
Estimation of fixed effects models with
missing covariate data, with an application

to valuing local water quality∗

(Job Market Paper Draft)
Most Recent Version †

Jessie Coe ‡

Novvember 2, 2018

Abstract

This paper considers estimation of a linear fixed effects model in which
covariate values may be missing. Two inverse probability weighted (IPW)
estimators are proposed. The main assumption is a missing at random as-
sumption (MAR) which allows missingness (observation) to be related to the
outcome and its shocks, but requires that the probability of observation is
not related to the missing values. The inverse of the estimated probability
of observation is used to re-weight the estimating equations, which are then
estimated in a second stage by either computationally simple pooled OLS,
or more asymptotically efficient GMM. Both of the proposed estimators are
consistent and

√
n-asymptotically normal, and the asymptotic variance is de-

rived. The main results are developed for the classical linear fixed effects model
under strict exogeneity, and the approach generalizes to many panel models,
including dynamic linear unobserved effects models.

As an application, the proposed estimator is applied to a hedonic housing
price model in which the willingness to pay for local water quality is reflected
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in house prices. Water quality, the main regressor of interest, is missing for
many houses in many time periods. Empirical evidence suggests that, in line
with the MAR assumption, observation is related to house prices but not water
quality itself. The results suggest that accounting for the missing mechanism
is important, as the estimated willingness to pay differs in magnitude and
statistical significance between the proposed two-step IPW estimator and the
more commonly used estimator which drops incomplete observations.

1 Introduction

This paper considers estimation of panel data models with missing covariate values.
The main model considered is the classical linear fixed effects model, and the pro-
posed estimation technique extends to many panel data models commonly used in
applied work, including the linear fixed effects model under sequential exogeneity
and dynamic linear models. The key assumption is the missing at random (MAR)
assumption, which allows observation to depend on the outcome variable and its
shocks, but assumes that the probability of observation is not directly related to
the value of the missing variables. This paper provides the first available estima-
tion approach for dealing with missing at random covariate data in fixed effects
models.

The probabilities of observation are used to re-weight the observed data to "recover
the balance of a random sample." The resulting inverse probability weighted (IPW)
estimator of the slope parameters is consistent and

√
n-asymptotically normal. The

proposed estimator is computationally straightforward, flexibly allows for arbitrary
patterns of missing values in the covariates over time1, leaves the linear fixed effects
fully flexible, and does not require specification of the distribution of the outcome
variable nor any additional structure on the covariates. The proposed estimator is
applied to a hedonic house price model that captures homeowners’ willingness to
pay for water quality in local water amenities (Kuwayama et al. (2018).)

The main question is how to estimate a linear fixed effects model with missing
covariate values in the data. By far the most common practice in the face of missing
values is dropping observations with missing values and using the resulting complete
cases for analysis as if they were a random sample. Implicit in this approach is
the assumption that the missingness is ignorable (or exogenous2), in which case

1Referred to as non-monotonic patterns of missing values in the literature, this allows for the
case where, for example, a covariate is observed in time period 1, missing in time period 2, and
observed in time period 3.

2Statistically, exogenous selection assumes that the fully observed sub-sample satisfies the same
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estimation using the fully observed sub-sample does not affect consistency3. While
the inclusion of fixed effects can make the ignorable missingness assumption more
palatable4, the assumption will be violated if missingness is conditionally related to
the outcome or shocks to the outcome. This paper considers the MAR assumption
(Rubin (1976)), which allows missingness (selection) of the covariates to be related to
the outcome, error disturbance, and other fully observed covariates, but not directly
related to the missing covariates themselves. Previous approaches to missing data
in a panel model have either assumed an outcome model with no time invariant
heterogeneity; i.e. fixed effects (Robins et al. (1995), Chen et al. (2010), Moffit
et al. (1999).) In the presence of fixed effects, previous literature assumed ignorable
missingness (Wooldridge (2010a), Abrevaya (2018)) or missing outcomes (Nijman
and Verbeek (1992), Wooldridge (2010b).)

The key to the proposed approach is to apply IPW to the first-differenced estimating
equations. While it is well-known that IPW estimators can yield consistent estima-
tors in cross-sectional settings (Rosenbaum and Rubin (1983)), the IPW approach
does not directly apply to estimation of fixed effects models. The fixed effects are
differenced out, resulting in estimating equations that each involve two time periods.
The probability of observation is the joint probability of observing the regressors in
both time periods. While estimating equations with multiple time periods are com-
mon for panel data models, it is a deviation from the missing data literature, which
has focused on a single binary selection variable (Robins et al. (1994), Wooldridge
(2007), Chen et al. (2008), Graham et al. (2012)5.) The model considered here will
generally be over-identified with more than two time periods, as there will be more
first-differenced moments than slope coefficients. Achieving the main goal of consis-
tent estimation of the slope parameters in the fixed effects model therefore entails
two technical contributions to the missing data literature. First, I extend selection
to a multivariate binary response model, Second, I consider a population model that
is generally over-identified, thereby contributing to the sparse literature on inverse

exogeneity assumptions as the population
3There is some difference in the use of the term ignorable missingness in the literature. The

statistics literature sometimes uses ignorable missingness to describe any probability of selection
that is a function of observed varaibles, such as the missing at random assumption. I maintain
the economics usage of ignorable missingness, which refers to any selection process where the
unweighted complete case estimator is consistent (Wooldridge (2002)).

4For example, if a zero conditional mean assumption is adopted, such as E[uit|Xit, ci] = 0, then
exogenous selection assumes that the zero condition mean holds when selection is included in the
conditioning. This allows selection to be arbitrarily related to the covariates Xit, which may not
be fully observed, and the unobserved fixed effects ci.

5Chen, Yi, and Cook (Chen et al. (2010)) are a notable exception who consider a panel model
without fixed effects, but with missing values in both the outcome and a covariate thus resulting
in bivariate selection for each time period. They conclude that accounting for the multivariate
structure of observation is important.
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probability weighting for missing data in over-identified models6.

A two-step estimator is proposed, and its asymptotic distribution is derived, where
the asymptotics are for fixed T and large N . The first step is estimation of the
probability of observation. From the panel setting and first-differencing, selection
is a bivariate binary response model. The binary response is observation or not
in a given period, and the bivariate structure is from the presence of two time pe-
riods in the estimating equations (as opposed to univariate binary selection in a
cross-sectional setting.) As is standard in the literature, it is assumed that there
are sufficient fully observed variables to consistently model the probability of ob-
serving the missing variables. The estimated probabilities, obtained from maximum
likelihood estimation of a parametric bivariate binary selection model, are used to
correct for non-ignorable selection by re-weighting the observed sample moments.
The second step uses the re-weighted moments to estimate the slope parameters.
Two versions of the estimator are proposed: (i) a computationally simple pooled OLS
estimator that sums the moment functions over time, and (ii) an optimally-weighted
GMM estimator that stacks the re-weighted moment functions, thus making use of
the over-identification when T > 2. The GMM estimator, while computationally
more demanding, enjoys better asymptotic efficiency, especially in the case of het-
eroskedasticity and serial correlation, though the practical gains may be small, a
point explored in the simulations.

In cross-sectional models, Wooldridge (Wooldridge (2002), Wooldridge (2007)) for-
malizes the surprising result that using the estimated selection probabilities from a
first-stage conditional MLE of a binary selection model can be more efficient than
using the true selection probabilities. In the setting of this paper, when T=2, and
thus when the model is just-identified, that result carries over to the IPW estima-
tors proposed here with first-stage conditional MLE from a bivariate binary selection
model. Interestingly, the result does not carry over to the panel setting with more
than two time periods. It is shown that using the estimated probabilities may re-
sult in either lower or higher asymptotic variance, and the direction is not known a
priori.

The empirical application applies the proposed IPW-POLS estimator to measure
the willingness to pay, as reflected in house prices, for water quality in local water

6Chen, Hong, and Tarrozi (Chen et al. (2008)) are one of the few other papers to consider over
identification and missing values. They consider a cross-sectional outcome model, but allow for
over identification and propose general method of moments estimation, including an IPW-GMM
estimator. Their "verify-in-sample" model is similar to the set-up here, except that selection here is
a multivariate binary outcome model, whereas they consider selection as a single binary outcome,
and the moment functions here may involve different subsets of the data because of the time
differencing.
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amenities, such as ponds, lakes, and rivers (e.g. Kuwayama et al. (2018), Walsh
et al. (2017).) The valuation of a public good or natural resource is important for
policy, yet difficult to measure as there often is not a market for such goods. Housing
markets offer one way to measure the value of local amenities, in so far as that value
is reflected in house prices. Unobserved (to the econometrician) house attributes
affect the house price and may be correlated with house or property characteristics,
thus the preferred model includes property fixed effects. The identification is off of
repeated sales of the same house. Water quality, the main covariate of interest, as
measured by the level of dissolved oxygen recorded at nearby monitoring sites, is
missing for many properties in many time periods.

The question is why is the water quality measure missing. If the frequency of
monitoring is related to the wealth of the area, as captured by the house prices,
then ignorable missingness fails, but the missing at random assumption can hold. If
instead, water quality is listed as missing when the recording is below some threshold
for the measurement device, then missingness is a function of the value of the missing
covariate and the missing at random assumption fails, but ignorable missingness
may hold. The availability of panel data allows for some suggestive tests of the
two assumptions. The empirical evidence suggests the former case, with ignorable
missingness failing and MAR holding.

The data are for single family homes in the three counties of the Tampa Bay area
(Kuwayama et al. (2018), Zheng (2017).) The data span 17 years, but there are
on average only 8 observations of water quality per house. Given the empirical evi-
dence against the ignorable missingness assumption, the unweighted estimates from
the literature are suspected to be inconsistent. With suggestive evidence that the
missing at random assumption holds, the proposed IPW-POLS is utilized. The re-
sults are substantially different from the unweighted first-difference estimator. When
the two-step IPW estimator is applied, the estimate of willingness to pay falls and
loses significance in Hillsborough county, and increases more than three-fold and
becomes highly significant in Pinellas county. The dollar estimates of the value of a
10% increase in dissolved oxygen to the average house differ across estimators by an
order of magnitude. As many decisions are made at the county level, accounting for
selection appears to have significant implications for local water quality policy.

While the main focus of the paper is the classical linear fixed effects model, the
proposed estimation technique applies, under suitable assumptions, to numerous
panel models popular in the applied literature, including the linear fixed effects
model under sequential exogeneity, and linear dynamic models. Given the popularity
of panel models in empirical work, and the prevalence of missing values in data sets,
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the proposed estimation technique should be of practical importance.

The rest of the paper is organized as follows: the next section presents the classical
linear fixed effects model and develops the estimators, the following section formal-
izes the assumptions and develops the asymptotic theory for the classical linear fixed
effects model under strict exogeneity. Section (4) presents some finite sample perfor-
mance. The empirical application is presented in section (5). Section (6) shows how
the estimators may be generalized to handle many panel data models of interest,
and the final section briefly concludes.

2 Model and Estimation

This section considers the classical linear fixed effects model under strict exogeneity,
in which some of the covariates are not always observed:

yit = Xitβx0 +Witβw0 + ci + uit t = 1, ..., T (1)

E[uit|Xi,Wi, ci] = 0

where bold letters denote time histories, for example Wi = {Wi1, Wi2, ...,WiT}.
Model (1) is assumed to hold for the population and thus holds for a random sample
of individuals. Assume (yit, Xit,Wit)i=1,...,N are i.i.d. for each t = 1, ..., T , with Xit a
k1 vector, Wit a k2 vector where k2 may equal zero7, and let k = k1 + k2. The fixed
effects ci and (Xit,Wit) may be arbitrarily correlated. In the data, Xit is not always
observed, but yit,Wit are fully observed. If the data are from a survey, the setting is
akin to item non-response, as opposed to attrition. Let dit be an indicator that takes
the value 1 whenXit is fully observed for person i in time period t. Let Vit be a vector
of not necessarily time-varying variables which are distinct from (Xi,Wi,yi) and
are fully observed; for example, Vit may include time-invariant variables absorbed
in the ci in model (1). The potentially observed variables are then (yi,Xi,Wi,Vi).
This section motivates and defines the two proposed IPW estimators.

