γ∗} = {βσ ,
γ
σ} as the values that maximize the log-likelihood:

L(β∗, γ∗|X,Tuition) =∑
i

Si log

(
Φ
(
Xiβ

∗ − Tuitioniγ∗
))

+ (1− Si) log

(
1− Φ

(
Xiβ

∗ − Tuitioniγ∗
))

.
(10)

Importantly, the assumption that agents know the exact values of the observed (by the

researcher) tuition allows us to take it as given from the data. In general, the estimates we

obtain are of the marginal effect of increasing tuition in the dataset, which will only be the same
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as the effect of increasing expected tuition if there is perfect information.18 Maximum likelihood

estimation of this model will produce estimates of {β∗, γ∗} rather than that parameters of

interest, {β, σ}. I convert estimates {β̂∗, γ̂∗} into estimates {β̂, σ̂} by assuming a known value

for γ. Specifically:

σ̂ =
γ

γ̂∗
;

β̂ = σ̂β̂∗.

(11)

To be clear, if my distributional assumption on ε is accurate, the estimates obtained by

maximum likelihood can be used to consistently forecast selection into college regardless of

whether agents perfectly know Tuition or whether Tuition ⊥⊥ ε. This is the reason agents’

beliefs are not relevant in common applications that seek only to describe the relationships

between agents’ characteristics and the probability of making a given choice. In this application,

I want to not only forecast selection but to uncover the distribution of the latent variable (the

perceived return to college) in dollars, so I am relying on the accuracy of the scale assumption on

γ to avoid the standard assumption σ = 1. Insofar as these assumptions rely on the argument

that an increase in tuition of one dollar causes agents to believe their net present value lifetime

return is reduced by a known amount, it will only hold if our estimate of the effect of tuition on

selection is causal. In the naive analysis I just described, I have assumed away two major threats

to the causal interpretation, dependence between tuition and ε, and imperfect information on

tuition. In the two succeeding subsections, I will address each of these threats and provide

solutions to the problem of identification in the context in which these threats are present.

3.2 Partial Information & Endogeneity on Tuition: Instrumental Variables

MLE

There is reason to think that agents do not have perfect information on tuition. For one, tu-

ition costs for years beyond the first are not necessarily known even to colleges at the time of

potential students’ attendance decisions, and are thus unlikely to be perfectly forecast by poten-

tial students. Additionally, past work finds substantial inaccuracy and variance in individuals’

elicited beliefs regarding tuition costs (for example Bettinger, Long, Oreopoulos, and Sanbon-

matsu (2012)). I maintain the assumption of a constant known effect of tuition on perceived

returns, but I will relax the assumption that agents have perfect information on tuition. Addi-

18Even with i.i.d. errors εi and νi, assuming λ = 1 will bias the scale of perceived returns by a factor of λ
while assuming νi = 0 ∀i will introduce attenuation bias in first stage estimates of γ∗ if V ar(ν) > 0.
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tionally, I will allow for correlation between tuition and the error term in perceived earnings as

high unobserved ability individuals may pay higher net tuition due to attending higher quality

colleges, or may pay lower net tuition due to the effect of merit-based scholarships, which would

bias the standard maximum likelihood estimate of the effect of tuition on attendance upwards

and downwards, respectively.

It is impossible to characterize the bias in estimates that will result from wrongly assuming

perfect information on tuition without making restrictions on the relationship between agents’

beliefs and reality. The bias that will arise from assuming ˜Tuitioni = Tuitioni depends on the

true relationship Tuitioni = f( ˜Tuitioni), where f(·) provides the mapping from agents’ actual

beliefs to the data on tuition. However, when νi is a mean zero error term and λ is a constant as

in (5), it is straightforward to characterize the bias in first stage estimates of γ∗ from assuming

perfect information. Considering first the extreme case in which νi = 0 ∀i, it is clear from

considering (5) and (10) that we would not obtain first stage estimates of γ∗, but rather γ∗λ.

In this case, making the correct assumption on the value of λ will be necessary and sufficient

to secure unbiased estimates of γ∗. Considering the case when V ar(νi) 6= 0, the simplest way

to describe the bias is to realize that if λ = 1, tuition contains classical measurement error if

used as a measurement of ˜Tuitioni. This will result in attenuation bias in first stage estimates

of γ∗ if I use tuition in place of ˜Tuition in the estimation. Because I obtain estimates of σ by

applying the normalization given in (11), the attenuation bias in estimates of γ∗ will result in

bias away from zero in estimates σ, which will similarly cause bias away from zero in estimates

of β.

In this section, I describe how to address both the issue of endogeneity in tuition and mea-

surement error in tuition as a measurement of beliefs about tuition using maximum likelihood

with instrumental variables. The model is given by the assumption on selection given by (3)

and the characterization of agents’ beliefs in (4) with the addition of the following description

of the relationship between the determinants of perceived tuition and the instruments Z,

˜Tuitioni =Ziδ + ui

Tuitioni =
˜Tuitioni
λ

+ νi =
Ziδ + ui

λ
+ νi.

(12)

If the instrument Z is uncorrelated with both ε and ν (where it is uncorrelated with u by

construction), then it is a valid instrument for beliefs about tuition insofar as it is a valid
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instrument for tuition. The error terms {ε, u, ν} can be freely interdependent if Z is a valid

instrument for beliefs about tuition.19 The key result under these assumptions is

̂̃
Tuitioni = λ ̂Tuitioni = Ziδ̂, (13)

which allows me to use the first stage estimates of the effect of Z on tuition to obtain an

estimate of beliefs about tuition,
̂̃

Tuitioni, that contains neither the endogenous error u nor the

measurement error ν.

I assume that εi and ui are distributed according to an i.i.d. multivariate normal

(εi, ui)|(Xi, Zi) ∼ N (0,Σ), (14)

where the covariance matrix Σ is given by:

Σ ≡

σ2 σuε

σuε σ2
u

 . (15)

Under these assumptions, it is convenient to replace ˜Tuitioni in terms of the instrument Z in

the perceived returns equation as follows:

Yi = Xiβ − Ziδγ − uiγ + εi, (16)

where the assumption in (15) implies

(εi − uiγ)|(Xi, Zi) ∼ N (0, σ2).20 (17)

Then, I can follow Rivers and Vuong (1988) in writing the log-likelihood as:

L(β∗, γ∗|X,Z) =∑
i

Si log

[
Φ(Xiβ

∗ − Ziδγ∗)

]
+ (1− Si) log

[
1− Φ(Xiβ

∗ − Ziδγ∗)

]
.

(18)

19The composite error term ui
λ

+νi will play the same role as the error term in a standard instrumental variables
first stage equation.

20I denote V ar(εi−uiγ) = σ2 in the IV Probit model while also denoting V ar(εi) = σ2 in the Probit model by
recognizing that uiγ = 0 by construction in the Probit model (tuition effectively serves as an instrument for itself,
such that ui = 0 ∀i). This allows for notational simplicity in the comparison of the variance of the unobserved
error in perceived returns across specifications.
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Noting the absence of the problematic terms ui and νi, it follows that the IV Probit estimates

{β̂∗IV P , γ̂∗IV P } will be consistent estimates of the true {β∗, γ∗} if Z is a valid instrument and the

assumption on the error terms ui and εi are correct. With the assumption on the distribution of

the error term, I obtain estimates of the distribution of perceived returns to college by plugging

these estimates into the latent variable equation:

Yi|(Xi, Zi) ∼ N (Xiβ̂ − Ziδ̂γ, σ̂2). (19)

3.3 Partial Information & Endogeneity on Tuition: Moment Inequalities

With valid instruments Z, the instrumental variables Probit described in the last section will

provide consistent estimates of the true parameters {β∗, γ∗} under an accurate specification of

the first stage (12) if the assumption of joint normality stated in (15) is correct. If the first

stage is misspecified the estimation will have the same problems as those associated with weak

instruments. If the error term ui is sufficiently non-normal, the estimates {β∗, γ∗} will be biased

away from their true values according to the shape of the actual distribution of ui.

Because the actual beliefs about tuition are never observed, it is impossible to formally test

either the strength of the first stage or the distribution of the error term in the first stage (in

addition to the standard untestability of the validity of the instrument). I repeat the first stage

from the IV Probit here for reference:

Tuitioni =
˜Tuitioni
λ

+ νi =
Ziδ + ui

λ
+ νi. (20)

Because I use Z as an instrument for Tuition as a work-around to instrumenting for ˜Tuitioni,

any test of the strength of the first stage will relate to the relationship between Z and Tuition

rather than ˜Tuition. If agents have incomplete information on tuition even conditional on Z,

such a test will overstate the strength of the instrument. As such, any related test statistic

should be viewed as an upper bound measure of the strength of the instrument. It is thus valid

to reject a sufficiently weak instrument, but a high test statistic is insufficient to establish the

strength of the instrument for predicting ˜Tuition.

Regarding the distribution of the first stage error, it is apparent from the above equation

that I cannot estimate ui directly. The best I can do is to estimate ui
λ + νi from the difference

between Tuition and its predicted value given Z. Rejecting normality in this composite error
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term is neither necessary nor sufficient to reject the normality assumption on u.

Fortunately, the moment inequalities described by Dickstein and Morales (2015) will find

consistent estimates of {β∗, γ∗} when agents have partial knowledge of tuition as described in

equation (20) without the need of functional form assumptions or error term assumptions on

the first stage.21 The first set of moment inequalities are based directly on revealed preference

arguments and are similar to those used in Pakes (2010) and Pakes, Porter, Ho, and Ishii (2015).

The second set are based on maximum likelihood. Both sets of inequalities rely on variation in

Z to identify the effect of tuition, maintaining the assumption that Z is a valid instrument for

beliefs about tuition and is uncorrelated with the part of tuition that is unknown to agents.22

Because this method places weaker restrictions on the relationship between the instruments and

agents’ beliefs about tuition, it will provide a set of parameter values that satisfy the inequalities

rather than point estimates of model parameters.

3.3.1 Revealed Preference Moment Inequalities

The conditional revealed preference moment inequalities are given by

E

[
− (1− Si)(Xiβ

∗ − Tuitioniλγ∗) + Si
φ(Xiβ

∗ − Tuitioniλγ∗)
Φ(Xiβ∗ − Tuitioniλγ∗)

∣∣∣∣∣Zi
]
≥ 0,

E

[
Si(Xiβ

∗ − Tuitioniλγ∗) + (1− Si)
φ(Xiβ

∗ − Tuitioniλγ∗)
1− Φ(Xiβ∗ − Tuitioniλγ∗)

∣∣∣∣∣Zi
]
≥ 0.

(21)

where Z is a valid instrument for perceived tuition. These inequalities are consistent with the

revealed preference argument that perceived returns are positive for those who select into college

and negative for those who do not. The formal proof of the revealed preference inequalities can

be found in Dickstein and Morales (2015), but I will provide a sketch of the intuition here.

Consider an agent that chooses to enroll in college such that Si = 1. Following the standard

revealed preference arguments articulated in (3), it must be the case that such an individual’s

21DM do not explicitly account for λ in their methodology, but its inclusion is a trivial extension. Any
estimate of γ∗ made under the normalizing assumption λ = 1 can be converted into an estimate under a different
assumption on λ by simply multiplying it by λ.

22Dickstein and Morales describe this assumption as agents knowing Z. Technically, it is only necessary that
agents know predicted tuition given Z, not Z itself. This weaker assumption allows for the inclusion of instruments
in Z that agents may not consciously know as long as the distribution of agent beliefs about tuition conditional
on Z is degenerate. This means that even though agents likely do not consciously know the average tuition in
their county of residence at age 17, this instrument still passes the information test if agents’ beliefs about tuition
vary with it as much as actual tuition varies with it. Additionally, because I will include X in Z as is standard
for instrumental variables, I do not need to assume that agents know anything about X with respect to their
perceived returns to college, but only that they know about their tuition conditional on X.
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perceived return to college is positive such that

Si(Xiβ − ˜Tuitioniγ + εi) ≥ 0. (22)

We do not observe εi for anyone, but this condition should hold on average if it holds for indi-

viduals. Taking the expectation across individuals conditional on X, the unobserved ˜Tuitioni,

and the observed college choice yields

E

[
Si(Xiβ

∗ − ˜Tuitioniγ∗) + (1− Si)
φ(Xiβ

∗ − ˜Tuitioniγ∗)

1− Φ(Xiβ∗ − ˜Tuitioniγ∗)

∣∣∣∣∣X, ˜Tuitioni

]
≥ 0. (23)

The second moment inequality above is thus obtained by replacing the unobserved ˜Tuitioni

with Tuitioniλ and conditioning on Z. The inequality is maintained after the this substitution

by Jensen’s inequality as long as Tuitioniλ is a mean-preserving spread of Tuition because the

expectation of the error term is convex.23 As long as Z is a valid instrument for perceived

tuition, the inequalities are maintained conditional on Z by law of iterated expectations. The

first inequality follows from the same intuition applied to individuals who do not select into

college.

3.3.2 Odds-Based Moment Inequalities

The conditional odds-based moment inequalities are given by

E

[(
Si

1− Φ(Xiβ
∗ − Tuitioniλγ∗)

Φ(Xiβ∗ − Tuitioniλγ∗)
− (1− Si)

)∣∣∣∣∣Zi
]
≥ 0,

E

[(
(1− Si)

Φ(Xiβ
∗ − Tuitioniλγ∗)

1− Φ(Xiβ∗ − Tuitioniλγ∗)
− Si

)∣∣∣∣∣Zi
]
≥ 0.

(24)

Proofs of these inequalities are available in Dickstein and Morales (2015), but I include here an

overview of the intuition. First note that the log-likelihood conditional on {X, ˜Tuitioni} is

L(Si|X, ˜Tuitioni;β∗, γ∗) =

E

[
Si log

(
Φ(Xiβ

∗ − ˜Tuitioniγ∗)

)
+ (1− Si) log

(
1− Φ(Xiβ

∗ − ˜Tuitioniγ∗)

)∣∣∣∣∣X, ˜Tuitioni

]
,

(25)

23The restriction of beliefs given by (5) is sufficient for the application of Jensen’s inequality for any error
distribution with a convex inverse-mills ratio, such as the Normal and the Logistic distributions.
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for which the score equation is given by

E

[
Si
φ(Xiβ

∗ − ˜Tuitioniγ∗)

Φ(Xiβ∗ − ˜Tuitioniγ∗)
− (1− Si)

φ(Xiβ
∗ − ˜Tuitioniγ∗)

1− Φ(Xiβ∗ − ˜Tuitioniγ∗)

∣∣∣∣∣X, ˜Tuitioni

]
= 0. (26)

The intuition of the odds-based moment inequalities is fundamentally the same as that of the

conditional score function, which essentially describes the way a marginal change in the value

of a parameter within {β∗, γ∗} will affect the model’s accuracy in predicting selection (Si = 1)

and nonselection (1− Si = 1). The score function assigns higher weights to model failure than

to model success, so that marginal changes in parameters that improve very bad predictions

will be prioritized over those that improve slightly bad predictions.24

The fundamental goal is to replace the unobserved ˜Tuition with Tuition and to predict

the effect of this on the score equation. Dickstein and Morales (2015) show how to achieve

this by transforming the score function into two convex functions by normalizing the weights

on selection and nonselection respectively to unity. The resulting transformations of the score

function,

E

[(
Si

1− Φ(Xiβ
∗ − ˜Tuitioniγ∗)

Φ(Xiβ∗ − ˜Tuitioniγ∗)
− (1− Si)

)∣∣∣∣∣X, ˜Tuitioni

]
= 0,

E

[(
(1− Si)

Φ(Xiβ
∗ − ˜Tuitioniγ∗)

1− Φ(Xiβ∗ − ˜Tuitioniγ∗)
− Si

)∣∣∣∣∣X, ˜Tuitioni

]
= 0.

(27)

are globally convex in ˜Tuitioni. This allows us to apply Jensen’s inequality to predict the

direction of the inequality when replacing ˜Tuitioni with Tuitionλ as long as Tuitionλ is a mean-

preserving spread of Tuition as assumed in (5). As with the revealed preference inequalities,

these inequalities still hold conditional on Z as long as agents know tuition insofar as it is

predicted by Z by law of iterated expectations, leading to the odds-based moment inequalities

in (24).

It may seem like the two moment inequalities in (24) would be redundant as they are both

24To see this clearly, recall that

lim
x→−∞

φ(x)

Φ(x)
= |x|, lim

x→∞

φ(x)

Φ(x)
= 0;

lim
x→−∞

φ(x)

1− Φ(x)
= 0, lim

x→∞

φ(x)

1− Φ(x)
= |x|.

Thus when chosen parameters predict that an individual is very likely to select into college such that

Xiβ
∗ − ˜Tuitioniγ∗ is large, this individual’s contribution to the score will be small if they actually do attend

college and large if they do not.
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derived from normalizations on the score function. The key point, however, is that ˜Tuitioni

is replaced with Tuitioniλ after this normalization, so the resulting inequalities are not simply

transformations of one another. The easiest way to see this is to imagine the case in which the

constant β∗0 →∞ with all other parameters remaining at their true values such that the terms

inside the cdfs become arbitrarily large and positive. It can be seen in this case that the first

inequality would approach E[−(1−Si)|Zi] ≥ 0, violating the inequality, while the second would

become unboundedly large, satisfying the inequality. A sufficiently low value for β∗0 will violate

the second constraint for similar reasons. In this way, the two inequalities provide bounds on

the parameters. A further discussion of the intuition behind these inequalities is available in

Dickstein and Morales (2015).

3.3.3 Estimation Using Moment Inequalities

Under the information assumptions provided, the true parameter ψ∗ = {β∗, γ∗} will be con-

tained within the set of parameters that satisfy the inequalities, which I define as Ψ∗0. First,

because it is computationally expensive to compute the inequalities conditional on Z, I will

instead use unconditional inequalities that are consistent with the conditional inequalities de-

scribed above. Additionally, in small samples it is possible that the true parameters will not

strictly satisfy these inequalities, so it is necessary to construct a test of the hypothesis that a

given value ψ∗p = {β∗p , γ∗p} is consistent with the inequalities. To do this I employ the modified

method of moments procedure described by Andrews and Soares (2010). A description of this

procedure is available in Appendix B.

4 Data

The primary dataset used is the Geocode file of the 1979 National Longitudinal Survey of

Youth (NLSY79). This data source provides a wide variety of information on individuals who

were between the ages of 14 and 22 in 1979. Vitally, it provides information on the college(s)

that individuals attended if they attended college as well as loans and financial aid received

during college. Because the Geocode file provides detailed geographic information, it can also

be combined with other datasets to obtain average tuition for both local colleges in individu-

als’ counties of residence at age 17 and actual tuition for the college that they attended. The

geographic information is also useful for obtaining information on local labor market character-
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istics. This dataset also includes a rich set of information on individuals’ academic abilities and

family characteristics that are predictive of college attendance, including information about the

percentage of college costs that individuals pay themselves. As a final advantage, this dataset

has been used extensively in the related literatures on ex ante returns such as Cunha, Heckman,

and Navarro (2005) and Cunha and Heckman (2016) and the effects of policy interventions

on college attendance such as Dynarski (2003) so that the relationships between this paper’s

results and those of existing work can be readily attributed to differences in methodology rather

than differences across datasets. I merge this dataset with data on colleges from the Integrated

Postsecondary Education Data System (IPEDS), and data on local and state labor markets

from the Bureau of Economic Analysis (BEA) and the Bureau of Labor Statistics (BLS).

Other than dropping 41 individuals who reported graduating from college without ever

attending college, I do not impose any limitations on the sample. Notably, because I do not use

actual income to infer perceived returns, there is no reason to exclude women due to fertility

and labor force participation concerns as is common in the literature.25 The initial sample of

12,686 is reduced to 5,492 due to missing observations for variables of interest. A description

of the data is provided in Table 1.26

I choose college attendance as the decision of interest.27 This assumes that individuals

who attend college do so because they perceive the return to completing a 4-year degree to be

positive. If any individuals begin college intending to drop out because their perceived returns

to fewer than 4 years of college are positive but their perceived returns to 4 years of college

are negative, I will overestimate their perceived returns to college by using attendance as the

relevant decision. I expect that such individuals are rare. I find that approximately 57% of my

sample attended college after high school. This rate is somewhat lower in my data than the

current average because college enrollment was lower in the early 1980’s (when the individuals

in my sample were attending college) and because the NLSY79 contains oversamples of poor

whites and minorities who are less likely to attend college than average. I code an individual

25I will include some results for white males purely for comparability to the literature.
26The transformation of ASVAB scores to have positive support is required because a cancellation that takes

place in the derivation of the moment inequalities requires that each variable’s support in the data have a common
sign. This transformation has no substantive effect on the estimation as the constant in the model will adjust to
offset it. Average county wages come from the Bureau of Economic Analysis, and state unemployment rates come
from the Bureau of Labor Statistics. These are matched to the primary dataset using the NLSY79’s geographic
information.