The question is how to consistently estimate the slope parameters in (1) when Xit

is missing at random, as discussed in the introduction, and defined as follows:

Assumption 1. (MAR) di|(yi,Xi,Wi,Vi) ∼ di|(yi,Wi,Vi)

7Though Wit is likely non-empty as it will include any time effects.
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Assumption (1) states that distribution of observation does not depend directly
on the covariates which are not always observed. Observation may depend on the
outcome, and thus can indirectly depend on the missing covariate values. The
key component of the missing at random assumption is that the probability of
observation is not conditionally related to the value of the missing covariates, but is
instead a function only of fully observed variables, which can include the yits. While
an exclusion restriction or auxiliary data are not required, additional variables Vit
influencing selection are allowed; in particular, time-invariant variables that are
absorbed in ci may be good predictors of selection and can be explicitly included in
the conditional joint probability.

First-differences are used to eliminate the fixed effects from (1) and obtain estimating
equations which are a function of potentially observed variables. First-differencing
model (1) yields:

yit − yit−1 = (Xit −Xit−1)βx0 + (Wit −Wit−1)βw0 + uit − uit−1 t = 2, ..., T (2)

∆yit = ∆Xitβx0 + ∆Witβw0 + ∆uit

where one time period is lost to the differencing, and the second equality is standard
notation using ∆yit = yit − yit−1..

The first-differenced population moments from the orthogonality conditions implied
by the strict exogeneity assumption are8:

E[∆X ′it∆uit] = 0 (3)

E[∆W ′
it∆uit] = 0 t = 2, ..., T

These are K(T − 1) moments for the K slope parameters β0.

The fully observed data in each time period are (yit, ditXit,Wit, dit, Vit)i=1,...,N . The
data in the first-differenced moments are fully observed when dit = 1 and dit−1 = 1,
the so-called complete cases :

ditdit−1(∆yit,∆Xit,∆Wit) (4)

The complete cases may not be representative thus the first-differenced moments for
the complete cases are not necessarily valid (see remark at the end of this section.)

8There are of course infinitely many possible valid moments from the strict exogeneity condition.
I focus on the moments standard in the literature.
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Consider iterating the expectation on all the potentially observed variables:

E[ditdit−1∆X
′
it∆uit] = E[E[ditdit−1∆X

′
it∆uit|yi,Xi,Wi,Vi]]

= E[E[ditdit−1|yi,Xi,Wi]∆X
′
it∆uit]

= E[P [dit = 1, dit−1 = 1|yi,Xi,Wi,Vi]∆X
′
it∆uit] (5)

where recall that the Vit are not necessarily time varying variables that influence
observation.

The proposed estimator is an inverse probability weighted estimator. Only the
fully observed estimating equations are used, and each estimating equation is re-
weighted by the inverse of the probability that equation is fully observed. Let
pit(y,X,W, V ) = P [dit = 1, dit−1 = 1|yi,Xi,Wi,Vi], then, provided the expectation
exists, following the same iterated expectations as above yields:

E[
ditdit−1

pit(y,X,W, V )

(
∆X ′it

∆W ′
it

)
∆uit] = 0 t = 2, ..., T (6)

These weighted population moment functions are valid for the observed sample.
This is the basis for the inverse probability weighted estimators. The completely
observed first-differenced estimating equations are re-weighted to make up for the
fact that the complete cases themselves may not be a representative panel data
set.

For estimation, re-write (6) using (2):

E[
ditdit−1

pit(y,X,W, V )

(
∆X ′it

∆W ′
it

)
(∆yit −∆Xitβx0 −∆Witβw0)] = 0 t = 2, ...T (7)

The K(T − 1) moments (7) will form the basis of estimation.

The population moments (7) require P (dit = 1, dit−1 = 1|yi,Wi,Xi,Vi) for t =

2, ..., T , which is problematic as this joint probability is generally unknown and is
a function of the not fully observed covariates. This is the strength of the MAR
assumption as (1) implies:

P (dit = 1, dit−1 = 1|yi,Wi,Xi,Vi) = P (dit = 1, dit−1 = 1|yi,Wi,Vi) (8)

for each t = 2, ..., T . The MAR assumption, along with a parametric specification
for the joint probability of observation, are the main identifying assumptions used
in this paper, and are collected below in (2).

8



Assumption 2. (i) For each t = 2, ..., T , the joint probability P (dit = 1, dit−1 =

1|yi,Wi,Xi,Vi) = P (dit = 1, dit−1 = 1|yi,Wi,Vi),
(ii) For each t = 2, ..., T , P (dit = 1, dit−1 = 1|yi,Wi,Vi) = Gt,t−1(yi,Wi,Vi; δt0) for
some known function Gt,t−1(·) and unknown parameter δt0,
(iii) For each t = 2, ..., T and all δt ∈ C, there exists a κ ∈ R+ such that 0 < κ ≤
Gt,t−1(yi,Wi,Vi; δt) ≤ 1.

Part (i) is the missing at random (MAR) assumption, which specifies the joint
probability as a function of only fully observed variables. Part(i) non-parametrically
identifies the selection probabilities. Non-parametric estimation based on part (i) is
seldom done in practice, even in the cross-sectional literature, and is less attractive
in the panel setting as the curse of dimensionality is even more severe, with T times
as many possible right hand side variables as possible in a cross-section9 Part (ii) is
a parametric specification for the joint probability of observation. Part (iii) is the
strong overlap assumption which bounds the joint probability away from 0, as the
weights used in (7) are the inverse of the probability. This condition guarantees that
the moment function in (6) is well-defined.

Assumption (2) contains all the needed structure for the selection process. The
formal assumptions in the next section fill in the necessary regularity conditions. The
estimators and asymptotic theory are in terms of the parametric function Gt,t−1(·).
The missing at random assumption allows selection to depend on time-invariant
heterogeneity, though not in an arbitrary way. Selection may contain a correlated
random effects structure (Mundlak (1978)) as in the simulations. In the simulations,
a latent threshold crossing model for selection is used, as is common in the literature,
to highlight the time dependence of the bivariate selection mechanism.

I propose two estimators based on the moments (7) and the selection mechanism
assumption (2). The first is a pooled estimator which sums the moments over time,
resulting in a just-identified system. The second is a GMM estimator which stacks
the moments over time, thus taking advantage of over-identifying conditions (when
T > 2). The optimally-weighted GMM estimator is more asymptotically efficient
than the pooled estimator, though may perform worse in finite samples, a point
explored in the simulations.

Define the following pooled IPW-POLS estimator:
9A notable exception is Chen, Hong, Tarozzi (Chen et al. (2008)), who, among other things,

consider first-stage non-parametric estimation of the propensity score. Further extension of the
proposed technique to non-parametric estimation of the joint probability of selection is left to
future work.
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β̂POLS = (
∑
i

∑
t=2

ditdit−1

Gt,t−1(Zit,it−1; δ̂t)

(
∆X ′it

∆W ′
it

)
(∆Xit ∆Wit))

−1∑
i

∑
t=2

ditdit−1

Gt,t−1(Zit,it−1; δ̂t)

(
∆X ′it

∆W ′
it

)
∆yit

(9)

where, for each t = 2, ..., T , δ̂t is a conditional MLE estimator of a bivariate binary
selection model.

An alternative to the pooled OLS estimator defined above is to stack the moments
from (7) and define a GMM estimator. The first step is still the estimation of the
δ̂ts from conditional MLE of a bivariate binary selection model for each t = 2, ..., T .

Define the K vector mit =
ditdit−1

Gt,t−1(Zit,it−1; δ̂t)

(
∆X ′it

∆W ′
it

)
(∆yit − ∆Xitβx − ∆Witβw).

Then the K(T −1) vector of sample moments based on the population moments (7)
can be written as

Mi = (m′i2m
′
i3...m

′
iT )′ (10)

M̄ =
1

N

∑
i

(m′i2m
′
i3...m

′
iT )′ (11)

The IPW-GMM estimator is defined as:

β̂GMM = arg min
(βx,βw)

M̄ ′ANM̄ (12)

where AN is a positive definite matrix and AN
p→ A, for A a positive definite

weighting matrix.

2.1 Remark on other appraoches and transformations

The most common approach to missing values is use the complete cases in an un-
weighted estimator; that is, to use the complete cases as a valid sample. A natural
question is, are the moments valid for the complete cases? Without ignorable miss-
ingness, the answer is generally no:

E[ditdit−1∆X
′
it∆uit] = E[E[ditdit−1∆X

′
it∆uit|Xi,Wi, ci,di]]

= E[ditdit−1∆x
′
itE[∆uit|Xi,Wi, ci,di]]

6= E[ditdit−1∆X
′
itE[∆uit|Xi,Wi, ci]] = 0 (13)
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Ignorable, or exogenous missingness is exactly the assumption that strict exogene-
ity holds conditional on the observation vector as well: E[∆uit|Xi,Wi, ci,di] =

E[∆uit|Xi,Wi, ci] = 0. In particular, when observation is directly related to the
shocks uit or the outcome yit, ignorable missingness will fail, and the difference
between E[∆uit|Xi,Wi, ci,di] and E[∆uit|Xi,Wi, ci](= 0) is the source of the in-
consistency of the unweighted complete case estimator when ignorable missingness
does not hold.

Other common approaches to estimation of a linear fixed effects model include the
within transformation, and a Chamberlain-Mundlak correlated random effects struc-
ture for the ci. Both the Mundlak-Chamberlain device and the within transformation
introduce the entire time history of the covariates. The estimating equations will
thus be fully observed only when the covariates are observed for all time periods.
The effective sample size is Nobs =

∑
i

∏
t dit, and any agent i with dit = 0 for some

t will be dropped from analysis. Using moments which involve a strict subset of the
total time periods available allows for use of more of the data, even within complete
case analysis, as the complete cases for each moment function depend on the time
periods included in that moment and may include observations with missing values
in other time periods.

The strong overlap condition in assumption (2) is another opportunity to see the
benefits of moments which are a function of as few time periods as possible since
P (di1 = 1, ..., diT = 1) < P (dit = 1, dit−1 = 1) and inverse probability weight-
ing is known to suffer as κ decreases. Furthermore, first-differencing can be used,
with modification, for sequential exogeneity and dynamic models, a point revisited
later.

3 Asymptotic Theory

This section presents the asymptotic theory for the IPW-POLS and the IPW-GMM
estimators developed in the previous section. The arguments of the previous section
are formalized in the following assumptions and theorems. The limiting behavior is
for N →∞ and finite T .

The general properties of two-step estimators for large N and fixed T are known (see
Newey and McFadden (1994)). The cross-sectional two-step IPW estimator where
the first step is conditional maximum likelihood estimation from a binary selection
model has been extensively studied (Wooldridge (2002), Wooldridge (2007), Graham
et al. (2012)). Extending the IPWmachinery to a panel model, and thus consistently
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estimating slope parameters in the presence of missing at random covariate data, is
the main contribution of this paper. The presence of multiple time periods has some
notable consequences for the IPW estimator. One notable consequence (see corollary
(1)) is that it is no longer necessarily true that using the estimated probabilities
yields a more efficient estimator than using the true probabilities, as is true in the
cross-section (Wooldridge (2002), Wooldridge (2007)). One notable distinction in
the mechanics of the estimator is that selection is no longer a single binary response,
but rather a bivariate binary response due to the time differencing used to eliminate
the fixed effects. Extending selection to a bivariate binary response model for the
first stage estimation is a technical contribution to the IPW literature.

For each t, let Lt = (Xt, Wt), where the i subscript is omitted. Recall that bold
letters denote time histories; e.g. L = {Li1, Li2, ..., LiT}. The following assumptions
will be adopted throughout:

Assumption 1. (i) For each time period t=1,...,T, the random variables yt ∈ R, and
Lt ∈ RK (vector) have finite first and second moments (finite means, variances, and
covariances.) Second moment for the vector Lt is E[L′tLt] (as opposed to component-
wise.) For each i, ci is a random draw from an unknown distribution Fc with finite
first and second moments. (ii) For each time period t, the random variables yt, Lt,
and c have finite third and fourth moments.