27The same estimation procedure could be performed on graduation, but would somewhat complicate the
interpretation as dropping out suggests dynamic changes in information. Extensions of the estimation strategy
that allow for ordered decisions and information dynamics would be well suited to investigating differences
between attendance and completion and are left to future research.
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Table 1: Description of the Primary Variables

Overall High School Graduates College Attendees
mean mean mean

Mother Education 11.194 10.263 11.899
Father Education 11.198 9.860 12.214
Number of Siblings 3.611 4.160 3.195
ASVAB Score Subtest 3 0.071 -0.120 0.216
ASVAB Score Subtest 4 0.061 -0.167 0.234
ASVAB Score Subtest 5 0.073 -0.155 0.246
ASVAB Score Subtest 6 0.079 -0.154 0.257
ASVAB Score Subtest 7 0.073 -0.098 0.202
ASVAB Score Subtest 8 0.072 -0.070 0.180
ASVAB Score Subtest 9 0.068 0.040 0.090
ASVAB Score Subtest 10 0.064 -0.249 0.302
ASVAB Score Subtest 11 0.064 -0.037 0.140
ASVAB Score Subtest 12 0.064 -0.040 0.144
High School GPA 2.357 1.943 2.671
Broken Home 0.323 0.366 0.291
Urban Residence at Age 14 0.779 0.750 0.801
Average County Wage at Age 17 10.579 10.532 10.614
State Unemp Rate at Age 17 7.135 7.148 7.126
Tuition 13,662 9,267 16,995
Effective Tuition 7,343 5,776 8,532

Observations 5492 2369 3123

Notes: Means are of all NPSY79 samples. Parents’ education is in years. High school GPA is out of a maximum
value of 4. All dollar values are adjusted to 2018 values using a 3% interest rate. Each ASVAB test score is
transformed to have unit variance and zero mean. Broken home indicates the absence of either biological parent
in the home for any year from birth to age 18.

as having attended college if they explicitly report having received a college degree by age 23

or if they report a highest grade attended above 12 by age 23.

Because I focus on a single decision at a single point in time, I do not convert the NLSY79

dataset into panel data. I instead use the longitudinal data to obtain information about the

timing of college attendance, college tuition, and scholarships in years prior to receipt of a

bachelor’s degree and to obtain retrospective information that influences the college attendance

decision. I use four times the average present value (in 2018 terms, using a 3% interest rate)

of tuition in all years prior to receipt of a bachelors degree to construct a total present value

tuition measure for individuals who complete a 4-year degree. I use the information on tuition

for individuals who complete college and attend 4-year colleges to impute counterfactual 4-year

tuition for individuals who did not attend college.

Noting that I only observe tuition for individuals that attend college and that individuals

only attend college if their perceived return to college is positive, I impute tuition in a manner

that is consistent with the model of college attendance described above. I control for variables
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XT while accounting for selection with the system:

Tuitioni =


XiTαT + Local Tuition 17iαLT + ξiT if Si = 1

. otherwise,

(28)

Si =


1 if ZiTαS − Local Tuition 17iαLS + ξiS > 0

0 otherwise,

(29)

in which a variable within ZT satisfies the exclusion restriction that it is not included in XT .

Because I do not observe tuition for people who do not attend college (the very problem I seek

to address), I use local tuition at age 17 (the instrument for tuition) in these equations instead

of actual tuition. Secondly, I argue that distance from college at age 14 provides variation

in selection that does not otherwise affect tuition, such that I can exclude it from XT while

including it in ZT .

Using distance to college as an instrument for educational attainment was introduced by

Card (1993) to estimate the effect of education on earnings. Its use is similar here in predicting

college attendance, but the identification here relies on it having no effect on tuition conditional

on other controls, while making no assumption on its effect on earnings. An additional concern

specific to tuition is that distance to college may be associated with college prices, for instance

if more rural areas are more likely to have small community colleges than urban areas. I address

this concern by controlling for local tuition in county of residence at age 17 as well as including

an indicator variable for living in an urban county. Conditional on AFQT, local tuition at

age 17, urbanicity of residence, and the other controls in XT , I argue that distance to college

only contributes a measure of the potential costs associated with housing and transportation

associated with college attendance, which should predict attendance without otherwise affecting

tuition.

Relatedly, use of average local tuition at age 17 as an instrument for the effect of college

attendance on earnings was introduced by Kane and Rouse (1995). I include this as a control

for the imputation of tuition while using it as an instrument in estimation of perceived returns.

For individuals who live in a county with a college, I use the enrollment-weighted average tuition

of public 4-year colleges in their county. For individuals who do not live in a county with a

college, I use the state-level enrollment-weighted average. Instead of relying on this instrument
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affecting selection without otherwise affecting earnings as it has primarily been used in the past,

I rely on it affecting tuition without otherwise affecting selection.

One concern with the use of distance to college to instrument for selection into college is

that it has been shown to be correlated with AFQT, a measure of ability. To address this

concern, I include each ASVAB subtest, from which the AFQT score is computed, as controls

in all estimated equations. Hansen, Heckman, and Mullen (2004) show that years of schooling

at the time of testing affects AFQT scores, so rather than using raw ASVAB scores, I use the

residual of each test score after controlling for years of education. I make no other adjustments

to any of the variables in the data.

At first glance, the imputation of tuition and the estimation of the model may seem circular

because I estimate a selection equation to impute tuition and then use imputed tuition to

estimate a very similar selection equation for the main results. A succinct chronological ordering

of each step in the estimation procedure is helpful for dispelling this potential confusion. First, I

estimate the selection equation (29) using variables that are observed for everyone in my sample.

Because I only use these estimates to control for selection, I am uninterested in the scale of the

latent variable of this equation as well as causal effects of any variables on the latent variable.

Second, I use these estimates to impute tuition with (28) while controlling for selection from

(29) with the exclusion restriction that distance to college affects attendance but not potential

tuition. Third, I instrument for this imputed tuition with local tuition at age 17 in (12). Fourth,

I use the instrumented value of tuition to estimate the causal effect of tuition on selection.28

Finally, I apply the normalization assumption that tuition affects perceived returns at known

marginal rate γ. Table 2 shows the variables that are and are not included in each estimated

equation both for the tuition imputation and for the main results.

I estimate a value for γ using data from the NLSY79 on the proportion of college tuition paid

for by the student. This data is only available in 1979, so I impute a value for the proportion

of costs paid using ordinary least squares. In practice, I will use this γ̂(Xi) when estimating

perceived returns, such that each individual is allowed to differ in the amounts of pecuniary

costs they bear. The estimation of γ(X) is described in detail in Appendix D.

Finally, Because the moment inequalities are estimated using a grid search, they are highly

computationally expensive. For this reason, I use principal components to reduce the parameter

space to a constant, a coefficient on tuition, a coefficient on the first principal component of

28For the moment inequalities, steps 3 and 4 are integrated into one step.
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Table 2: List of Variables Included and Excluded in Each System

Variable Name Tuition (Observation) Tuition (Imputation) Return IVs Return
(ZT ) (XT ) (Z) (X)

Imputed Tuition · · · !

Local Tuition, Age 17 ! ! ! ·
ASVAB (All Tests) ! ! ! !

Mother’s Education ! ! ! !

Mother’s Education Squared ! ! ! !

Father’s Education ! ! ! !

Father’s Education Squared ! ! ! !

Number of Siblings ! ! ! !

Number of Siblings Squared ! ! ! !

Urban at Age 14 ! ! ! !

High School GPA ! ! ! !

High School GPA Squared ! ! ! !

Broken Home ! ! ! !

Average County Wage, Age 17 ! ! ! !

State Unemployment, Age 17 ! ! ! !

Distance to College ! · · ·
Notes: I rely on distance to college affecting attendance without directly tuition. I further rely on local tuition
at age 17 affecting tuition without otherwise affecting perceived returns, conditional on the other controls. I do
not include distance to college in the main equation because tuition is imputed from this variable and all other
objects in XT , such that including it in the main equation would produce perfect collinearity on imputed tuition.

variables associated with individuals’ general ability, and a coefficient on the first principal

component of variables associated with individuals’ local geographic characteristics.29 The

details of the principal component analysis are presented in Appendix C.

5 Results

Table 3 shows estimates of the model parameters ({β, σ}) of perceived returns to college for the

Probit, IV Probit, and moment inequalities using principal components. The bias in the Probit

specification is evident in the insensible negative estimate of the standard deviation. Recalling

the normalization in (11), the estimate of the standard deviation will be negative when expected

tuition is positively associated with college attendance, i.e. individuals who are likely to attend

college are also likely to attend expensive colleges. The negative standard deviation affects the

signs of the other coefficients because the estimates from the discrete choice model are multiplied

by σ̂ to convert them into dollar terms. Graphs of the implied distribution of perceived returns

for the IV Probit and moment inequalities are shown in figures 1 and 2, respectively.

29It takes approximately 16 hours to estimate this 4-parameter model. Because the primary time cost is in
the grid search, adding any additional variables can be expected to increase the computation time required
exponentially.
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Table 3: Perceived Returns Estimates, 2018 Dollars, Principal Components

(1) (2) (3)
Probit IV Probit Moment Inequalities

Constant 23.425 -29.644 [-72.587, 0.712]
(1.789) (1.736) N/A

PC1(Ability) -7.940 12.069 [3.097, 24.894]]
(0.501) (0.607) N/A

PC2(Location) 1.485 1.301 [-2.435, 5.113]
(0.427) (0.477) N/A

σ -22.422 21.064 [1.282, 42.809]
(2.401) (4.634) N/A

Observations 5492 5492 5492

Notes: Standard errors in parentheses. Parameters are marginal effects of the variable on perceived returns to
college in thousands of dollars. The coefficient on tuition is assumed to be equal to λγ(X). Estimates are from
equation (4) with the details varying by estimation method. See text for details.

Figure 1: Perceived Returns to College, IV Probit, Principal Components

Notes: Perceived returns across the population, weighted by 1988 sample weights, using principal components.
The distribution is given by Y = Xβ̂ − Zδ̂λγ̂(X) +N (0, σ̂2).
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The results in Table 3 are scaled using the estimated γ(X) described in Appendix D and

the rational expectations assumption on tuition (λ = 1). The unscaled results are presented in

Table 4. It is worth noting that the moment inequality bounds in Table 4 (and consequently

Table 3) fail to completely characterize the confidence set of parameters that satisfy the moment

inequalities. The hyper-rectangle implied by the upper and lower bound on each parameter is

larger than the actual confidence set of parameters that satisfy the moment inequalities. The

resulting distributions of beliefs about returns to college are obtained for each point in this

confidence set. Two and three-dimensional cuts of the confidence set of {β̂∗MI , γ̂
∗
MI} are shown

in Figures 3 and 4, respectively, for illustrative purposes. The first stage for the IV Probit is

provided in Appendix F.30

Table 4: Perceived Returns Estimates, Unscaled, Principal Components

(1) (2) (3)
Probit IV Probit Moment Inequalities

Constant -1.045 -1.407 [ -11.331, 0.111]
(0.080) (0.082) N/A

PC1(Ability) 0.354 0.573 [ 0.483, 4.443]
(0.022) (0.029) N/A

PC2(Location) -0.066 0.062 [-0.333, 1.661]
(0.019) (0.023) N/A

Tuition 0.045 -0.047 [-0.476, -0.014]
(0.005) (0.010) N/A

Observations 5492 5492 5492

Notes: Standard errors in parentheses. Parameters are marginal effects of the variable on perceived returns to
college in standard deviations. For these results, I assume σ = 1. Estimates are from equation (4) with the
details varying by estimation method. See text for details.

Turning to the comparison between the IV Probit and the moment inequalities, I note that

the IV Probit point estimates fall close to the middle of the moment inequality confidence sets,

suggesting that the assumptions that perceived tuition is linear in local tuition at age 17 and

that the error term in beliefs about tuition is normally distributed are not particularly harmful

to the estimation.31 I further note that the bounds on the moment inequalities parameters

are quite large, suggesting, for instance, that the standard deviation of perceived returns to

college is somewhere between $1,200 and $43,000. Because of the wide bounds on the moment

inequalities and the suggestive evidence of the validity of the IV Probit for the purpose of this

paper, I will focus on the IV Probit estimates for subsequent results and counterfactuals.

30Recall that the moment inequalities make use of the instruments without estimating a first stage.
31Recall that these are the assumptions the IV Probit makes that the moment inequality estimation procedure

does not.
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Figure 2: Perceived Returns to College, Moment Inequalities, Principal Components

Notes: Perceived returns across the population, weighted by 1988 sample weights, using principal components.
Each point {β̂p, σ̂p} in the confidence set (partially shown in figures 3 and 4) implies an entire distribution of
beliefs about returns given by Xβ̂p − Tuitionλγ̂(X) + N (0, σ̂2

p). I am unable to reject any of these implied
distributions with 95% confidence. The distributions in blue are those with the lowest and highest values of σ̂.

Figure 3: Unscaled Confidence Set for 2 Parameters, Moment Inequalities

Notes: The confidence set contains all combinations of parameter values that I cannot reject satisfy the moment
inequalities in the unscaled discrete choice model. Note that the limits of the x and y axes correspond to the
results in Table 4, while the 95% confidence set is a subset of the rectangle represented by these limits. The
complete 95% confidence set is a 4-dimensional object. The normalizations in (11) are performed on each point
in the confidence set to obtain the results in Table 3.
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Figure 4: Unscaled Confidence Set for 3 Parameters, Moment Inequalities

Notes: The confidence set contains all combinations of parameter values that satisfy all of the moment inequalities
in the unscaled discrete choice model. Note that the limits of the x, y, and z axes correspond to the results in
Table 4, while the 95% confidence set is a subset of the 3-dimensional orthotope represented by these limits. The
complete 95% confidence set is a 4-dimensional object. The normalizations in (11) are performed on each point
in the confidence set to obtain the results in Table 3.

Because I find in this application that the IV Probit estimates are broadly consistent with

the moment inequality estimates, I will use the full set of controls for the remaining analysis

rather than the principal components. This is of interest for more clearly identifying the sources

of variation in perceived returns to college. The IV Probit results when including all controls

are presented in Table 6, with the corresponding visual representation of the distribution of

perceived returns shown in Figure 5. The first stage and and unscaled estimates are provided

in Appendix F.

I note first that the estimates of σ in the principal component specification and the full

controls specification are statistically indistinguishable, suggesting that the two specifications

give qualitatively similar results. The specification with full controls gives insight into which

characteristics are associated with higher perceived returns as well as providing insight into the

curvature of these characteristics. Recall that none of these coefficients have a causal interpreta-

tion; the ultimate goal is to forecast policy effects conditional on observed characteristics, so the

relationship between characteristics and perceived returns should exploit all of the explanatory

power of any variable, not just the causal relationship. The results suggest that individuals
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Table 5: Perceived Returns Estimates, 2018 Dollars, All Controls

(1) (2) (3) (4)
Probit Std. Error IV Probit Std. Error

Constant 17.730 (2.355) 14.170 (2.007)
Mother Education -7.191 (1.143) -4.799 (0.766)
Mother Education Squared 0.460 (0.059) 0.306 (0.039)
Father Education -1.436 (0.880) -0.777 (0.599)
Father Education Squared 0.192 (0.042) 0.120 (0.029)
Number of Siblings -3.424 (0.857) -2.045 (0.592)
Number of Siblings Squared 0.208 (0.074) 0.125 (0.050)
ASVAB Score Subtest 3 0.804 (1.311) 0.562 (0.879)
ASVAB Score Subtest 3 Squared 1.146 (0.971) 0.780 (0.650)
ASVAB Score Subtest 4 -1.012 (1.281) -0.673 (0.859)
ASVAB Score Subtest 4 Squared 4.562 (1.007) 3.346 (0.692)
ASVAB Score Subtest 5 1.504 (1.432) 1.040 (0.961)
ASVAB Score Subtest 5 Squared -5.380 (1.101) -3.849 (0.749)
ASVAB Score Subtest 6 2.067 (1.199) 1.576 (0.811)
ASVAB Score Subtest 6 Squared -4.569 (0.946) -3.193 (0.638)
ASVAB Score Subtest 7 -0.595 (1.057) -0.274 (0.713)
ASVAB Score Subtest 7 Squared -2.869 (0.921) -1.994 (0.619)
ASVAB Score Subtest 8 -3.099 (1.000) -2.130 (0.671)
ASVAB Score Subtest 8 Squared -1.851 (0.884) -1.207 (0.593)
ASVAB Score Subtest 9 -4.606 (1.245) -3.271 (0.841)
ASVAB Score Subtest 9 Squared -1.693 (0.935) -0.972 (0.634)
ASVAB Score Subtest 10 5.780 (1.238) 4.214 (0.850)
ASVAB Score Subtest 10 Squared 6.983 (0.973) 4.744 (0.652)
ASVAB Score Subtest 11 -3.585 (1.233) -2.550 (0.831)
ASVAB Score Subtest 11 Squared -0.364 (0.929) -0.322 (0.625)
ASVAB Score Subtest 12 -1.883 (1.243) -0.998 (0.847)
ASVAB Score Subtest 12 Squared 4.211 (0.932) 2.956 (0.629)
High School GPA 24.402 (4.379) 17.964 (3.058)
High School GPA Squared -0.446 (0.975) -0.556 (0.668)
Broken Home -0.464 (1.632) 0.441 (1.173)
Urban Residence at Age 14 6.698 (1.800) 4.541 (1.208)
Average County Wage at Age 17 0.800 (0.327) 0.709 (0.239)
State Unemp Rate at Age 17 0.084 (0.382) 0.063 (0.257)
σ 37.337 (10.811) 25.077 (6.656)

Observations 5492 5492 5492 5492

Notes: All non-categorical variables are demeaned such that the constant gives the mean for white males.
Parameters are marginal effects of the variable on perceived returns to college in thousands of dollars. The
coefficient on tuition is assumed to be equal to λγ̂(X). Estimates are from equation (4) with the details varying
by estimation method. See text for details.
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Figure 5: Perceived Returns to College, IV Probit, All Controls

Notes: Perceived returns across the population, weighted by 1988 sample weights, for the full controls specifica-
tion. The distribution is are given by Y = Xβ̂ − Zδ̂λγ̂(X) +N (0, σ̂2).

with college-educated parents have about $30,000 higher perceived returns on average than

those with parents who only completed high school(holding other variables at their means).32

The relationships between GPA and the various ASVAB scores are of further interest, as

they are consistent with selection on gains in college attendance. For instance, GPA and the the

first two ASVAB subtests on science and arithmetic predict high perceived returns. Meanwhile,

ASVAB scores associated with nonacademic ability (such as subtests 7 and 9 on auto and

shop information and mechanical comprehension) are associated with low perceived returns to

college.33 The negative relationship between subtests 5 and 6 (which measure word knowledge

and paragraph comprehension) and perceived returns are also interesting in light of past findings

of a negative relationship between verbal skills and wages, such as in Sanders (2015).

If my estimates of perceived returns are biased, it is likely that they overestimate the variance

of the distribution. First, if local tuition at age 17 is associated with the unobserved component

of perceived returns, it is likely to produce positive bias in estimates of the effect of tuition on

attendance. This will happen if high local tuition is associated with higher perceived returns

(i.e. people who live near elite universities expect their returns to college to be high, conditional

32Recall that the point at which a variable and its quadratic of opposite sign cross zero is given by
β1x+ β2x

2 = 0 =⇒ x = −β1
β2

.
33Recall that the ASVAB tests have all been transformed to have unit variance and positive support.
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on their other characteristics). I have attempted to account for this by including indicators of

local labor market health. Second, If there is predictive power for actual tuition in local tuition

at age 17 that is unknown to agents, estimates of the effect of tuition on attendance (the

unscaled IV Probit or moment inequality estimates) will be biased toward zero. This is similar

to the problems with assuming people know tuition perfectly, the predicted value for tuition will

contain classical measurement error insofar as it is a measure of beliefs about tuition. Because

the causal effect of perceived tuition on perceived returns should be negative, this bias moves

the estimate of the effect of tuition on attendance in the positive direction.

Thus both likely sources of bias are positive, which would move the estimate of the effect

of tuition on attendance closer to zero. Then applying the normalization in (11) will produce

upward bias in estimates of σ. In other words, this bias would cause me to conclude that

tuition has a small effect relative to other factors, which would imply (because tuition is valued

in dollars) that other factors have large effects in dollars. The effect of this is to blow up the

distribution of perceived returns and to thus underestimate the effect of tuition subsidies/taxes

on attendance.

6 External Validation and Policy Counterfactuals

Estimates of perceived returns are of interest to policymakers for identifying how many and

what type of individuals value college at various levels. With this knowledge, it is possible to

predict the number and type of individuals who will and will not attend college in the presence or

absence of tuition subsidies or taxes. In this section, I will test the validity of the methodology

of this paper by comparing the predicted effects of tuition subsidies on attendance from my

estimates with those found in a natural experiment on Social Security Student Benefits studied

by Dynarski (2003). Then, I will investigate the costs and effects of additional counterfactual

policies.

6.1 Social Security Student Benefit

The Social Security Student Benefit was a policy from 1965 to 1982 that provided income

assistance to children of deceased, disabled, or retired parents if they attended college. The

financial reward was based on parental earnings, and was on average roughly $11,400 (2018

dollars) per year. This was sufficient to completely offset tuition costs for public institutions
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and to nearly do so even for many private institutions. Because this policy ended right as the

individuals in the NLSY79 were deciding whether to attend college, this dataset was chosen by

Dynarski (2003) to estimate the effects of the policy on educational outcomes including college

attendance rates using differences in differences. I compare the implied effect of tuition aid on

college attendance from the perceived returns I estimate to the results from her paper.