Assumption (1) is a standard assumption, which gives primitive conditions on the
random variables sufficient for consistency ((1)(i)) and asymptotic normality ((1)(ii))
of the estimators 10.

Assumption 2. β0 ∈ B, a compact subset of Rk.

Compactness is not needed for the linear model, but is innocuous in applications
and simplifies the analysis.

Assumption 3. (Strict exogeneity) E[ut|X1, ..., XT ,W1, ...,WT , c] := E[ut|L1, ..., LT , c] =

0 for all t.
10Finite variance and higher moments give tractable primitive conditions, but are stronger con-

ditions than the weakest possible conditions necessary for consistency and asymptotic normality,
respectively (see Newey and McFadden (1994).)
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The main model of interest is the classic linear fixed effects model (2), under strict
exogeneity, assumption(3). The next section shows how the estimation strategy
can be readily adapted to handle sequential exogeneity, as well as other models of
interest.

Let Zt be a vector-valued function of the fully observed random variables, and zt a
realization. For example, Zt may equal (yt, yt−1, ȳ,Wt,Wt−1,W

2
t , Vt). As discussed

in the previous section, Vt may include time invariant random variables, or time-
varying variables that affect selection but are conditionally unrelated to the outcome
variable yt, or Vt may be empty. Zt are the predictors of the joint probability of
observation, as formalized below.

Definition 1. Let dt be an indicator which takes value 1 when Xt is fully observed.
For each t = 2, ..., T , let pt,t−1 = P (dt = 1, dt−1 = 1|X,Z), the joint (conditional)
probability of observing X in periods t and t− 1.

The next three assumptions repeat the selection mechanism assumptions gathered
in the previous section, and are repeated here for completeness.

Assumption 4. (MAR) P (dt = 1, dt−1 = 1|X,Z) = P (dt = 1, dt−1 = 1|Z)

Assumption 5. (Parametric specification) For each t, t − 1, there exists a vector
δt0 ∈ R|δt0| such that pt,t−1 = Gt,t−1(zt, δt0) for a known function G and unknown
parameter δt0.

Assumption 6. (Strong overlap) For all t, and all zt, δt in their supports, pt,t−1(zt, δt) ≥
κ > 0 for some κ ∈ R.

Assumption (5) allows for a different parameter δt0 in each (t, t− 1) for t = 2, ..., T .
While that is the preferred specification in the interest of accurately predicting pt,t−1,
with many time periods, this may result in too severe a loss of degrees of freedom.
In which case, it may be more tractable to adopt a pooled specification of the form
Gt,t−1(zt, δ0). The analysis carries through with a slight change to the form of the
asymptotic variance, as will be noted.
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The previous three assumptions are the main identifying assumptions of the paper.
Assumption (4) is the missing at random assumption, which states that the joint
probability of observing X is unrelated to the values of X, conditional on the fully
observed variables Z. Assumption (6) uniformly bounds the probability of selection
away from zero so that the inverse probability is well-defined and well-behaved in
the limit. Assumption (5) assumes a correctly specified parametric form for the
joint probability of observation, thus ensuring that the joint probability can be
consistently estimated.

The remaining assumptions fill out the technical details needed for identification of
β0, and the limiting behavior of the estimators. The assumptions are standard rank
((7), (8)) and smoothness ((9), (10)) assumptions. A brief discussion of how the
technical assumptions are used follows each assumption, while the full proofs are in
the appendix. The uninterested reader may skip to the next subsection.

Assumption 7. E[∆L′t∆Lt] is non-singular for t = 2, ..., T .

Assumption 8. E[
∑

t
dtdt−1

pt,t−1
∆Lt∆L

′
t−1] is non singular.

Assumption (7) is the standard rank condition for the first-differenced estimator.
Assumption (8) says that there is enough variation in the fully observed population
so that the rank condition still holds.

An entire joint distribution for the random variables (dt, dt−1) conditional on zt is
specified, as detailed in assumption (9) and (10).

Assumption 9. (Parametric specification) For each t, t − 1, P (dt = d, dt−1 =

d′|zt) = Gt,t−1(d, d
′|zt; δt0) (where d, d′ ∈ {0, 1}) such that:

(i) δt0 ∈ D, a compact subset of R|δt0|,
(ii) ∃zt ∈ support(Zt) with P (dt = d, dt−1 = d′|zt) > 0 such that P (dt = d, dt−1 =

d′|zt) 6= Gt,t−1(d, d
′|zt; δt) for δt 6= δt0,

(iii) Gt,t−1 is continuous in δ for each d, d′, zt,
(iv) E[supδ|ln(Gt,t−1(d, d

′, zt; δt))|] <∞.

Assumption (9) guarantees that the conditional maximum likelihood estimator (CLME)
is consistent for δt0 for each t (see theorem 13.1 in Wooldridge Wooldridge (2010b),
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or theorem 2.5 in Newey, McFadden Newey and McFadden (1994)).

The δt0 are estimated via conditional maximum likelihood; i.e. δ̂t is the solution
to: ∑

i

st,t−1(zit; δt) = 0 (14)

st,t−1 = ∇δtL(δt) (15)

for each t = 2, ..., T , where st,t−1 is the score of the log likelihood of the bivariate
binary selection model. The log likelihood is:

L(δt) =
∑
i

ditdit−1ln(Gt,t−1(1, 1|zit; δt))

+ (1− dit)dit−1ln(Gt,t−1(0, 1|zit; δt))

+ dit(1− dit−1)ln(Gt,t−1(1, 0|zit; δt))

+ (1− dit)(1− dit−1)ln(Gt,t−1(0, 0|zit; δt))

The addition of the next assumption fills in the technical details that yield asymp-
totic normality and efficiency of the CMLE estimator for each t (see theorem 13.2 in
Wooldgridge Wooldridge (2010b), or theorem 3.4 in Newey, McFadden Newey and
McFadden (1994)).

Assumption 10. (Smoothness) For each t, t−1, P (dt = d, dt−1 = d′|zt) = Gt,t−1(d, d
′|zt; δt0)

such that:
(i) δt0 ∈ int(D),
(ii) In a neighborhood of δt0, Gt,t−1(d, d

′, zt; δt) is twice continuously differentiable in
δ and Gt,t−1(d, d

′, zt; δt) > 0,
(iii)

∫
supδ||∇δGt,t−1(d, d

′|zt; δt)||dz <∞ and
∫
supδ||∇δδGt,t−1(d, d

′|zt; δt)||dz <∞,
(iv) E[∇δGt,t−1(d, d

′|zt; δt0){∇δGt,t−1(d, d
′|zt; δt0)}′] exists and is non-singular.

Conditions (i) and (ii) guarantee that the score (the partial of the log-likelihood
lnGt,t−1(d1, d2|zt; δt) w.r.t δ) admits a mean-value expansion around the true δt0.
Conditions (iii) and (iv) guarantee the exchange of integration (summation w.r.t.
distribution of (dt, dt−1)) and differentiation w.r.t δ are allowed. This yields the
results that the score has E[st|zt] = 0, and the conditional information matrix
equality (CIME) can be established for each t. Condition (iv) guarantees that
the sample scores evaluated at the true δt0 are root-n asymptotically normal (as
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the asymptotic variance is given by the inverse of (iv)) and condition (iii) plus
assumption (1) gives uniform convergence of the sample Hessian.

3.1 IPW-POLS estimator

This section establishes identification of β0, as well as consistency and the asymptotic
distribution of the IPW-POLS estimator.

From assumptions (2) and (3), E[∆L′t∆yt] = E[∆L′t∆Lt]β. From assumption (7),
β0 is then uniquely identified in the population as β0 = E[∆L′t∆Lt]

−1E[∆L′t∆yt]

or β0 = E[
∑

t ∆L′t∆Lt]
−1E[

∑
t ∆L′t∆yt]. Unfortunately, the random sample from

the population is subject to missing values. Define the observable population as the
population defined by the random variables dt(yt, Lt). It remains to show that β0 is
identified in the observable population.

Theorem 1. (Identification) Under assumptions (1), (2), (3), (4), (5), (6), and
(8)(a), β0 is uniquely identified in the observable population:

β0 = E[
∑
t

dtdt−1
pt,t−1(zt, δt0)

∆L′t∆Lt]
−1E[

∑
t

dtdt−1
pt,t−1(zt, δt0)

∆L′t∆yt] (16)

Theorem 2. (Consistency of IPW-POLS) Under assumptions (1), (2), (3), (4),
(5), (6), (8), and (9),

β̂IPW−POLS
p→ β0 (17)

The detailed proof is presented in the appendix, and a sketch of the main points is
given below.

Proof sketch.

β̂POLS − β0 = (
1

N

∑
i

∑
t=2

ditdit−1

Gt,t−1(Zit; δ̂t)

(
∆L′it

)
(∆Lit))

−1 1

N

∑
i

∑
t=2

ditdit−1

Gt,t−1(Zit; δ̂t)

(
∆L′it

)
∆uit

Assumption (9) gives δ̂t
p→ δt0 for each t, from known MLE results. The regularity

conditions asume enough smoothness to apply the WLLN and continuous mapping

theorem. β̂IPW−POLS − β0 → E(
∑
t=2

ditdit−1
Gt,t−1

∆L′it(∆Lit)
−1E[

∑
t=2

ditdit−1
Gt,t−1

∆L′it∆uit].

The result then follows from lemma (1).
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Theorem 3. Under assumptions (1), (2), (3), (4), (5), (6), (8), (9), and (10),

√
N(β̂POLS − β0)

d→ N (0,Σ) (18)

where Σ = A−10 B0A
−1
0 with

A0 = E[
∑
t

∆L′t∆Lt] (19)

B0 = E[(
∑
t

rit)(
∑
t

r′it)] (20)

rit = mit + Ct0M
−1
t sit (21)

mit =
ditdit−1
Gt,t−1

∆L′it∆uit (22)

Ct0 = E[∇δmt(δt0, β0)] (23)

Mt = E[sts
′
t] (24)

and sit is the |δt| by 1 score vector of the bivariate binary selection log-likelihood (see
(15),) evaluated at the true δt0.

The subscript t is used instead of t, t− 1 for clarity of notation, but note that all of
the objects in (3) are functions of (at least) two time periods.

In the case of a pooled specification, the above expressions are valid with Ct0 replaced
by C0 =

∑
tE[∇δmt(δ0, β0)], and Mt replaced by M =

∑
tE[sts

′
t].

A notable consequence of the form of the asymptotic variance in Theorem (3), is
that the well known result from cross-sectional IPW analysis that using the esti-
mated probabilities of observation is asymptotically more efficient than if the true
probabilities were used (Robins et al. (1994), Wooldridge (2002), Wooldridge (2007))
does not, in general, carry over to the panel setting:

Corollary 1. Consider

β̃ = (
∑
i

∑
t=2

ditdit−1
Gt,t−1

(
∆L′it

)
(∆Lit))

−1
∑
i

∑
t=2

ditdit−1
Gt,t−1

(
∆L′it

)
∆yit (25)

which uses the true joint probabilities of observation Gt,t−1. For T = 2, avar(β̃) ≥
avar(β̂IPW−POLS).
For T > 2, avar(β̂IPW−POLS) could be larger or smaller (in a positive definite sense)
than avar(β̃).
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where avar(·) is asymptotic variance and a positive definite matrix A is said to be
smaller than a positive definite matrix B if the matrix B-A is positive definite.

Proof sketch.

√
N(β̃ − β0)

p→ N (0, A−10 B̃0A
−1
0 )

where B̃0 = E[(
∑

tmt)(
∑

tm
′
t)] where A0 and mt are as in theorem (3).