The primary result I attempt to match from Dynarski (2003) is the effect of the policy on

attendance probabilities by age 23. Dynarski finds that the termination of this policy caused

a 24.3% decrease in college attendance for the affected group, though these estimates were not

significantly different from zero.34 Assuming a linear effect of tuition on enrollment, she finds

that a $1000 yearly subsidy caused a 3.6% increase in college attendance in year 2000 dollars.35

The validation exercise is thus to determine whether my estimates of perceived returns

predict a 24.3% increase in enrollment from an $45,600 ($11,400/year x 4 years) subsidy. Because

I use the same basic dataset to estimate perceived returns as Dynarski used to estimate the

effects of the SSA Student Benefit, the results should be roughly comparable. Because there

was variation in benefits received, applying the $45,600 uniformly across the population may

somewhat misstate the policy effect according to the association between paternal death and

perceived returns to college.36 Finally, because Dynarski identifies the effect of student aid off

of individuals with deceased fathers, my estimates of the effect of aid on the entire population

will exceed hers if her treated group has lower responses to aid than average. The distribution

of perceived returns implied by the estimates in Table 4 are shown in Figure 6 along with

a counterfactual distribution showing the effect of a uniform $45,600 subsidy to all potential

college students. The predicted effect of the policy on attendance is given by the difference in

the mass to the right of zero between the distributions. This effect is 26.0%, which is very close

to the effect of 24.3% found by Dynarski (2003).

An advantage of the methodology employed in this paper is that by obtaining the complete

distribution of perceived returns, I do not rely on an assumption of a linear (or other) effect

of tuition on attendance when computing effects of other counterfactual policies. For instance,

the difference in differences methodology employed by Dynarski clearly identifies the effect of

34Dynarski focused on the difference in attendance between children of deceased fathers before and after
termination of the program. Fewer than 200 individuals in her data had deceased fathers, which likely contributed
to the lack of significance despite the substantial point estimates.

35This amounts to a 2.1% increase in 2018 dollars using a 3% discount rate.
36The NLSY79 does not have benefit amounts received, only parental mortality status. Dynarski used average

benefits and data on parent mortality to infer the effect of benefit amounts.
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Figure 6: Effect of Universally Applied Aid Equivalent to Social Security Student Benefit

Notes: The shift in the presence of the policy comes from adding $45,600 dollars to everyone, which is assumed

to be well-publicized such that we have new perceived effective tuition for individual i given by ˜Tuitioniγ̂(Xi) =

˜Tuitioniγ̂(Xi) + $45, 600γ̂(Xi). The increase in mass just to the right of zero is the result of individuals with
lower perceived returns paying a higher percentage (given by γ̂(Xi)) of tuition than those with higher perceived
returns, such that the tuition aid shifts them relatively further to the right. The shift visually looks smaller than
$45,600 because the average γ̂(X) = 0.61.
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the $11,400 annual tuition subsidy, but relies on a linear assumption on the effect of tuition is

made to infer the effect of a $1000 annual subsidy. Thus, while Dynarski infers a 2.1% effect

of $1,000 dollars (3.6% in year 2000 dollars), the predicted effect of a $1,000 annual subsidy

using the methodology employed in this paper is 2.6%. This larger effect is found because the

average mass of the distribution of perceived returns is higher between $0 and -$4,000 than it is

between $0 and -$45,600 dollars, such that the marginal effect of aid falls as aid rises.37 I argue

that the ability of the methodology described in this paper to closely match the results from a

cleanly identified natural experiment bodes extremely well for its validity and predictions for a

wide variety of potential policies.

6.2 Attendance Target with Cost-Minimization

Given the external validity of the results as demonstrated above, it is possible to use my es-

timates of perceived returns to predict the effects of other potential policies. Here I describe

the cost-minimizing policy that reaches a given attendance target, given the results above.38

In the interest of comparability to the Social Security Benefit, I choose A = 87.3% as the tar-

get level of college attendance because that is the attendance level predicted by the preceding

counterfactual (Social Security Student Benefit applied universally).

The cost-minimizing schedule of student aid conditional only on observables is shown in

Figure 7. To derive it, I begin by noting the attendance probability for individual i, conditional

on observables and financial aid offer ai, is given by

Pr
(
Si = 1|Ŷi, ai

)
= Φ

(
Ŷi + aiγ̂i

σ̂

)
, (30)

where Ŷi = E[Yi|Xi, Tuitioni].
39 The expected cost to the government for this financial aid offer

is then given by

E[Ci|Ŷi, ai] = aiΦ

(
Ŷi + aiγ̂i

σ̂

)
, (31)

where ai is spent by the government on individual i only if they choose to attend college. Note

that the government must pay ai to person i even if they would have gone to college in the

absence of the policy. Avoiding aid for individuals who are likely to go to college in the absence

37It is worth noting that Dynarski (2003) suggested this exact possibility.
38Defining such a concrete target may be appealing to policymakers. For instance, President Obama specifically

stated a goal of the U.S. having the highest proportion of college graduates in the world.
39Note that while the government spends ai on individual i, the individual’s return to college increases by aiγi

because they pay γi proportion of their schooling costs.
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Figure 7: Cost-Minimizing Aid for Attendance Target

Notes: The red line shows perceived returns to college in the presence of the cost-minimizing policy that achieves
the attendance target of 87.3%. This is the same proportion of the population that I predict will attend in the
preceding section with the universally-applied subsidy of the same magnitude as the Social Security Student
Benefit. The average cost per individual for that policy is $39,800, while the average cost in the cost-minimizing
policy shown here is $29,400. Visual comparison of Figure 6 and Figure 7 show that the cost-minimizing policy
shifts perceived returns to college less for individuals with high perceived returns than for those with low perceived
returns.
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of aid will play an important role in the cost-minimization.

The attendance target implies that the government receives a constant marginal benefit, b,

from any individual attending college.40 Choosing ai to set expected marginal benefit equal to

expected marginal costs gives

b =

Φ(Ŷ ∗i (ai))

φi(Ŷ ∗i (ai))
σ̂ + aiγ̂i

γ̂i
, (32)

wherein Ŷ ∗i (ai) = Ŷi+aiγ̂i
σ̂ is the expected perceived return to college for individual i accounting

for the financial aid offer and observables. I assume the government is constrained to use

subsidies and not taxes (ai ≥ 0 ∀i), which leads to the solution (given b) being the set {a1}i

that satisfies41

b1i =


b if b0i < b,

b0i if b0i ≥ b.
(33)

where b1i gives expected marginal cost per expected attendance for person i in the presence of

the policy and b0i is the same in the absence of the policy:

b0i =

Φ(Ŷ ∗i (0))

φi(Ŷ ∗i (0))
σ̂

γ̂i
. (34)

Essentially, this condition is that aid will be extended to those who respond most per cost for

any attendance target above the initial attendance proportion. Note that b1i is monotonically

increasing in ai, which implies that the single cutoff b will define marginal costs per marginal

attendance for the treated group.42

The above gives the cost-minimizing idiosyncratic aid for each individual, ai(b), given an

arbitrary cutoff value b. To reach attendance target A, all that remains is to find the value b∗

that satisfies

E

[
Φ

(
Ŷi + ai(b

∗)γ̂i
σ̂

)]
= A. (35)

Then the cost-minimizing idiosyncratic aid is given by the ai that solves (33).

The cost-minimizing financial aid solution has several interesting features. First, it focuses

aid on individuals with low perceived returns. This happens because marginal increases in

40This formulation of the problem will generalize nicely to the case where the government has an idiosyncratic
benefit, bi, from individual i attending college, obtained for instance from estimates of lifetime returns to college.

41If the government can use taxes, the solution is is given by bi1 = b ∀i.
42The condition that b1i is monotonically increasing in ai will be satisfied for any symmetric, log-concave

distribution (such as the normal). This is a sufficient condition but not a necessary one, as aiγ̂i is increasing in
ai and will contribute to b1i increasing in ai.
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aid increase attendance by φ(Ŷ ∗(ai)) while costing Φ(Ŷ ∗(ai)), and the latter is large for large

values of Ŷ while the former is not. In other words, tuition subsidies for individuals with low

perceived returns cause the government to spend less money on subsidies for people who would

have attended college anyway. Secondly, it focuses aid on individuals who pay high percentages

of their schooling costs, γ̂i. This is because the government must spend ai to increase perceived

returns by aiγ̂i, which will be higher for high values of γ̂i. Thirdly, I note that individuals

who have low perceived returns also tend to pay a high fraction of their educational costs,

so these two types of people are really only one type of person. Many of these individuals

will not respond to financial aid (because their perceived return is still below zero even in

the presence of aid), keeping costs low for the government. Finally, such individuals that

do respond will do so because they have high draws from the error term in their perceived

returns (selection) equation. Carneiro, Heckman, and Vytlacil (2011) find that such individuals

with high unobserved preferences for college also have relatively high real returns. Because this

policy targets low socioeconomic status individuals who are likely to have relatively high returns

while minimizing costs, it can likely serve as a useful heuristic for the government if it seeks

to both reduce inequality and induce selection on gains. I conclude discussion of this policy

by noting that its solution can easily be modified to provide optimal idiosyncratic financial

aid conditional on known actual returns to college or to provide optimal aid conditional on a

binding total financial aid budget constraint for the government.

7 Conclusions

I obtain estimates of beliefs about returns to college based on observed selection into college.

Importantly, I am able to obtain these estimates without assuming that agents perfectly observe

any data object that is known to the econometrician, and I only assume agent knowledge of the

effect of tuition on returns. Prior research has made stronger assumptions about the information

held by agents. The results suggest that 2.6% of individuals would be induced to attend to

college with an annual tuition subsidy of only $1000, which is consistent with the results from a

host of studies of natural experiments.43 Past estimates of the distribution of perceived returns

such as those in Cunha, Heckman, and Navarro (2005) that are identified from assumptions on

43It is common in this literature to provide effects of $1,000 annual subsidies in year 2000 terms. This effect
is 4.2%, while effects from 0%-6% are commonly found in studies of natural experiments, with the 0% estimates
commonly attributed to administrative costs and/or information frictions associated with the policy. See Deming
and Dynarski (2010) for a broad survey.
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agents beliefs about real returns exhibit substantially higher variance and would be unable to

predict the effects of tuition subsidies, though it is important to note that these authors do not

claim to estimate compensating variation and do not claim to predict any such effects.

The methodology employed in this paper is especially well-suited to counterfactual policy

analysis for multiple reasons. First, it avoids assuming that agents have rational expectations

over returns to college. Second, it naturally identifies perceived returns in terms of compensating

variation, which is directly applicable to policy questions. Third, if credit constraints are a

factor, they will be seamlessly incorporated into the compensating variation specifically because

they, like compensating variation, are linear in dollars where they exist. The effects of a tuition

subsidy would then be to not only increase perceived returns at a constant marginal rate, but

to reduce credit-constraints at a constant marginal rate. The predictions about which and how

many individuals will be induced to attend college in the presence of any such policy will be

identical whether we explicitly account for perceived credit constraints or not.

Past estimates of heterogeneous lifetime income returns to college commonly produce dis-

tributions of returns that have much higher mean and variance than the perceived return dis-

tribution that I estimate (See Cunha and Heckman (2007) for a survey of papers that estimate

heterogeneous lifetime income returns). Cunha and Heckman (2016) more recently provides

similar results for earnings from age 22 to 36 which are consistent with lifetime earnings that

substantially exceed the perceived returns I estimate in both mean and variance. Average treat-

ment effect estimates of wage returns to college are generally consistent with these estimates of

lifetime earnings when making standard assumptions about hours worked per year and years

worked.44 The qualitative takeaway from this result is that individuals at best dramatically

underestimate their returns to college while still making the attendance decision that will max-

imize their earnings (this will occur anytime the sign of an individual’s actual return matches

the sign of their perceived return, and at worst that they make a suboptimal decision due to

underestimating the value of college relative to returns). Another way of describing the results

is that individuals appear to dramatically overweight tuition costs relative to the other compo-

nents of returns to college, an interpretation that appears consistent with reports in the popular

press relating to concerns that the costs of college are considered prohibitively high for many

individuals.

44See, for instance, Card (2001), Carneiro, Heckman, and Vytlacil (2011) and Heckman, Humphries, and
Veramendi (2018)
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The methodology employed in this paper is well-suited for extensions in a variety of education

decisions. These estimates are of potential interest for comparison to the analogous model of

actual lifetime returns to college. Using a compatible specification for estimation of actual

returns, with the same controls, the same imputation of tuition, and the same instruments, will

produce the same estimates as those of perceived returns if agents have perfect foresight of their

actual returns conditional on these variables. A test of perfect foresight in such a model is a

joint test of all parameters being equal in the actual returns equation and the perceived returns

equation. Similarly, upon performing such an analysis, it would be possible to identify predictors

of misinformation as those variables with more divergent coefficients across the two equations. A

comparison of perceived returns and actual returns is beyond the scope of this paper and is left

for future work. The difference in estimates of the marginal effects of determinants of returns on

actual returns and perceived returns will describe optimal schedules of tuition subsidies to induce

selection on financial gains, with the caveat that such an exercise would ignore nonpecuniary

private returns, externalities from education, and general equilibrium effects. Additional fruitful

areas for future research include extensions of the methods above to college major choice (in a

multinomial choice setting) or years of education (in an ordered choice setting).

In addition to education applications, the method described in this paper is well-suited to

the estimation of perceived benefits for any purchase in which there are information frictions in

pricing. One potential example is fertility decisions, in which pecuniary medical costs associated

with childbirth are one of many components of the net benefits to childbearing, and could be

used to identify the perceived valuation of having children despite not likely being perfectly

forecast at the time of the childbearing decision. Another potential application is the perceived

value of home ownership, especially in the context of adjustable rate mortgages, wherein the

price ultimately paid for the home is again unforecastable at the time of purchase. Finally, as

evidenced by the use of similar methodology in Dickstein and Morales (2015), it is clear that

this method can be used to determine profit expectations of firms for a wide variety of potential

investments such as export decisions, R&D, plant openings, and others.
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A Moment Inequality Intuition

In this section I provide more discussion of the intuition of the moment inequalities used in

this paper in the context of a simple example with simulated data. Suppose we have a simple

discrete choice model wherein individuals select under decision rule (3)

S = 1 ⇐⇒ Y ≥ 0; else S = 0 (36)

and as in section 2 the perceived return Y is generated by a linear-in-parameters production

function

Y = −2.5 + x̃1β1 + εi, (37)

which we assume for simplicity is a function of agent beliefs about a single variable x1. With

simulated data, we can clearly investigate what a standard Probit is able to achieve, what

its limitations are, and how moment inequalities can improve upon it when there is imperfect

information.

I generate data as follows, wherein β1 = −0.1:


x̃1

z1

εi

 ∼ N
(

1

.5

0

 ,


4 3.8 0

3.8 4 0

0 0 1


)
.

Importantly, I generate the variable observed by the econometrician x1 as a mean-preserving

spread of the agents’ expectations of it:

x1 = x̃1 +N (0, 1). (38)

Finally, I normalize the data to ensure that each variable has positive support.

First, we consider the realistically impossible setting in which we have access to the agent’s

information set such that we can make use of x̃1 in our estimation procedure. When we run a

simple Probit using

Pr(Si = 1) = Φ(σ−1x̃1β1). (39)

in which we include the agent’s belief about x1 in the estimation procedure, we unsurprisingly

obtain an unbiased estimate Ê[β1 = 0.1957. No normalization is required because the standard
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deviation of the error term has been set to 1. In this case the values of β1 for which both

inequalities are satisfied will be the exact parameter value identified by MLE, as seen in Figure

8.

Figure 8: The score function from the MLE estimation perfectly intersects both of the odds-
based moment inequalities, which are simply algebraic transformations of the score when we
assume agents have perfect information on x1. The point identified by MLE such that the
score is equal to zero corresponds to the knife edge region in which both odds-based moment
inequalities are satisfied only in the case of full information.

In the realistic setting in which we only observe x1 and not x̃1, the Probit will fail even in the

absence of endogeneity. As discussed in section 2, we will essentially underestimate how elastic

agents are to changes in x1 because we will assume they are reacting to all of its variation when

in reality they may only be reacting (more strongly) to only some of its variation. Erroneously

performing a simple Probit

Pr(Si = 1) = Φ(σ−1x1β1) (40)

produces the biased estimate β̂1 = 0.0936. If we use the moment inequality functions without

conditioning on Z (such that they are equivalent to the score function) they still provide no

additional benefit. However, when we condition on z1, we essentially see both inequality curves

from figure 1 shift upward such that a purple region emerges in which both inequalities are

satisfied. This purple region contains the true parameter value β1 = 0.3. This occurs because

the distribution chosen is log-concave such that it has a convex odds-ratio. In other words, the
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Figure 9: The estimates from MLE with a full information assumption (where the score function
is equal to zero) suffers from attenuation bias. The red region designates the area where the first
moment inequality is satisfied while the blue designates the area where the second inequality is
satisfied. The overlapping region (purple) shows the area where both are satisfied and contains
the true parameter value β1 = 0.3.

noise in x1 that is not contained in x̃1 causes half of the x1 > x̃1 and the other half x1 < x̃1.

Because of the shape of the normal distribution, the mean of Φ(x1β1)
1−|phi(x1β1) will be dominated by

the values of x1 that are greater than x̃1.

B Estimation of Moment Inequality Confidence Sets

I primarily follow Appendix A.5 and A.7 in Dickstein and Morales (2015) to estimate the mo-

ment inequality model. My method of evaluating a given point, also described in Andrews and

Soares (2010), is the same that of Dickstein and Morales (2015). The primary difference arises

in the grid search. I begin by briefly describing the intuition of the evaluation of parameters

when estimating the moment inequality confidence sets.

Defining an error in this context as the deviation of a data moment from satisfaction of

its inequality, the essential goal is to compare the sum of squared errors of the unconditional

sample moments to what it would be under the null hypothesis that a given parameter vector

is asymptotically consistent with the set of moment inequalities. This yields an intuitive test

statistic that measures the the degree of violation of the ` moment inequalities for a given
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parameter vector:

Q(ψ∗p) =
∑
`

[min(
√
N
m̄`(ψ

∗
p)

σ̂`
, 0)]2, (41)

where m̄`(ψ
∗
p) is the sample mean of the `th unconditional moment evaluated at ψ∗p, and σ̂`/

√
N

is the estimated standard deviation of the `th unconditional moment.

Define Qna(ψ∗p) as the asymptotic distribution of Q(ψ∗p) under the null hypothesis that

E[m`] = 0 ∀ `. If the value of Q(ψ∗p) obtained is less than the critical value defined at the

αth percentile of Qna(ψ∗p), then we will fail to reject that ψ∗p ∈ Ψ∗0. The distribution Qna(ψ∗p) is

thus sufficient to test this hypothesis. It is clear that distribution of the normalized moments at

a given parameter vector is a multivariate normal with mean
√
N

E[m(ψ∗0)]
σ`

and variance Σψ(ψ∗p)

by central limit theorem. However, because the distribution of Qna(ψ∗p) is that of the sum of

` squared truncated normals, it does not follow a known distribution. We can however obtain

a simulated distribution Q̂na(ψ∗p) by generating R draws from the null distribution of normal

moments with mean 0 and variance Σ̂ψ(ψ∗p). Each draw from this simulated distribution of

moments provides a test statistic Qnar(ψ
∗
p) resulting in a simulated distribution Q̂na(ψ∗p). Define

the critical value at confidence level α cvα(ψ∗p) as the αth percentile of the simulated distribu-

tion Q̂na(ψ∗p). If the calculated test statistic in our sample Q(ψ∗p) is less than the critical value

cvα(ψ∗p), the we fail to reject that the parameter vector ψ∗p is within Ψ0.

Regarding the algorithm for determining which points are within the confidence set, I will

focus primary on distinctions between my estimation algorithm and those of DM. DM perform

a brute force grid search on 3 parameters with a grid fineness of 40, producing 403 = 64, 000

points to evaluate. Because I evaluate 4 parameters when estimating the moment inequalities, I

would need to evaluate 404 = 2, 560, 000 points, dramatically more than DM. Initial attempts to

achieve convergence with this method were unsuccessful. I augment the grid search algorithm

in two ways. First, after making an initial grid to search in (by following the method DM use),

I order these points in terms of their distance from the analogous IV Probit estimates. Because

the intuition for these two methods is very similar, I expect them to produce similar results.

Second, once I find a feasible point, I abandon the grid search of all points and search locally

around the successful point.

This second alteration essentially makes use of the continuity of the moment inequalities

to avoid checking points that will not succeed. For instance, ceteris paribus, if the moment

inequalities are satisfied at β∗0 = 1 and are not satisfied at β∗0 = 2, then this algorithm avoids
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checking β∗0 = 3. This essentially turns one extremely large grid search into a set of very small

grid searches. When in the course of performing the grid search described by DM, a point

in k-dimensional space space is found that cannot be rejected as satisfying the inequalities, I

abandon the initial grid and instead form check the k-dimensional hyper-rectangle defined by

grid points that are 1 unit away from the unrejected point. I then repeat this procedure for

all points that I fail to reject, and not for rejected points. This procedure allows me to find

all unrejected points that are adjacent to other unrejected points, in a fraction of the time of

searching the entire grid.

C Principal Component Analysis

Here I provide estimates related to the principal component analysis mentioned in Section 4.

The purpose of the principal component analysis is to reduce the parameter space sufficiently for

the estimation algorithm described in Appendix B to converge in a timely fashion. I condense

the controls listed in Table 2 into principal components according to the categorization in Table

6.