E[(
∑
t

rit)(
∑
t

r′it)] = E[(
∑
t

mit)(
∑
t

mit′)] + E[(
∑
t

mit)(
∑
t

s′itM
−1
t C ′t0)]

+ E[(
∑
t

Ct0M
−1
t sit)(

∑
t

m′it)] + E[(
∑
t

Ct0M
−1
t sit)(

∑
t

s′itM
−1
t C ′t0)]

= E[(
∑
t

mit)(
∑
t

mit′)] +
∑
t

E[mts
′
t]M

−1
t C ′t0 +

∑
t

Ct0M
−1
t E[stmt] +

∑
t

Ct0M
−1
t E[sts

′
t]M

−1
t Ct0

+
∑
t

∑
τ 6=t

E[mtsτ ]M
−1
τ C ′τ0 +

∑
t

∑
τ 6=t

Ct0M
−1
t E[stm

′
τ ] +

∑
t

∑
τ 6=t

Ct0M
−1
t E[sts

′
τ ]M

−1
τ C ′τ0

(26)

= E[(
∑
t

mit)(
∑
t

mit′)]−
∑
t

Ct0M
−1
t Ct0 (27)

+ {t, τ terms}

Where (27) follows from::

Ct0 = E[∇δmit] = −E[
dtdt−1
G2
t,t−1

∆L′t∆ut∇δGt,t−1]

E[mitsit] = E[
dtdt−1
Gt,t−1

∆L′t∆ut
dtdt−1
Gt,t−1

∇δGt,t−1]

= −Ct0 (28)

which says that, for a given t, when evaluated at the truth, the partial of the FOC for
β w.r.t the nuisance parameter δ is the negative of the correlation between the FOC
for β and the FOC for δt. This has a similar flavor as the conditional information
matrix equality (CIME) for maximum likelihood estimation. Thus, for a given t,

E[ritrit′ ] = E[mitmit′ ]− Ct0M−1
t Ct0

the second term is positive definite and thus E[mitmit′ ]−E[ritrit′ ] = Ct0M
−1
t Ct0 ≥ 0.

This is where the result comes from in the cross-sectional case (and when T=2).
In the panel setting with T > 2, while we can conclude that

∑
tCt0M

−1
t Ct0 ≥ 0, no

such conclusion can be made about the t, τ cross terms (26).
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The cross-sectional result has been shown for univariate selection, and carries over
to the case of bivariate selection when the first-differenced model is just-identified.
The second part of corollary (1) marks a stark departure from the previous results
for two-step IPW estimators with first stage CMLE. The intuition for this is similar
to the intuition for why partial maximum likelihood estimation is not efficient (see
13.8 in Wooldridge (2010b).) While a correct specification of the distribution of
(dt, dt−1) was assumed for each t, t − 1, the correct distribution for d = (d1, ..., dT )

is not specified, and thus, while the CIME holds in a given (t, t − 1), it does not
hold generally. Even if we adopt the strong assumption that the scores are serially
uncorrelated (and thus recover the conditional information matrix equality for max-
imum likelihood, so the third term in (26) is zero), we are still left with the failure
of an equality like (28) for the t, τ cross terms.

3.2 IPW-GMM estimator

Now consider the IPW-GMM estimator defined by (12). Consistency and the asymp-
totic distribution are combined in the following theorem:

Theorem 4. (1), (2), (3), (4), (5), (6), (8), (9), and (10), for the IPW-GMM
estimator defined by (12) with Σ1 a positive definite weight matrix,

√
N(β̂GMM − β0)

d→ N (0,Σ2) (29)

where Σ2 = (A′00Σ1A00)
−1A′00Σ1ΩΣ1A

′
00(A

′
00WA00)

−1) with

A00 = (A′20A
′
30...A

′
T0)
′ (30)

At0 = E

(
ditdit−1

Gt,t−1(zt; δt0)
∆L′t∆Lt

)
(31)

Ω = E[MiM
′
i ]− C0E[sis

′
i]
−1C ′0 (32)

C0 = (C20, C30, ..., CT0) (33)

Mi = (m′i2m
′
i3...m

′
iT )′ (34)

si = (s′i1,i2, s
′
i2,i3, ..., s

′
iT−1,iT )′ (35)

As with the IPW-POLS estimator, the accounting for the first step estimation in
the asymptotic variance is in the Ω as neither the A00 nor the weight matrix Σ1

involve the first step estimation. Notice that A0 from the IPW-POLS estimator’s
asymptotic variance is A0 =

∑
tAt0.
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The optimally-weighted GMM estimator uses a consistent estimate of Ω−1 for the
weighting matrix. With Σ1 = Ω−1, the asymptotic variance is given in the next
corollary:

Corollary 2. For Σ1 = Ω−1,

√
N(β̂GMMop − β0)

d→ N (0,Σop) (36)

where Σop = (A′0Ω
−1A0)

−1.

The IPW-GMM estimator defined by (12) with the optimal weight matrix will have
smaller asymptotic variance than the IPW-POLS estimator. That the optimally
weighted IPW-GMM estimator has lower asymptotic variance than the IPW-POLS
estimator can be seen from observing that the IPW-POLS estimator is an IPW-
GMM estimator with weight matrix Σ1 = ι′ι where ι is a T − 1 vector of 1s. The
result then follows by standard GMM theory and is summarized in the following
corollary:

Corollary 3.

avar(β̂GMMop) ≤ avar(β̂POLS) (37)

The following section gives some finite sample results where the IPW estimators are
compared to the unweighted estimator. The trade-offs between the IPW-POLS and
IPW-GMM estimators also are explored.

4 Simulations

This section presents some finite sample performance of the IPW-POLS and IPW-
GMM estimators developed in the previous sections. The outcome model of interest
is:

yit = Xitβx +Witβw + ci + uit (38)
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which is specified as:

yit = xit + αt + wit + ci + uit (39)

for all the simulations. The missing values are in xit and βx0 = βw0 = 1. The time
intercepts αt are set to αt = t, though the simulations are not sensitive to these
values, and the estimation of αt − αt−1 is often not of paramount interest. The
unobserved time-invariant heterogeneity ci is specified as ci = 0.3x̄i + 0.2w̄i + 0.5bi

where bi ∼ Bernoulli(0.6), though the results are not sensitive to other specifications
of the ci. Other results, as well as reproducible code, are available from the author
upon request. All simulations are done in R.

4.1 Example of MAR assumption

Assumption (2) includes the missing at random assumption, as well as a parametric
assumption on the form of the joint probability of observation. As an example of
a data generating process which satisfies the assumptions, a latent variable thresh-
old crossing mechanism for selection in each time period is adopted. A common
specification is:

d∗it = πt + yitπyt + witπwt + Vitπvt + ξi − νit (40)

νit ⊥ (Xi,yi,wi,Vi)

dit = 1[d∗it > 0] (41)

The time invariant ξi allows for unobserved individual heterogeneity in the propen-
sity of observation, such as worker productivity, a respondent’s preference for pri-
vacy, or unobserved components of the house for sale. Since estimation of the
fitted probabilities is required, the unobserved ξi cannot be left fully flexible. An
additional assumption, which may be application specific, is needed. A common
technique, and the one adopted here, is a Chamberlain-Mundlak-Wooldridge corre-
lated random effects structure (Mundlak (1978), Chamberlain (1984), Wooldridge
(2010b)):

ξi = γ + ȳiγy + w̄iγw + V̄iγv − ai (42)

ai ⊥ (Xi,yi,Wi,Vi)

ai 6⊥ νit

Models (40) and (42) can be subsumed as a specific example of the general latent
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variable model:

d∗it = ZitΠt − ηit (43)

ηit ⊥ (Xi,yi,wi,Vi)

dit = 1[d∗it > 0]

where Zit is a vector of functions of the yi,Wi,Vis that may vary with t. The slope
parameters Πt are allowed to be time period specific.

The missing at random assumption (2)(i) is imposed through the exclusion of Xi

in Zit, and the independence of the error terms ηit and Xi. The failure of ignorable
missingness is in the inclusion of functions of yi in the Zit. Additionally, though
unrelated to the selection assumption (2), serial correlation is allowed in the ηit.

Given the latent variable model (43), the conditional joint probability of observation
of dit and dit−1 is:

P (dit = 1, dit−1 = 1|Xi,yi,Wi,Vi) = P (d∗it > 0, d∗it−1 > 0|Xi,yi,Wi,Vi) (44)

= P (ηit < ZitΠt, ηit−1 < Zit−1Πt−1|Xi,yi,Wi,Vi)

= P (ηit < ZitΠt, ηit−1 < Zit−1Πt−1)

= Fηit,ηit−1
(ZitΠt, Zit−1Πt−1)

The parametric assumption (2)(ii) is then

Fηit,ηit−1
(ZitΠt, Zit−1Πt−1) = Gt,t−1(Zit, Zit−1; δt0) (45)

where δt0 = (Π′t Π′t−1 ρt), with ρt = corr(ηit, ηit−1). The dependence of the
slope parameters Πt on t is extremely flexible, but requires not only finite T but
relatively small T . With a very small T , a more flexible Chamberlain assumption,
Zit = (yi,Wi,Vi) with time varying coefficients, may be tractable. With a large
T , it may be more tenable to assume time invariant coefficients in a pooled binary
choice model, d∗it = ZitΠ− ηit.

For the simulations, Zit = (1, yit, wit, ȳi, w̄i, vi). The structure of the error term
varies by simulation as discussed below.

4.2 Finite sample performance

In each simulation, the probability of observation for a single time period is approxi-
mately 0.72, the joint probability for two time periods is 0.55, meaning the proposed
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IPW estimators are using more than half of the data 11. The estimators considered
are all first difference estimators; the oracle full data estimators, the first difference
complete cases, and the proposed IPW estimators using both the true probabilities,
and the estimated probabilities where the estimation is from a correctly specified
bivariate probit model.

The simulation set-ups detailed above are summarized below.

Simulations 1 and 2: Outcome model

yit = t+ xit + wit + ci + uit t = 1, 2, 3

(uit, xit, wit) ∼ N (0, σ2)

corr(xit, xit−1) = 0.5, corr(wit, wit−1) = 0.7

corr(xit, wit) = −0.35

ci = 0.3 ∗ w̄i + 0.2 ∗ x̄i + 0.5vi

v ∼ Bernoulli(0.6)

Simulation 3: Outcome model

yit = αt + xitβx + witβw + ci + uit t = 1, 2, 3

uit ∼ N (0,Σ)

var(uit) = t

corr(ui1, u12) = 0.3 corr(ui1, ui3) = 0.15 corr(ui2, ui3) = 0.25

(xit, wit) ∼ N (0, σ2)

corr(xit, xit−1) = 0.5, corr(wit, wit−1) = 0.7

corr(xit, wit) = −0.35

ci = 0.3 ∗ w̄i + 0.2 ∗ x̄i + 0.5vi

v ∼ Bernoulli(0.6)

11The joint probability for all three periods is roughly 0.4, so a full complete case estimator
would use 40% of the data.
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Simulation 1 and 3: Selection mechanism

d∗it = Zitπt − ηit
Zit = (1, yit, wit, ȳi, w̄i, vi)

dit = 1[d∗it > 0]

ηit ∼ N (0, 1)

corr(ηit, ηit−1) = 0.5

Simulation 2: Selection mechanism (Serial correlation and correlation with outcome
error)

d∗it = Zitπt − ηit
Zit = (1, yit, wit, ȳi, w̄i, vi)

dit = 1[d∗it > 0]

ηit = 0.2uit + eit

eit ∼ N (0, 1)

corr(eit, eit−1) = 0.5 corr(vit, vit−2) = 0.3

The main take-away from the simulations is that with missing at random covariate
values where the missingness depends on the outcome, the unweighted estimator
(Complete) preforms poorly, with a bias around 25% and rmse over 50% larger than
that of the IPW estimators.