Table 6: List of Variables Included and Excluded in Principal
Component Analysis

Variable Name PC1 (Ability) PC2 (Location)

ASVAB (All Tests) ! ·
Mother’s Education ! ·
Mother’s Education Squared ! ·
Father’s Education ! ·
Father’s Education Squared ! ·
Number of Siblings ! ·
Number of Siblings Squared ! ·
High School GPA ! ·
High School GPA Squared ! ·
Bio Parents Home ! ·
Urban at Age 14 · !

Average County Wage, Age 17 · !

State Unemployment, Age 17 · !

The loadings from the first principal component of each set of controls are provided in Table

7.
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Table 7: Principal Component Loadings

(1) (2)
PC1 (Ability) PC2 (Location)

Mother Education 0.192
Mother Education Squared 0.193
Father Education 0.206
Father Education Squared 0.203
Number of Siblings -0.159
Number of Siblings Squared -0.149
ASVAB Score Subtest 3 0.288
ASVAB Score Subtest 3 Squared 0.021
ASVAB Score Subtest 4 0.286
ASVAB Score Subtest 4 Squared 0.088
ASVAB Score Subtest 5 0.291
ASVAB Score Subtest 5 Squared -0.081
ASVAB Score Subtest 6 0.264
ASVAB Score Subtest 6 Squared -0.089
ASVAB Score Subtest 7 0.203
ASVAB Score Subtest 7 Squared -0.048
ASVAB Score Subtest 8 0.175
ASVAB Score Subtest 8 Squared -0.039
ASVAB Score Subtest 9 0.230
ASVAB Score Subtest 9 Squared 0.061
ASVAB Score Subtest 10 0.279
ASVAB Score Subtest 10 Squared 0.103
ASVAB Score Subtest 11 0.262
ASVAB Score Subtest 11 Squared 0.093
ASVAB Score Subtest 12 0.264
ASVAB Score Subtest 12 Squared 0.058
High School GPA 0.200
High School GPA Squared 0.205
Broken Home -0.027
Average County Wage at Age 17 0.707
State Unemp Rate at Age 17 0.566
Urban Residence at Age 14 0.424

Observations 5492 5492

Notes: Estimates are for the full NLSY79 sample. I use the first principal component from each set of variables
in Table 6 to construct a measure of ability and local geographic characteristics.
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D Estimation of γ

In order to estimate γ̂(X) to obtain the perceived returns scaled in dollars, I use data from the

NLSY79 on the percentage of college costs that students pay themselves. This information is

only available in 1979. The raw data for observed values of γ are provide in Figure 9. Individual

responses take one of four values. Students may report that they pay all, over half, less than

half, or none of their educational expenses. I assign a value of 0.25% to those who report paying

less than half, and a value of 0.75% to those who report paying more than half.

I estimate the following regression:

γ(Xi) =
Tuition Paidi
Tuitioni

= Xβγ +
X

Tuitioni
βγT . (42)

The terms divided by Tuitioni will provide the effect of that component of X on the percentage

of tuition paid, γ(X). The terms that are not divided by Tuitioni will provide the effect

of that component of X on raw tuition. If for instance an individual’s parents contribute

$A + $TuitioniB, the A will be caught by the terms not divided by zero, and should not be

included in γ. Results from this regression are shown in Table 8. The imputed values for γ(X)

across the full sample are provided in Figure 10. Note that a few of these values exceed 1,

which is conceptually interpretable as parents paying more than 100% of marginal tuition costs

(parents provide in-kind benefits in excess of tuition, potentially as a reward for choosing a high

quality, expensive college).

E Imputation of Tuition

I impute tuition as described in section 4. I impute sticker price at college and scholarships

separately and then combine them to produce net tuition. The results from the imputation are

presented in Tables 9 and 10. I impute across all time periods in which I observe individuals

because I use multiple years of tuition for single individuals to impute tuition conditional on

observed characteristics.

F Auxiliary Results

The unscaled results with all controls are provided in Table 11. The first stage for the IV Probit

is provided in Table 12. Recall that the F-stat on local tuition at age 17 should be viewed as a
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Table 8: Effect on Percentage of Tuition Paid

(1)
Coef.

inv tuition -68.58 (-1.35)
Mother Education -0.00855 (-0.34)
Mother Education Squared -0.000486 (-0.48)
Father Education 0.00793 (0.44)
Father Education Squared -0.000827 (-1.18)
Number of Siblings 0.0821∗∗∗ (4.84)
Number of Siblings Squared -0.00427∗ (-2.54)
ASVAB Score Subtest 3 -0.00553 (-0.21)
ASVAB Score Subtest 3 Squared -0.0112 (-0.54)
ASVAB Score Subtest 4 -0.00822 (-0.35)
ASVAB Score Subtest 4 Squared 0.0149 (0.80)
ASVAB Score Subtest 5 -0.0614 (-1.72)
ASVAB Score Subtest 5 Squared 0.00409 (0.14)
ASVAB Score Subtest 6 0.0154 (0.48)
ASVAB Score Subtest 6 Squared -0.0259 (-0.98)
ASVAB Score Subtest 7 0.0382 (1.75)
ASVAB Score Subtest 7 Squared 0.00391 (0.19)
ASVAB Score Subtest 8 -0.0240 (-1.28)
ASVAB Score Subtest 8 Squared -0.00867 (-0.56)
ASVAB Score Subtest 9 0.00596 (0.28)
ASVAB Score Subtest 9 Squared 0.0127 (0.77)
ASVAB Score Subtest 10 0.00363 (0.16)
ASVAB Score Subtest 10 Squared -0.0144 (-0.77)
ASVAB Score Subtest 11 -0.0306 (-1.38)
ASVAB Score Subtest 11 Squared 0.0121 (0.65)
ASVAB Score Subtest 12 0.0582∗ (2.34)
ASVAB Score Subtest 12 Squared 0.0136 (0.75)
High School GPA -0.0434 (-0.39)
High School GPA Squared 0.00926 (0.45)
Broken Home 0.179∗∗∗ (5.72)
T div mhgc 5.655 (1.15)
T div mhgc2 -0.198 (-0.93)
T div fhgc -0.0404 (-0.01)
T div fhgc2 0.00216 (0.01)
T div numsibs -1.523 (-0.36)
T div numsibs sq -0.0777 (-0.18)
T div asvab3 2.681 (0.39)
T div asvab3 sq -1.599 (-0.29)
T div asvab4 2.022 (0.56)
T div asvab4 sq -1.125 (-0.22)
T div asvab5 8.127 (1.25)
T div asvab5 sq 6.543 (0.91)
T div asvab6 -6.804 (-1.27)
T div asvab6 sq 2.046 (0.57)
T div asvab7 0.841 (0.21)
T div asvab7 sq -2.876 (-0.70)
T div asvab8 -2.670 (-0.72)
T div asvab8 sq 8.866∗ (2.02)
T div asvab9 -5.246 (-1.35)
T div asvab9 sq 5.687 (1.89)
T div asvab10 -4.271 (-0.97)
T div asvab10 sq -0.188 (-0.05)
T div asvab11 5.663 (1.23)
T div asvab11 sq -3.355 (-0.84)
T div asvab12 0.613 (0.10)
T div asvab12 sq -1.272 (-0.35)
T div GPA 29.60 (1.26)
T div GPA sq -5.105 (-1.29)
T div Broken Home -7.677 (-1.13)
Constant 0.568∗∗ (2.85)

Observations 1113

Notes: Standard errors are in parentheses. Estimates are for the part of the NLSY79 sample who attended
college in 1979 and provided tuition and tuition paid information.
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Table 9: Tuition Imputation

(1)
Coef.

sticker
mhgc -1936.1∗∗∗ (-28.45)
mhgc2 116.4∗∗∗ (35.40)
fhgc -257.7∗∗∗ (-4.93)
fhgc2 34.65∗∗∗ (15.72)
numsibs -1013.1∗∗∗ (-19.83)
numsibs Squared 67.54∗∗∗ (13.90)
asvab3 276.3∗∗∗ (15.78)
asvab3 Squared 42.57∗∗∗ (19.05)
asvab4 -84.28∗∗∗ (-6.81)
asvab4 Squared 32.72∗∗∗ (26.39)
asvab5 219.6∗∗∗ (17.14)
asvab5 Squared -14.40∗∗∗ (-12.26)
asvab6 291.4∗∗∗ (12.01)
asvab6 Squared -37.87∗∗∗ (-7.07)
asvab7 13.35∗ (2.09)
asvab7 Squared -9.771∗∗∗ (-21.23)
asvab8 -11.90∗∗ (-2.85)
asvab8 Squared 1.147∗∗∗ (6.88)
asvab9 -304.5∗∗∗ (-21.06)
asvab9 Squared 5.887∗∗∗ (3.48)
asvab10 346.9∗∗∗ (23.35)
asvab10 Squared 65.26∗∗∗ (38.42)
asvab11 -6.806 (-0.45)
asvab11 Squared -22.31∗∗∗ (-12.12)
asvab12 -109.0∗∗∗ (-5.82)
asvab12 Squared 17.92∗∗∗ (6.21)
urban 657.7∗∗∗ (5.48)
GPA 4307.5∗∗∗ (10.77)
GPA Squared -125.3 (-1.90)
c wage per employed age 17 1256.9∗∗∗ (76.41)
unemployment age 17 -298.0∗∗∗ (-12.94)
local tuition 17 7.613∗∗∗ (77.89)
Constant -9589.1∗∗∗ (-9.75)

select
College age 14 0.182∗∗∗ (28.30)
mhgc -0.165∗∗∗ (-44.67)
mhgc2 0.0108∗∗∗ (57.28)
fhgc -0.0228∗∗∗ (-8.03)
fhgc2 0.00401∗∗∗ (29.84)
numsibs -0.0293∗∗∗ (-27.45)
asvab3 0.00167 (1.73)
asvab3 Squared 0.000838∗∗∗ (6.72)
asvab4 -0.0129∗∗∗ (-18.90)
asvab4 Squared 0.00240∗∗∗ (35.15)
asvab5 0.00335∗∗∗ (5.00)
asvab5 Squared -0.00186∗∗∗ (-33.55)
asvab6 0.0205∗∗∗ (16.33)
asvab6 Squared -0.00924∗∗∗ (-37.46)
asvab7 0.00138∗∗∗ (3.91)
asvab7 Squared -0.000467∗∗∗ (-19.78)
asvab8 -0.00664∗∗∗ (-29.24)
asvab8 Squared -0.000127∗∗∗ (-13.05)
asvab9 -0.0169∗∗∗ (-21.49)
asvab9 Squared -0.00115∗∗∗ (-12.02)
asvab10 0.0232∗∗∗ (29.98)
asvab10 Squared 0.00398∗∗∗ (42.66)
asvab11 -0.0126∗∗∗ (-15.20)
asvab11 Squared 0.000729∗∗∗ (6.91)
asvab12 -0.0124∗∗∗ (-11.95)
asvab12 Squared 0.00429∗∗∗ (26.30)
urban 0.191∗∗∗ (31.29)
GPA 0.599∗∗∗ (168.74)
c wage per employed age 17 -0.00919∗∗∗ (-9.65)
unemployment age 17 0.0101∗∗∗ (7.69)
local tuition 17 -0.000112∗∗∗ (-21.17)
Constant -1.182∗∗∗ (-50.34)

/mills
lambda 11064.7∗∗∗ (25.71)

Observations 352933

Notes: Standard errors in parentheses. Parameters are marginal effects of the variable on college sticker price.
See section 4 for details. 51



Table 10: Scholarship Imputation

(1)
Coef.

NPV scholarship
mhgc -2409.9∗∗∗ (-15.64)
mhgc2 116.0∗∗∗ (14.76)
fhgc 1541.9∗∗∗ (16.84)
fhgc2 -49.95∗∗∗ (-13.74)
numsibs 554.6∗∗∗ (9.32)
numsibs Squared -30.59∗∗∗ (-5.83)
asvab3 104.0∗∗∗ (3.99)
asvab3 Squared 49.81∗∗∗ (14.79)
asvab4 -351.2∗∗∗ (-20.00)
asvab4 Squared 21.55∗∗∗ (10.53)
asvab5 88.77∗∗∗ (5.31)
asvab5 Squared -3.781 (-1.81)
asvab6 354.4∗∗∗ (9.80)
asvab6 Squared -169.1∗∗∗ (-13.75)
asvab7 70.91∗∗∗ (8.17)
asvab7 Squared -11.43∗∗∗ (-17.72)
asvab8 -121.6∗∗∗ (-15.95)
asvab8 Squared -2.422∗∗∗ (-8.58)
asvab9 -441.4∗∗∗ (-11.08)
asvab9 Squared -40.76∗∗∗ (-15.65)
asvab10 122.3∗∗∗ (6.22)
asvab10 Squared 63.24∗∗∗ (13.61)
asvab11 -172.1∗∗∗ (-6.10)
asvab11 Squared 28.30∗∗∗ (11.05)
asvab12 -27.14 (-1.07)
asvab12 Squared 68.04∗∗∗ (9.41)
urban 2303.7∗∗∗ (13.57)
GPA 2144.5∗ (2.56)
GPA Squared 1100.3∗∗∗ (14.84)
c wage per employed age 17 195.3∗∗∗ (8.28)
unemployment age 17 -30.34 (-0.98)
local tuition 17 1.674∗∗∗ (12.97)
Constant -28077.8∗∗∗ (-8.02)

select
College age 14 0.0536∗∗∗ (8.49)
mhgc -0.119∗∗∗ (-35.29)
mhgc2 0.00630∗∗∗ (39.25)
fhgc 0.0502∗∗∗ (18.44)
fhgc2 -0.00170∗∗∗ (-14.16)
numsibs 0.00761∗∗∗ (7.17)
asvab3 0.00977∗∗∗ (10.35)
asvab3 Squared 0.00161∗∗∗ (13.47)
asvab4 -0.00527∗∗∗ (-8.01)
asvab4 Squared 0.00120∗∗∗ (18.80)
asvab5 0.000356 (0.54)
asvab5 Squared -0.00137∗∗∗ (-24.66)
asvab6 0.0143∗∗∗ (11.48)
asvab6 Squared -0.00868∗∗∗ (-34.52)
asvab7 -0.00120∗∗∗ (-3.52)
asvab7 Squared -0.000209∗∗∗ (-8.96)
asvab8 -0.00479∗∗∗ (-22.00)
asvab8 Squared -0.000170∗∗∗ (-18.60)
asvab9 -0.0302∗∗∗ (-39.72)
asvab9 Squared -0.00112∗∗∗ (-12.08)
asvab10 0.00449∗∗∗ (5.95)
asvab10 Squared 0.00373∗∗∗ (43.27)
asvab11 -0.0177∗∗∗ (-22.14)
asvab11 Squared 0.000764∗∗∗ (7.59)
asvab12 0.00603∗∗∗ (6.02)
asvab12 Squared 0.00562∗∗∗ (36.46)
urban 0.0683∗∗∗ (11.37)
GPA 0.502∗∗∗ (142.33)
c wage per employed age 17 -0.00962∗∗∗ (-10.39)
unemployment age 17 -0.000505 (-0.40)
local tuition 17 0.00000553 (1.08)
Constant -1.580∗∗∗ (-68.24)

/mills
lambda 22726.9∗∗∗ (13.44)

Observations 352933

Notes: Standard errors in parentheses. Parameters are marginal effects of the variable on college sticker price.
See section 4 for details. 52



lower bound on the strength of the instrument, as explained in Section 5. This value is 4629.13.

Table 11: Perceived Returns Estimates, Unscaled, All Controls

(1) (2) (3) (4)
Probit Std. Error IV Probit Std. Error

Constant 0.475 (0.063) 0.565 (0.080)
Mother Education -0.193 (0.031) -0.191 (0.031)
Mother Education Squared 0.012 (0.002) 0.012 (0.002)
Father Education -0.038 (0.024) -0.031 (0.024)
Father Education Squared 0.005 (0.001) 0.005 (0.001)
Number of Siblings -0.092 (0.023) -0.082 (0.024)
Number of Siblings Squared 0.006 (0.002) 0.005 (0.002)
ASVAB Score Subtest 3 0.022 (0.035) 0.022 (0.035)
ASVAB Score Subtest 3 Squared 0.031 (0.026) 0.031 (0.026)
ASVAB Score Subtest 4 -0.027 (0.034) -0.027 (0.034)
ASVAB Score Subtest 4 Squared 0.122 (0.027) 0.133 (0.028)
ASVAB Score Subtest 5 0.040 (0.038) 0.041 (0.038)
ASVAB Score Subtest 5 Squared -0.144 (0.029) -0.153 (0.030)
ASVAB Score Subtest 6 0.055 (0.032) 0.063 (0.032)
ASVAB Score Subtest 6 Squared -0.122 (0.025) -0.127 (0.025)
ASVAB Score Subtest 7 -0.016 (0.028) -0.011 (0.028)
ASVAB Score Subtest 7 Squared -0.077 (0.025) -0.079 (0.025)
ASVAB Score Subtest 8 -0.083 (0.027) -0.085 (0.027)
ASVAB Score Subtest 8 Squared -0.050 (0.024) -0.048 (0.024)
ASVAB Score Subtest 9 -0.123 (0.033) -0.130 (0.034)
ASVAB Score Subtest 9 Squared -0.045 (0.025) -0.039 (0.025)
ASVAB Score Subtest 10 0.155 (0.033) 0.168 (0.034)
ASVAB Score Subtest 10 Squared 0.187 (0.026) 0.189 (0.026)
ASVAB Score Subtest 11 -0.096 (0.033) -0.102 (0.033)
ASVAB Score Subtest 11 Squared -0.010 (0.025) -0.013 (0.025)
ASVAB Score Subtest 12 -0.050 (0.033) -0.040 (0.034)
ASVAB Score Subtest 12 Squared 0.113 (0.025) 0.118 (0.025)
High School GPA 0.654 (0.117) 0.716 (0.122)
High School GPA Squared -0.012 (0.026) -0.022 (0.027)
Broken Home -0.012 (0.044) 0.018 (0.047)
Urban Residence at Age 14 0.179 (0.048) 0.181 (0.048)
Average County Wage at Age 17 0.021 (0.009) 0.028 (0.010)
State Unemp Rate at Age 17 0.002 (0.010) 0.003 (0.010)
Tuition -0.027 (0.008) -0.040 (0.011)

Observations 5492 5492 5492 5492

Notes: Standard errors in parentheses. Parameters are marginal effects of the variable on perceived returns to
college in thousands of dollars. The value for σ is assumed to be 1. Estimates are from equation (4) with the
details varying by estimation method. See text for details.
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Table 12: First Stage Estimates, Effect of Instruments on Tuition

(1)
Coef.

Mother Education -0.529∗∗∗ (-13.37)
Mother Education Squared 0.0225∗∗∗ (11.88)
Father Education 0.255∗∗∗ (8.28)
Father Education Squared -0.00964∗∗∗ (-6.94)
Number of Siblings 0.578∗∗∗ (18.45)
Number of Siblings Squared -0.0304∗∗∗ (-11.05)
ASVAB Score Subtest 3 0.348∗∗∗ (7.17)
ASVAB Score Subtest 3 Squared 0.193∗∗∗ (5.47)
ASVAB Score Subtest 4 -0.184∗∗∗ (-3.85)
ASVAB Score Subtest 4 Squared 0.913∗∗∗ (26.46)
ASVAB Score Subtest 5 0.133∗ (2.48)
ASVAB Score Subtest 5 Squared -0.669∗∗∗ (-16.63)
ASVAB Score Subtest 6 0.587∗∗∗ (13.19)
ASVAB Score Subtest 6 Squared -0.363∗∗∗ (-10.36)
ASVAB Score Subtest 7 0.476∗∗∗ (12.20)
ASVAB Score Subtest 7 Squared -0.322∗∗∗ (-9.62)
ASVAB Score Subtest 8 -0.272∗∗∗ (-7.37)
ASVAB Score Subtest 8 Squared 0.0794∗ (2.51)
ASVAB Score Subtest 9 -0.571∗∗∗ (-12.60)
ASVAB Score Subtest 9 Squared 0.403∗∗∗ (11.81)
ASVAB Score Subtest 10 0.911∗∗∗ (20.27)
ASVAB Score Subtest 10 Squared 0.600∗∗∗ (17.66)
ASVAB Score Subtest 11 -0.323∗∗∗ (-7.10)
ASVAB Score Subtest 11 Squared -0.292∗∗∗ (-8.64)
ASVAB Score Subtest 12 0.583∗∗∗ (12.75)
ASVAB Score Subtest 12 Squared 0.433∗∗∗ (12.96)
High School GPA 3.649∗∗∗ (26.38)
High School GPA Squared -0.430∗∗∗ (-13.86)
Broken Home 2.296∗∗∗ (39.64)
Average County Wage at Age 17 0.672∗∗∗ (66.25)
State Unemp Rate at Age 17 -0.176∗∗∗ (-12.17)
Urban Residence at Age 14 0.212∗∗ (3.13)
Local Tuition 0.00405∗∗∗ (68.04)
Constant -15.39∗∗∗ (-48.53)

Observations 5492

Notes: Standard errors in parentheses. Parameters are marginal effects of the variable on thousands of dollars
of effective tuition (Tuitioniγ̂(X)λ).
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