The simulations allow some comparison of the two proposed estimators. The GMM
estimator in simulations 1 and 2 is a one-step estimator with the identity weight
matrix. Simulation 3 uses that one-step GMM, optimally weighted GMM using the
one-step estimator to calculate the weighting matrix, and the POLS estimator. The
optimal weighting matrix may perform quite poorly in finite samples. In simula-
tions 1 and 2, the error uit was homoskedastic (and independent of the regressors.)
In this case, we expect POLS to preform fine. In simulation 3, I introduce time
heteroskedasticity and serial correlation. Results look like with total independence
of errors, POLS has lower variance, with just time heterogeneity (results not shown,
100 replications run) still looks like POLS might perform better than both GMM
estimators (in terms of variance), though the optimal GMM estimator has lower
variance than the one-step estimator. With time heterogeneity and serial correla-
tion, as in simulation 3, there’s some variance improvement for optimal GMM over
POLS, though it seems to come at the cost of higher bias.
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Table 1: Simulation 1: N=1,000, Nobs ∼ 545, R=500, βx = βw = 1

Estimation E[β̂x] rmse var(β̂x) E[β̂w] rmse var(β̂w)
Full GMM 0.998 0.054 0.003 0.996 0.072 0.006
Full POLS 0.999 0.056 0.003 0.997 0.073 0.005
Complete GMM 0.738 0.228 0.008 0.814 0.186 0.012
Complete POLS 0.750 0.209 0.007 0.829 0.163 0.011
IPW-GMM -po 1.036 0.123 0.016 1.022 0.152 0.023
IPW-POLS -po 1.032 0.116 0.013 1.018 0.139 0.019
IPW-GMM - p̂ 0.937 0.125 0.012 0.958 0.143 0.019
IPW-POLS - p̂ 0.938 0.115 0.010 0.960 0.132 0.016

Table 2: Simulation 2: N=1,000, Nobs ∼ 545, R=500, βx = βw = 1

Estimation E[β̂x] rmse var(β̂x) E[β̂w] rmse var(β̂w)
Full GMM 1.0001 0.058 0.003 0.9999 0.074 0.005
Full POLS 1.0009 0.056 0.003 0.9995 0.073 0.005
Complete GMM 0.768 0.244 0.008 0.839 0.187 0.012
Complete POLS 0.782 0.229 0.008 0.858 0.167 0.011
IPW-GMM -po 0.986 0.110 0.012 1.002 0.134 0.018
IPW-POLS -po 0.981 0.101 0.010 0.996 0.122 0.015
IPW-GMM - p̂ 0.964 0.112 0.012 1.004 0.129 0.017
IPW-POLS - p̂ 0.961 0.105 0.010 1.001 0.119 0.015

Table 3: Simulation 3: N=1,000, Nobs ∼ 545, R=500, βx = βw = 1

Estimation E[β̂x] rmse var(β̂x) E[β̂w] rmse var(β̂w)
Full GMM 1.001 0.065 0.004 0.999 0.082 0.0067
Full opt GMM 1.0015 0.0619 .00382 1.000 0.0786 0.0062
Full POLS 1.0015 0.0623 0.00388 0.9999 0.0797 0.0064
Complete GMM 0.717 0.294 0.0102 0.799 0.225 0.0137
Complete opt GMM 0.729 0.282 0.0104 0.820 0.203 0.0137
Complete POLS 0.729 0.282 0.0096 0.814 0.209 0.0130
IPW-GMM -po 0.930 0.146 0.017 0.956 0.161 0.024
IPW-opt GMM -po 0.913 0.143 0.013 0.942 0.150 0.020
IPW-POLS -po 0.924 0.139 0.014 0.949 0.151 0.021
IPW-GMM - p̂ 0.910 0.160 0.018 0.954 0.164 0.026
IPW-opt GMM - p̂ 0.900 0.150 0.0136 0.946 0.147 0.020
IPW-POLS - p̂ 0.907 0.150 0.0145 0.951 0.148 0.021
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5 Empirical application: hedonic housing price model

5.1 Introduction

The empirical application revisits the setting of Kuwayama, Olmstead, and Zheng
(Kuwayama et al. (2018)) and Zheng ((Zheng, 2017)) which considers the willingness
to pay for water quality in local water amenities12. This is one of many settings in
which the proposed estimation technique can be used; namely, the specification is a
linear fixed effects model, there are missing covariate values, and, as will be shown,
empirical evidence suggests that the missing values are not ignorable but can be
missing at random.

Quantifying the value of a public good or natural resource is important for policy
but difficult in practice as there is often not a market for such goods. The value
of a public good or natural resource can be multi-faceted, with use value coming
from recreational opportunities for example, but also passive value like existence
or non-use value (Krutilla (1967), McConnell and Walls (2005).) Quantifying the
value of water quality by looking at housing markets has a long history in the
literature (Poor et al. (2007), Walsh et al. (2017), Keiser and Shapiro (2017),) and
is relevant for policy as legislation like the Clean Water Act is costly. Willingness
to pay is captured by a hedonic house price model, which specifies the price of a
house as a function of the house attributes (Rosen (1974).) The attribute of interest
is the water quality in nearby water amenities, which include lakes, rivers, ponds,
and canals (Kuwayama et al. (2018).) Water quality is measured by the level of
dissolved oxygen in mg/L, which is one of the common measures of ambient water
quality (Kuwayama et al. (2018), Keiser and Shapiro (2017)) as aquatic species need
dissolved oxygen to live, and the level of dissolved oxygen is correlated with other
common measures of water quality, such as clarity (Kuwayama et al. (2018).)

A concern is that the wealth of an area may be related to the frequency of monitoring,
regardless of the level of the water quality or the characteristics of the house. This
would result in non-ignorable yet missing at random missingness13 as defined in this
paper.

12Kuwayama et al also consider the recreational benefit from improvements to a large, regional
water body. While the recreational benefit is significant, the estimate of the willingness to pay for
local, ambient water quality is largely unchanged by the inclusion or exclusion of the recreational
measure in the specification (Kuwayama et al. (2018).) A specification with only the local water
amenities is adopted here, though the results including a measure of the large, regional water body
are similar and available upon request.

13This is different than the situation where the water quality is measured at a plant by electronic
equipment that only records the level between some threshold (Muehlenbachs et al. (2015).) In
that case, observation is not at random as it is directly related to the level of the missing variable.
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There are various reasons to suspect that monitoring frequency is related to wealth
of an area, and thus house prices. If areas with higher house prices have more
political leverage, those areas may receive more frequent monitoring regardless of
water quality. Conversely, if lower income areas are targeted as at risk, they may
be monitored more closely. If monitoring, and thus observation, is conditionally
related to house price then dropping observations with missing values could lead to
inconsistent parameter estimates. Without exact information on the motivations for
monitoring, the question is empirical.

There are many attributes of a property that affect its sale price, some of which are
unobserved to the econometrician. Kuwayama, Olmstead, and Zheng (Kuwayama
et al. (2018), hereafter KOZ) show that many observed attributes, like age, number
of bedrooms, and distance to the water, are correlated with the dissolved oxygen level
in local water amenities, and therefore it is suspected that unobservable attributes
that affect price may also be correlated with dissolved oxygen level. That concern
leads to the inclusion of time-invariant property fixed effects which affect sale price
and may be correlated with the time-varying regressors; namely, dissolved oxygen
and age. The resulting linear fixed effects specification for house price is in line with
the theoretical derivations in the previous sections. Identification is off of repeated
sales of the same house ((Livy et al., 2013).)

Access to panel data allows from some tests of the differing implications of the ig-
norable missingness assumption and the missing at random assumption. Evidence
is presented that suggests that indeed observation is conditionally related to house
price, contrary to the ignorable missingness assumption. Additionally, there is some
empirical evidence to support the missing at random assumption; namely, that ob-
servation is not conditionally related to water quality.

5.2 Data

The data consist of single-family house sales in the Tampa Bay area, which consists
of three counties; Hillsborough, Pinellas, and Manatee. Dissolved oxygen data is
merged with sale price data to create an unbalanced panel of house sales over time.
"Local" is defined as properties within 1 km of a monitoring station14.

The data span from 1998 to 2014, during which time there were numerous policy
14The main specification in Kuwayama et al. (2018) uses a 3 km radius, though they include

results for 500m and 1km. The 1 km radius used here is to focus on the immediate proximity,
and follows the findings of Walsh et al. (2011) that both the magnitude and precision of the point
estimate on willingness to pay (in their case for the water quality of lakes in the Orlando, FL area)
decline beyond a radius of 1000m.
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changes affecting water quality standards. While there are 17 years of data, each
monitoring site has an average of 8 years of recorded measures of dissolved oxy-
gen, resulting in an observation rate of roughly 45%. As many policy decisions are
made at the county level, aggregating the results from the three counties may not
be the most policy relevant approach. Much monitoring is conducted at the county
level; for example, the Environmental Protection Commission of Hillsborough county
oversees over 250 monitoring stations located within Hillsborough county (of Hills-
borough County (2018).) Aggregating counties also may obfuscate important dif-
ferences in the value of water quality across the counties. Walsh et. al. (Walsh
et al. (2017)) consider 14 counties in the Chesapeake Bay area and find, among
other things, heterogeneous returns to water quality across county. Hillsborough
and Pinellas county, which are the principle counties in the Tampa-St. Pete MSA,
have enough repeated observations to be considered separately. Manatee county,
which is part of the North Port-Sarasota-Bradenton MSA and for which sales data
is not available until 2005, does not have enough observations to analyze on its own.
Results are presented separately for Hillsborough county, Pinellas county, and, as in
KOZ, the three counties combined.

Figure (1) plots the average recorded dissolved oxygen level over time for Hillsbor-
ough and Pinellas counties. Table (4) presents summary statistics for Hillsborough
and Pinellas counties. The three samples considered are the full sample of houses,
the sub sample with at least one recording of dissolved oxygen, and the subsample
with dissolved oxygen values across consecutive sales, which is the subsample used
in first-difference estimation. While there are over 50,000 observations from over
20,000 properties in the full sample for each county, there are fewer than 16,000 ob-
servations and fewer than 7,000 properties in the sample with repeated observations
of dissolved oxygen. On average, properties in the estimation sample in Hillsbor-
ough county appear to be cheaper, older, farther from a water body though closer
to Tampa Bay, and closer to a boat ramp. In Pinellas county, properties in the
estimation sample appear to be similar on average, though closer to a water body
and a boat ramp.

Figure (2) presents the distribution of house prices (in natural log as will be used
in the specification) for the full sample compared to the estimation sample, which
has repeated observations of dissolved oxygen. In Hillsborough county (2a) the
distribution of prices when dissolved oxygen is observed is shifted left with a lower
mean (as seen in the summary statistics) and more weight in the lower part of
the price distribution. Conversely, the distribution of prices in Pinellas county when
dissolved oxygen is observed (2b), while having a similar mean, has more bulk in the
distribution above the mean. This suggests that the biases in the two counties are

28



Figure 1: Average dissolved oxygen level (DO) over time
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in opposite directions, as the estimation sample in Hillsborough county over samples
from lower priced houses, and the estimation sample in Pinellas county over samples
from higher priced houses. The seemingly representative sample from figure (2d)
may result from the biases at the county level canceling out in the aggregate. The
histograms for Hillsborough and Pinellas county are not in line with an ignorable
missingness assumption as they suggest that observation of water quality may be
related to house price. This is only suggestive as these are summary statistics,
aggregated over time, and whichout any control variables.

5.3 Model and Estimation

Let priceit be the price of house i in year t. The price is a function of household
attributes Xit, water quality, as measured by dissolved oxygen level DOit, and unob-
served house components that do not vary over time ci. The specification is15:

ln(priceit) = β0 + β1ln(DOit) + β2Ageit + αt + ci + uit (46)

15I have modified the specification by omitting the census block by year affects to conserve
degrees of freedom, omitting the recreational demand index as discussed in a previous footnote,
and using a 1 km radius as discussed in a previous footnote. For more details, see Kuwayama et al.
(2018)
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Figure 2: Distribution of house prices

where the αt are year effects. The data span 1998 to 2014, which I break into three
periods with respect to the great recession; pre: 1998-2006, during : 2007-2010, and
post : 2011-2014. Each era is allowed a different level and linear trend, resulting in
6 time parameters. The specification is then:

ln(priceit) = β1ln(DOit) + β2Ageit + α11pre + α21during + α31post (47)

+ α41pre ∗ t+ α51during ∗ (t− 2006) + α61post ∗ (t− 2010) + ci + uit

where the overall intercept is dropped due to collinearity.

Figure (3) shows the time trend of prices in Hillsborough and Pinellas counties, and
gives credence to the three-era piecewise linear specification adopted.

The following strict exogeneity assumption is maintained:

E[uit|DOi,Agei, αt, ci] = 0 (48)

The property fixed effects ci absorb the time invariant house characteristics (number
of bedrooms, number of bathrooms, lot size,...). The inclusion of house specific
effects in (47) focuses the identifying variation to within house, across time. The
parameters are identified by repeat sales of the same house in different years. The
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Figure 3: Average house prices aver time
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total number of sales ranges from 2 to 7.

It is illustrative to re-write (47) taking into account the unbalanced nature stemming
from considering consecutive house sales, as opposed to just consecutive years. Let
ts denote the year t of sale number s. For example, if house i was sold in 1999,
2005, and 2008, then t1 = 1999, t2 = 2005, and t3 = 2008. Model (47) is re-written
as:

ln(priceits) = β1ln(DOits) + β2Ageits + α1preits + α2duringits + α3postits (49)

+ α4preits ∗ t+ α5duringits ∗ (t− 2006) + α6postits ∗ (t− 2010) + +ci + uits

First-differencing (49) over sales requires a bit of care with respect to the time
variables. The resulting first-differenced model is:

∆ln(priceit) = β1∆ln(DOit) + δ1pretimeit + δ2duringtimeit + δ3posttimeit (50)

+ δ41pre-during + δ51pre-post + δ61during-post + ∆uit

where the differencing is across consecutive sales, s. Model (50) specifies the differ-
ence in sale price (measured in 2014 dollars) of house i as a function of the difference
in dissolved oxygen level between the two times of sale, as well as three time expo-
sure effects. It is assumed the sale number does not itself affect the outcome or the
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model parameters; i.e. a house sold for the first time in 2000 and the second time
in 2005 is considered to follow the same model as a house sold the second time in
2000 and the third time in 2005. The time exposure variables - pretime, duringtime,
posttime - are defined as the amount of time house i has spent in each era since the
previous sale. The basic idea is that the change in age of the house, as measured by
the number of years that has passed between sales, is broken up over the three time
periods. A house sold in 2000 and resold in 2003 spent 3 years in the pre period,
and 0 years in both the during and post periods. A house sold in 2000 and resold
in 2010 spent 6 years in the pre period, 4 years in the during period, and 0 years in
the post period. Straightforward calculations show that δ1 = β2 + α4, δ2 = β2 + α5,
and δ3 = β2 + α6. From this, notice that the slope coefficients on the exposure
variables - pretime, duringtime, posttime - are picking up both the age effect and
the era-specific linear time trend effect, as anticipated. The age effect β2 is expected
to be negative, the pre- and post- trends, α4 and α6 respectively, are expected to
be positive and thus the signs of δ1 and δ3 are a priori ambiguous depending on the
strength of the two effects. The during trend α5 is expected to be negative thus
δ2 is unambiguously a priori negative. The level shifters capture the level shift if
time switched eras between the two sales; i.e. 1pre−post = 1 is the previous sale was
in the pre period and the current sale is in the post period. These indicators are
convoluted and offer little insight with respect to the model (49), except perhaps to
note that the intercept drops out if a house is sold and resold in the same era.

5.3.1 Selection Model

The model for joint observation of dissolved oxygen is specified as a bivariate probit
model. For a given sale s of house i in year ts, consider a latent variable threshold-
crossing model for observation:

d∗its = δ1ln(priceits) + δ2ln(priceits−1) + δ3ave_ln(pricei) +Xitsβ + vits (51)

dits = 1[d∗its > 0] (52)

For a flexible yet tractable model, observation is allowed to depend on current sale
price, sale price in the previous sale (if feasible), and average sale price across all sales
of the property. Additional covariates Xits include property age in year ts, the time-
invariant property characteristics available by county (as in the summary statistics
table (4)) which include the distance variables (distance to water, boat ramp, and
Tampa Bay), a full set of year indicators, and a full set of zip code indicators.
The goal of the selection model is to yield a good prediction of the probability of
observation. While a direct effect of number of bedrooms on observation may not
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make economic sense, the variable is included to further absorb any indirect effects
of dissolved oxygen level (which is correlated with number of bedrooms (Kuwayama
et al. (2018))) on observation. The distance variables, particularly distance to a
boat ramp, capture the ease of either direct monitoring by boat, or access to a
monitoring station for repairs. The joint probability of observation of dissolved
oxygen is estimated by the predicted values from the county specific bivariate probit
models. The estimation results, and more details for the bivariate probit model by
county are included in the appendix.

5.4 Results

Table (11) gives the results of estimation of the first-differenced reduced form (50).
Table (5) reproduces the first row of table (11) to focus on the estimates of willingness
to pay. The unweighted estimate for the combined sample is similar to that of KOZ
for the 1 km radius (Kuwayama et al. (2018), Table 9.) The differences between
the point estimates from the two estimators is stark, both within county and across
county.

Comparing the point estimates from the two estimators within each county, notice
that the IPW-POLS estimate for Hillsborough county decreased ten fold compared
to the unweighted estimator, and is consequently no longer statistically different
from zero. The IPW-POLS estimate for Pinellas county is more than four times
larger than the corresponding unweighted point estimate, and, despite the larger
standard error, the IPW-POLS estimate is significant at the 1% level.

The estimates from the two estimators have different implications for the relative
willingness to pay for water quality across the two counties, though both estimates
indicate heterogeneity in willingness to pay across county. The unweighted estimator
yields a point estimate for willingness to pay for local water quality in Hillsborough
county that is statistically significant and more than twice the statistically insignifi-
cant point estimate for Pinellas county, though the difference between the estimates
is statistically insignificant (p-value > 0.15). The IPW-POLS estimator, by con-
trast, yields a statistically significant point estimate in Pinellas county, which is
more than ten times as large as the statistically insignificant point estimate in Hills-
borough county, and the difference between the two estimates is significant at the
10% level (p-value =.007).

Note that for both estimators, and in each county, the era-exposure variables (pre
period, during, post,) whose slope coefficients are the combination of the age and
economic effect are significant. The coefficient on the during-exposure variable is
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negative as expected. The positive coefficients on the pre-exposure and post-exposure
variables indicate that the economic trends were stronger predictors of price in those
periods, which is not surprising given the booming nature of the housing market
during the pre period.

The two estimators yield substantially different predictions for the welfare gains from
improved water quality in the two counties. The average sale price in Hillsborough
county over this period was roughly $207,000 (in 2014 dollars.) The IPW-POLS
estimator predicts that a 10% increase in dissolved oxygen level corresponds to
roughly a $72.45 increase in average sale price in Hillsborough county, whereas
the unweighted estimator predicts that a 10% increase in dissolved oxygen level
corresponds to roughly a $662 increase in average sale price in Hillsborough county.
In Pinellas county the average sale price was approximately $243,000. For a 10%
increase in dissolved oxygen level, the unweighted estimator predicts an increase of
approximately $363 in average sale price, whereas the IPW-POLS estimator predicts
an increase of over $2,000. Poor et. al. ((Poor et al., 2007)) predict a two and a
half standard deviation change in dissolved inorganic nitrogen is worth $17,642.
The IPW-POLS estimator predicts that a two and a half standard deviation change
in dissolved oxygen is worth almost $500 in Hillsborough county, over $12,500 in
Pinellas county, and just under $3,000 in the combined sample.

5.5 Selection

Given the different predictions of the two estimators, the question is then which
estimate to accept. The reliability of one estimator or the other hinges on the mech-
anism governing the missing values. The unweighted estimator requires the missing
values to be ignorable, and will be inconsistent if observation of dissolved oxygen is
related to house price, conditional on dissolved oxygen level, age, time, and the fixed
effects. The IPW-POLS estimator proposed here requires that the missing values be
missing at random. The key component of the missing at random assumption is that
the missing values do not depend on the level of the variable which is missing, once
all other relevant observed variables have been included as controls. This allows the
probability of observation to depend on house price (and thus on dissolved oxygen
indirectly), but is violated if observation of dissolved oxygen is related to the level
of dissolved oxygen, conditional on house price, age, time, and other observable at-
tributes. Without more information about the implementation of monitoring policy
and the practice of water monitoring, the question is empirical.

A straightforward test of ignorable missingness is to include the indicator for ob-
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Table 5: First-difference estimation results: Unweighted and IPW-POLS

Dependent variable: ln(price)
Hillsborough Pinellas Combined

Unweighted estimator

ln(DO) 0.032∗∗ 0.015 0.017∗
(0.011) (0.010) (0.008)

IPW-POLS

ln(DO) 0.0035 0.083∗∗ 0.027†
(0.017) (0.024) (0.014)

N 7,721 8,411 17,905

Standard errors in parentheses
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

servation in the outcome equation. In a cross-section, this is not helpful as di = 1

for the sub sample used in estimation, so the observation indicator is exactly one
for every agent. With access to panel data, however, the indicator for observation
in a time period may be included in the outcome equation for other time periods
(Wooldridge (2010a)). If the missing values are ignorable, so observation is exoge-
nous, then the slope coefficient on any observation indicator would be zero. Table
(6) presents the results from including the indicator for the next sale ds+1, and, in a
separate regression, including the indicator for the sale from two periods ago ds−2 in
the reduced form equation (50). The significance of ds+1 in Hillsborough and both
indicators (included in separate regressions) in Pinellas is strong evidence against
the ignorable missingness assumption as it indicates that observation is related to
sale price, even after controlling for the other right hand side variables.

While there is no straightforward test of the missing at random assumption with
missing covariates, access to panel data allows some informal exploration of the
assumption. First, consider treating the data as a cross-section by adding the ob-
servation indicators for each property over time; that is, define ni =

∑
t dit, which

is a count variable taking values between zero and seven (the max number of sales
of a property.) Table (7) gives the results of estimating a count model for di as
a function of average sale price of the property and average dissolved oxygen level
for the property16. Control variables (not shown) in Hillsborough county are the

16Estimation is done as a Poisson model with exposure equal to the total number of sales
of the property as properties with more sales would be expected, ceteris paribus, to have more
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distance variables (distance to nearest water body, Tampa Bay, and a boat ramp,)
number of bedrooms, number of bathrooms, number of stories, and lot size. Con-
trol variables in Pinellas county are the distance variables, number of stories, and
living area17.) The results in table (7) show more evidence against the ignorable
missingness assumption as average price is a significant predictor, and also evidence
counter to the missing at random assumption, as average water quality is also a
significant predictor. Tables (8) and (9) further explore this approach by break-
ing the 17 years into four time periods; post, during, pre-first half, pre-second half,
and running the same count model separately for each period. The results suggest
that, in each county, there is one period in which average dissolved oxygen level
significantly affects number of observations of dissolved oxygen in that period. In
Hillsborough county, the the number of observations of dissolved oxygen by prop-
erty is more sensitive to the average sale price by property than the average level of
dissolved oxygen recorded for that property. In Pinellas county, average sale price
by property is a statistically significant predictor of the number of observations of
dissolved oxygen by property in two time periods, whereas average level of dissolved
oxygen is statistically significant in one time period.

Summing the observation indicator within property, over years reduces the 17 years
of data into one cross-section. As an alternate exploration, the data can be con-
sidered as a time series by summing the observations within year, over property.
Define nt =

∑
i dit, which is the total number of recordings of dissolved oxygen in

year t. This count variable nt is run as a function of the average sale price of all
houses sold in that year, the average dissolved oxygen level in that year, and the
CPI in that year is used as a control for economic circumstances. Table (10) gives
the estimation results, which again indicate evidence against ignorable missingness
as the coefficient on average price is significant, but show no evidence of violation
of the missing at random assumption as the coefficient on average dissolved oxygen
level is insignificant.

Taken all together the evidence against ignorable missingness is strong and thus the
unweighted estimates are suspect. Additionally, there is some evidence that supports
the missing at random assumption. The IPW-POLS estimates are accepted as the
more reliable estimates of the willingness to pay for local amenity water quality in
the Tampa Bay area counties. Given the numerous differences between the results
of the two estimators, this has implications for assessing the benefits to homeowners
of increased dissolved oxygen levels in local water amenities.

observations.
17The control variables vary by county because of the available data (see Table (4)
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Table 6: Testing ignorable missingness

Variable Coefficient (Std. Err.)
Hillsborough
dits−2 0.013 (0.011)
dits+1 0.078∗∗ (0.012)
Pinellas
dits−2 0.027∗∗ (0.009)
dits+1 0.034∗∗ (0.010)
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Table 7: Count model for cross-section di

Variable Coefficient (Std. Err.)
Hillsborough ave_ln(pricei) -0.154∗∗ (0.020)

ave_ln(DOi) -0.117∗∗ (0.019)

Pinellas ave_ln(pricei) 0.052∗∗ (0.012)
ave_ln(DOi) 0.085∗∗ (0.009)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Table 8: Count model for cross-section di by time period: Hillsborough

Variable Coefficient (Std. Err.)
1998-2002 ave_ln(pricet) 0.016 (0.011)

ave_ln(DOt) -0.007 (0.007)

2003-2006 ave_ln(pricet) -0.058∗∗ (0.010)
ave_ln(DOt) 0.014† (0.008)

2007-2010 ave_ln(pricet) -0.013 (0.015)
ave_ln(DOt) 0.006 (0.011)

2011-2014 ave_ln(pricet) 0.015 (0.028)
ave_ln(DOt) -0.053 (0.040)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 9: Count model for cross-section di by time periods: Pinellas

Variable Coefficient (Std. Err.)
1998-2002 ave_ln(pricet) 0.020∗∗ (0.007)

ave_ln(DOt) 0.004 (0.009)

2003-2006 ave_ln(pricet) -0.040∗∗ (0.009)
ave_ln(DOt) 0.053∗∗ (0.012)

2007-2010 ave_ln(pricet) 0.016 (0.019)
ave_ln(DOt) 0.001 (0.017)

2011-2014 ave_ln(pricet) -0.016 (0.029)
ave_ln(DOt) 0.015 (0.035)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Table 10: Count model for time series dt

Variable Coefficient (Std. Err.)
Hillsborough ave_ln(pricet) 1.184∗ (0.516)

ave_ln(DOt) -0.995 (0.708)
CPI 0.009∗ (0.004)

Pinellas ave_ln(pricet) 1.977∗∗ (0.706)
ave_ln(DOt) -2.063 (1.758)
CPI -0.011 (0.007)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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6 Generalizations

The intuition from the first differencing of the classical linear fixed effects model
extends naturally to other linear unobserved effects models, and generally to slope
parameter estimation of panel models. The covariates not subject to missing values
Wit are suppressed for ease of notation. This section gives a sketch for extending
the proposed method to more general panel models. The full details are the subject
of ongoing work.

6.1 Linear fixed effects model under sequential exogeneity

Consider the model as in (1) but under sequential exogeneity E[uit|Xi1, ..., Xit, ci] =

0. Let superscripts denote time histories us to time t, for example,X(
i t) = {Xi1, ..., Xit}

and XT
i = Xi. The lagged first differences are commonly used as instruments since

the sequential exogeneity assumption implies the moments E[(Xit−1 −Xit−2)(uit −
uit−1)] = 0 are valid for a random sample. A minimum of three time periods is needed
for identification. If the observation of theXit conditionally depends on the outcomes
yi, and perhaps some Vit as in the previous sections, but not on the value of the Xit

themselves; i.e. E[dit|yi,Xi,Vi] = E[dit|yi,Vi] then the missing at random assump-
tion holds. The methods of this paper can then be applied to recover consistent
slope parameter estimates. The necessary selection assumption, akin to assump-
tions (1) and (2), is that E[ditdit−1dit−2|yi,Xi,Vi] = Gt,t−1,t−2(yi,Vi; δt,t−1,t−2,0) for
a known functional form Gt,t−1,t−2. The selection mechanism is now a trivariate
binary outcome model. The re-weighted, fully observed valid moments are:

E[
ditdit−1dit−2

Gt,t−1,t−2(yi,Vi; δt,t−1,t−2,0)
∆Xit−1∆uit] = 0 t = 3, ..., T (53)

These moments can be used for estimation as in the IPW-POLS or IPW-GMM
techniques described for the linear fixed effects model under strict exogeneity.

6.2 Dynamic panel data model

Consider a dynamic linear unobserved effects model. For example, consider a model
with a single lag of the dependent variable:

41



yit = γyit−1 +Xitβ + ci + uit (54)

E[uit|y(t−1)i , X
(t)
i ] = 0 (55)

where ysi = (yi1, yi2, ..., yis).

First-differencing again removes the individual effect ci, but ∆yit = yit − yit−1 is
not orthogonal to ∆uit = uit − uit−1. Anderson-Hsaio suggest using past levels of y
as instruments (Anderson and Hsiao (1982)). Using lagged differences of y has also
been suggested as lagged level are potentially poor instruments for current differences
(Arellano and Bover (1995)). Arellano-Bond suggest using a system of instruments
that grows with t as more lags are available (Arellano and Bond (1991)).

First consider the case of missing values in the Xit. The desired population moments
can be written as:

E[f(y
(t−2)
i )∆uit] = 0 (56)

E[∆Xit−1∆uit] = 0 t = 3, ..., T (57)

where f(·) is a possibly-vector valued function of the time history of the yis up to
period t − 2; for example, levels of yis for s ≤ t − 2, or first-differences yis − yis−1
for s ≤ t − 2. These moments can be shown to hold be iterating the expectation
conditional on (X

(t−1)
i , y

(t−2)
i ).

If the observation of Xit depends on the yit, then selection is non-ignorable and must
be addressed to recover consistent estimates of the slope parameters. If the obser-
vation of the Xit depends on the yit, and potentially some additional fully observed
variables V t

i , but does not conditionally depend on the level of the Xit, then the
values are missing at random in sense of this paper di|Xi,yi,Vi ∼ di|yi,Vi. The
necessary parametric assumption is that the joint probabilities E[ditdit−1|yi,Vi] =

Gt,t−1(yi,Vi; δt,t−1,0) and E[ditdit−1dit−2|yi,Vi] = Gt,t−1,t−2(yi,Vi; δt,t−1,t−2,0) for known
functional forms Gt,t−1 and Gt,t−1,t−2, and unknown parameters δ0.

The valid re-weighted fully observed moments can be written as:

E[
ditdit−1

Gt,t−1(yi,Vi; δt,t−1)
f(y

(t−2)
i )∆uit] = 0 (58)

E[
ditdit−1dt−2

Gt,t−1,t−2(yi,Vi; δt,t−1,t−2)
∆Xit−1∆uit] = 0 t = 3, ..., T (59)

The case of missing values in the yit can also be handled with the IPW estimators
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of this paper. The necessary assumption on selection is that observation of the yit
depends on theXit, and perhaps some Vit, but not conditionally on the yit themselves
so di|yi,Xi,Vi ∼ di|Xi,Vi. The extent of time periods for which it is necessary to
model the joint probability of observation depends on the desired instruments. Using
as few time periods as possible, while leaving some efficiency on the table (Holtz-
Eakin et al. (1988),Arellano and Bond (1991)), has advantages in terms of data
usage when only the complete cases are to be used, as previously discussed for the
classical linear fixed effects model. Consider first-differenced instruments that use
as few time periods as possible:

E[∆yit−2∆uit] = 0 t = 4, ..., T (60)

E[∆Xit−1∆uit] = 0 t = 3, ..., T (61)

where it is assumed T ≥ 4. The fully observed moments are:

E[ditdit−1dit−2dit−3∆yit−2∆uit] t = 4, ..., T (62)

E[ditdit−1∆Xit−1∆uit] t = 2, ...T (63)

With the parametric assumptionE[ditdit−1dit−2dit−3|Xi,Vi] = Gt,t−1,t−2,t−3(Xi,Vi; δt,t−1,t−2,t−3,0),
E[ditdit−1|Xi,Vi] = Gt,t−1(Xi,Vi; δt,t−1,0) for some known forms Gt,t−1,t−2,t−3 and
Gt,t−1, then the re-weighted population moments:

E[
ditdit−1dit−2dit−3

Gt,t−1,t−2,t−3(yi,Vi; δt,t−1,t−2,t−3)
∆yit−2∆uit] = 0 t = 4, ..., T (64)

E[
ditdit−1

Gt,t−1(yi,Vi; δt,t−1)
∆Xit−1∆uit] = 0 t = 2, ..., T (65)

are valid.

Estimation similar in style to the typical GMM estimation of these models (Holtz-
Eakin et al. (1988), Arellano and Bond (1991)) then follows along the same steps as
in the linear fixed effects IPW-GMM case.

6.3 General form

While the motivation for the estimators in this paper is linear fixed effects models,
neither linearity nor the presence of unobserved effects is necessary for the general
approach. The general approach can be specified in terms of moment conditions
which are functions of variables subject to missing valuesXit, fully observed variables
Yit, and unknown parameters of interest θ0 in multiple time periods. Let dit be an
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indicator taking value 1 when Xit is fully observed. This encompasses the linear
unobserved effects models presented above, as well as non-linear models without
fixed effects, and the few cases of non-linear fixed effects models which can be written
in terms of moments which are functions of the observable data and the unknown
parameters, such as the conditional logit estimator (Chamberlain (1979).)

The object of interest is a finite-dimensional parameter θ0, which is the unique
solution to a vector of Lmoments conditions. The moment conditions can be divided
in sub-vectors based on the time periods of the Xit involved. Each sub-vector, m,
of size |m|, involves a subset Sm of the time periods {1, ..., T} of the Xit, for a total
of M sub-vectors. For example, the linear fixed effect model under strict exogeneity
has θ0 = β0, a K vector, L = K(T −1), M = (T −1), |m| = K, and Sm = {t, t−1}.
That is, the K(T −1) moment conditions can be split into T −1 groups. Each group
is a K vector that involves two time periods, {t, t− 1}.

Consider the dynamic linear unobserved effects model above, with missing covariate
valuesXit. There are moment conditions, where the τ will depend on how many time
periods from yt−2i are used. For example, if f(y

(t−2)
i ) = yit−2 − yit−3, then |f(·)| = 1

and τ = T −4. The K(T −2)+ |f(·)|τ can be separated into (T −2)+ τ sub-vectors
based on the number of time periods of Xit involved. Each sub-vector from the
(T − 2) group is a K vector involving three time periods, Sm = {t, t − 1, t − 2}.
Each sub-vector from the (T − 1) group is a scalar involving two time periods,
Sm = {t, t− 1} of the Xit.

For most non-linear models, such as a pooled probit model or Chamberlain’s con-
ditional logit estimator (Chamberlain (1979)), the moment conditions involve the
covariates from all time periods. In that case, m = 1, and Sm = {1, ..., T}.

In general, the moments are written as:

E[Ψm(XiSm ;YiSm ; θ0)] = 0 m = 1, ...,M (66)

where Ψ is a |m| × 1 vector-valued function, and the Sm subscript denotes the
collection of t in Sm; e.g. XiSm = {Xit}t∈Sm . For example, in the linear fixed effects
model, Ψm = (Xit −Xit−1)(yit − yit−1 − (Xit −Xit−1)β0) for each m.

It is suspected, by the researcher, that the moments for the observable popula-
tion:

E[DSm
i Ψm(XiSm ;YiSm ; θ)] m = 1, ...,M (67)
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may not be valid at the true θ0, where DSm
i =

∏
t∈Sm

dit.

If the missing at random assumption, di|Xi,Yi,Vi = di|Yi,Vi holds, and the para-
metric assumption E[diSm|Yi,Vi] = GSm(Yi,Vi; δSm0) is satisfied for each m, where
the Vit are as discussed for the classical linear fixed effects model, then the re-
weighted moments for the observable population:

E[
DSm
i

GSm(Yi,Vi; δSm0)
Ψm(XiSm ;YiS; θ0)] = 0 m = 1, ...,M (68)

are valid. Two-step estimation of the parameter θ0 can proceed as described in this
paper.

7 Conclusion

This paper analyzes linear unobserved effects models subject to missing values in the
covariates. A missing at random assumption, in which the probability of observation
does not directly depend on the variables subject to missing values, is adopted. The
combination of missing at random covariates in a panel model with fixed effects
is new in the literature. Given the ubiquity of missing data and the popularity of
linear fixed effects models in applied research, the results in this paper are practically
important.

Two inverse probability weighted estimators are proposed, their asymptotic theory
is derived, and some finite sample performance is presented. The first estimator is
a pooled estimator which is computationally simple and familiar from the textbook
treatment of fixed effects models. The second estimator is an over-identified GMM
estimator which enjoys better asymptotic efficiency. The simulations confirm that
the commonly used unweighted estimator performs poorly when selection depends
on the outcome variable. The simulations suggest that the efficiency gains from the
optimally-weighted GMM estimator may be small.

An environmental application is explored, in which the proposed pooled IPW esti-
mator is applied to a hedonic house price model to measure the willingness to pay
for water quality in local water features. Empirical evidence suggests that the ig-
norable missingness assumption is violated, and the missing at random assumption
may hold. Estimation based on the proposed pooled IPW estimator gives signifi-
cantly different results from the unweighted estimator used in the literature, thus
accounting for the selection may have important policy implications.
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8 Appendix

8.1 Empirical Application Appendix

8.1.1 Selection Model

The results from estimation of the bivariate probit model based on (51) are presented
below. A full set of year indicators and zip code indicators are included in the model,
and omitted in the results. When previous price is not available (for example in the
first sale), it is omitted from the specification, as in table (13). For example, for
the joint observation of dissolved oxygen in sale 1 and sale 2, observation for sale
2 is allowed to depend on the price at sale 2 and the price at sale 1 (as well as the
average price if there are more than 2 sales), and observation for sale 1 depends on
the price at sale 1 and the average price.

While the slope coefficients from a bivariate probit model are not particularly illus-
trative, there are a few things of interest in the full estimation results. Note that, for
each county, the correlation of observation across sales is statistically different from
zero (note that "athrho," which is a transformation of the correlation, is significant
at the one percent level), and (not shown) the p-value for a Wald test of the null
hypothesis of no correlation across time, is zero to four decimal places. Accounting
for the joint nature of observation to predict the joint probability is important, as
using the product of the probabilities in each time period, for example, would only
be valid if the correlation were zero.
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Table 12: Bivariate probit estimation: Hillsborough County

Variable Coefficient (Std. Err.)
Equation 1 : dit

ln(priceit) 0.136 (0.083)
ln(priceit−1) -0.005 (0.075)
property_age 0.006∗∗ (0.001)
ave_ln(pricei) 0.125 (0.147)
dist_boatramp 0.000∗∗ (0.000)
dist_water 0.000∗ (0.000)
dist_TB 0.000 (0.000)
beds -0.018 (0.028)
baths -0.024 (0.041)
stories -0.134∗∗ (0.051)
units 0.208 (0.169)

Equation 2 : dt−1
ln(priceit−1) 0.102 (0.096)
ln(priceit−2) -0.176∗ (0.083)
(property_age)t−1 0.005∗∗ (0.002)
ave_ln(pricei) 0.276∗ (0.133)
dist_boatramp 0.000∗∗ (0.000)
dist_water 0.000∗ (0.000)
dist_TB 0.000∗ (0.000)
beds -0.066∗ (0.029)
baths 0.000 (0.042)
stories -0.065 (0.052)
units 0.350† (0.191)

Equation 3 : /
athrho 0.760∗∗ (0.026)

N 7938
Log-likelihood -7479.713
χ2
(138) 3534.431

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 13: Bivariate probit estimation: Hillsborough County, first two sales

Variable Coefficient (Std. Err.)
Equation 1 : dit

ln(priceit) 0.169∗ (0.070)
ln(priceit−1) -0.111 (0.070)
property_aget 0.005∗∗ (0.001)
ave_ln(pricei) 0.155 (0.125)
dist_boatramp 0.000∗∗ (0.000)
dist_water 0.000∗∗ (0.000)
dist_TB 0.000∗∗ (0.000)
beds -0.077∗∗ (0.017)
baths -0.011 (0.024)
stories 0.010 (0.030)
units 0.226∗ (0.099)

Equation 2 : dit−1
ln(priceit−1) 0.060 (0.060)
property_aget−1 0.000 (0.001)
ave_ln(pricei) -0.065 (0.058)
dist_boatramp 0.000∗∗ (0.000)
dist_water 0.000∗∗ (0.000)
dist_TB 0.000∗∗ (0.000)
beds -0.051∗∗ (0.018)
baths 0.034 (0.026)
stories -0.036 (0.033)
units 0.089 (0.097)

Equation 3 : /
athrho 0.616∗∗ (0.016)

N 21332
Log-likelihood -19578.245
χ2
(143) 9354.155

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 14: Bivariate probit estimation: Pinellas County

Variable Coefficient (Std. Err.)
Equation 1 : dit

ln(priceit) -0.240∗∗ (0.084)
ln(priceit−1) -0.041 (0.084)
property_age 0.007∗∗ (0.001)
ave_ln(pricei) 0.217 (0.152)
dist_boatramp 0.000 (0.000)
dist_water 0.000 (0.000)
dist_TB 0.000∗∗ (0.000)
stories -0.008 (0.049)
living_units -0.311 (0.752)
house_size 0.000 (0.000)

Equation 2 : dit−1
ln(priceit−1) -0.135 (0.091)
ln(priceit−2) -0.033 (0.071)
property_aget−1 0.001 (0.001)
ave_ln(pricei) -0.042 (0.122)
dist_boatramp 0.000∗∗ (0.000)
dist_water 0.000 (0.000)
dist_TB 0.000∗∗ (0.000)
stories 0.037 (0.047)
living_units -0.472 (0.769)
house_size 0.000 (0.000)

Equation 3 : /
athrho 0.590∗∗ (0.022)

N 8971
Log-likelihood -9607.584
χ2
(138) 3044.555

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 15: Bivariate probit estimation: Manatee County

Variable Coefficient (Std. Err.)
Equation 1 : do_obs

lnprice2014 0.151∗∗ (0.048)
avelnprice 0.261∗∗ (0.057)
property_age 0.007∗∗ (0.001)
dist_boatramp 0.000∗∗ (0.000)
dist_wb 0.000∗∗ (0.000)
dist_tb 0.000∗∗ (0.000)
acreage -0.117∗∗ (0.034)
square_footage_gross 0.000† (0.000)

Equation 2 : do_obs_prev
lnprice_prev 0.025 (0.047)
property_age_prev 0.007∗∗ (0.001)
avelnprice 0.394∗∗ (0.060)
dist_boatramp 0.000∗∗ (0.000)
dist_wb 0.000∗∗ (0.000)
dist_tb 0.000∗∗ (0.000)
acreage -0.123∗∗ (0.033)
square_footage_gross 0.000 (0.000)

Equation 3 : /
athrho 1.222∗∗ (0.033)

N 5351
Log-likelihood -5755.448
χ2
(32) 739.948

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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8.2 Technical Proofs

Lemma 1. (Identification) Under assumptions (1), (3), (4), (5), and (6),

E[
dtdt−1

pt,t−1(zt, δt0)
∆L′t∆ut] = 0 (69)

Proof. Proof of Theorem 1.

Let Lit = (∆Xit ∆Wit)

From the derivation of the OLS estimator and (1) we have:

(
∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′itLit)(β̂POLS − β0) = (

∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′it∆uit)

(70)

δ̂t is an MLE estimator so, by assumpiton (2), δ̂t → δt0 in probability. By the
previous lemma, β̂ → β0 in probability, thus (β̂POLS − β0) = op(1), and

(
∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′itLit) = (

∑
i

∑
t=2

ditdit−1
Gt(Zit, Zit−1; δt0)

L′itLit) + op(1) (71)

Then:

(
∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′itLit)(β̂POLS − β0) = (

∑
i

∑
t=2

ditdit−1
Gt(Zit, Zit−1; δt0)

L′itLit)(β̂POLS − β0) + op(1)

(72)

since op(1)op(1) = op(1).

Thus:

β̂POLS − β0 = (
∑
i

∑
t=2

ditdit−1
Gt(Zit, Zit−1; δt0)

L′itLit)
−1(
∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′it∆uit) + op(1)

(73)

Let

A0 = E(
∑
t=2

ditdit−1
Gt(Zit, Zit−1; δt0)

L′itLit) = E[
∑
t=2

L′itLit] (74)

where the second equality follows from assumption (2). By the uniform weak law of
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large numbers,

(
1

N

∑
i

∑
t=2

ditdit−1
Gt(Zit, Zit−1; δt0)

L′itLit) = A0 + op(1) (75)

Thus,

β̂POLS − β0 = A−10 (
1

N

∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′it∆uit) + op(1) (76)

since the term multiplying A−10 is op(1), and we have:

√
N(β̂POLS − β0) = A−10 (

1√
N

∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′it∆uit) + op(1) (77)

A mean-value expansion around δt0 gives:

1√
N

∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′it∆uit =

1√
N

∑
i

∑
t=2

ditdit−1
Gt(Zit, Zit−1; δt0)

L′it∆uit (78)

− E[
∑
t=2

ditdit−1
∇δGt(Zit, Zit−1; δt0)

Gt(Zit, Zit−1; δt0)2
L′it∆uit]

√
N(δ̂t − δt0) + op(1)

(79)

Let the K by P matrix,

C0 = E[
∑
t=2

ditdit−1
∇δGt(Zit, Zit−1; δt0)

Gt(Zit, Zit−1; δt0)2
L′it∆uit] (80)

To this point the derivation mirrors the standard derivation for a two-step IPW
estimator. The complication arises in the function Gt(·) and its derivatives. Let
sit(δ0) be the P by 1 score vector of the bivariate binary response log-likelihood.
From standard MLE theory,

√
N(δ̂t − δt0) = (E[sits

′
it])
−1[

1√
N

∑
i

sit(δt0)] + op(1) (81)

where the P by P matrix E[sits
′
it] is the negative of the Hessian by the information
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matrix equality. Substituting back in,

1√
N

∑
i

∑
t=2

ditdit−1

Gt(Zit, Zit−1; δ̂t)
L′it∆uit (82)

=
1√
N

∑
i

∑
t=2

ditdit−1
Gt(Zit, Zit−1; δt0)

L′it∆uit − C0[E[sits
′
it]]
−1[

1√
N

∑
i

sit(δt0)] + op(1)

(83)

=
1√
N

∑
i

[
∑
t=2

ditdit−1
Gt(Zit, Zit−1; δt0)

L′it∆uit − C0[E[sits
′
it]]
−1sit(δt0)] + op(1)

(84)

:=
1√
N

∑
i

[
∑
t=2

rit] + op(1) (85)

where the K by P vector rit =
ditdit−1

Gt(Zit, Zit−1; δt0)
∆L′it∆uit − C0[E[sits

′
it]]
−1sit(δt0).

Finally,

√
N(β̂POLS − β0) = A−10

1√
N

∑
i

[
∑
t=2

rit] + op(1) (86)

and

avar(
√
N(β̂POLS − β0)) = A−10 B0A

−1
0 (87)

where B0 = E[(
∑

t=2 rit)(
∑

t=2 r
′
it)].

Recall rit =
ditdit−1

Gt(Zit, Zit−1; δt0)
∆L′it∆uit − Ct0[E[sits

′
it]]
−1sit(δt0).

Proof of Theorem 4:

Proof. Linearity in β of the moment conditions means that the solution to (12) has
a closed form, and,

β̂GMM = β0 + (Â00Σ̂1Â00)
−1Â00Σ̂1M̄ (88)

Consistency then follows since δ̂t → p and the regularity conditions ensure M̄ →
E[M ] = 0. The asymptotic distribution follows similarly from the previous proof by
expanding M̄ around δ0 = (δ′20, ..., δ

′
T0).
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