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Abstract 

We propose a more powerful version of the test of Diebold and Mariano (1995) and West (1996)  

for comparing least squares predictors based on non-nested models when the tested parameter is 

the expected difference between the squared prediction errors. The proposed test improves 

asymptotic power using an estimator with a smaller asymptotic variance than that used by the 

standard version of the test.  The estimator used by the standard version of the test depends on 

the individual predictions and realizations only through the observations on the prediction errors. 

The tested parameter, however, can also be expressed in terms of moments of the predictors and 

predicted variable, some of which cannot be identified separately by the observations on the 

prediction errors alone. Parameterizing these moments in a GMM framework and drawing on 

theory from West (1996), we devise more powerful versions of the test by exploiting a restriction 

routinely maintained under the null hypothesis by West (1996, Assumption 2b) and later studies. 

The maintained restriction requires only finite second-order moments and covariance stationarity 

to ensure that the population linear projection exists.   Simulation experiments show that the 

potential gains in power can be substantial.    

 

Keywords: prediction, hypothesis tests. 
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1. Introduction 
 
 The test of out- of- sample predictive accuracy proposed by Diebold and Mariano (1995) 

and West (1996) is widely regarded as an important test for comparing two predictors.1 

Applications include Mark (1995), Swanson and White (1997), Corradi, Swanson and Olivetti 

(2001), Hong and Lee (2003), Hanson and Lunde (2005) and Andreou, Ghysels and  Kourtellos 

(2013).  Formal asymptotic theory was first presented in West (1996), and further developed by 

Clark and McCracken (2001, 2014), McCracken (2007) and others.  The present paper proposes 

a more powerful version of the test obtained by using a more efficient estimator of the tested 

parameter than that used in the literature. The tested parameter is the expected difference 

between functions of the prediction errors.  In the standard version of the test, it is estimated by 

the sample mean of the difference and, consequently, the individual observations on the 

predictions and realizations generally enter the test statistic only through the prediction errors. 

The tested parameter, however, can also be expressed in terms of moments of the predictors and 

predicted variable, some of which cannot be identified separately by the observations on the 

prediction errors alone.2  This raises the possibility of using the individual observations on the 

predictors and predicted variable to construct a more efficient estimator of the tested parameter3 

and, in turn, tests with greater asymptotic power.  

1 In contrast to Diebold and Mariano (1995), West (1996) explicitly accounts for parameter estimation. 
 
2 Diebold and Mariano (1995, p.254) note that the test is not limited to testing functions of the prediction error but 
can be applied to functions in which the realization and prediction enter separately.  The same argument of course 
applies if moments of the predicted variable and the predictors cannot be identified by the observations on such 
functions.  
3 The potential inefficiency from replacing a sample of observations (here the individual observations on the 
predictors and predicted variable) by functions of the observations (here the prediction errors) can be quantified in 
terms of information matrices. Specifically, if g(X) is a measurable function of a random variable X with a density 
that is a function of a vector θ  then it can be shown that difference between the information matrices with respect to 
θ , ( ) ,X g XJ J− is non-negative definite (Rao 1973, pp.330-331). 
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 We pursue this for the commonly tested hypothesis of equal mean squared errors in the 

case of least squares predictors.  A new version of the test is proposed based on a more efficient 

estimator of the expected difference between the squared prediction errors.   Parameterizing the 

moments of the predictors in a GMM framework, we derive a more efficient estimator by 

incorporating a restriction that is part of weak regularity conditions routinely maintained under 

the null hypothesis by West (1996, Assumption 2b) and later studies. In the context of linear 

least squares prediction, the maintained restriction requires only finite second-order moments 

and covariance stationarity.  While just standard restrictions on the data-generating process, this 

requirement might be considered more restrictive than the setup in Diebold and Mariano (1995) 

in which the underlying predictors are completely unspecified. In applications that involve 

evaluating predictions from surveys, for example, it is clearly desirable to leave the underlying 

predictors unspecified and impose restrictions directly on the prediction errors.   On the other 

hand, the proposed test should be useful given the large number studies that evaluate predictions 

under the conditions of the present paper.  Examples of studies that compare the mean squared 

errors of least squares predictors under covariance stationarity include Mark (1995), Clark and 

McCracken (2006), Stock and Watson (2002, 2007) and others.  

 The proposed test and the GMM estimator on which it is based are described in Section 

2.  Section 3 reports evidence from simulation experiments on the efficiency of the estimator and 

size and power of the tests. Consistent with the asymptotic efficiency of the GMM estimator, the 

simulations confirm substantial power gains for the proposed test over the standard version of the 

Diebold-Mariano (DM) test.   Proposition 1 in Section 2 formally establishes asymptotic 

normality and relative efficiency of the GMM estimator over the estimator on which the standard 

DM test is based. Proof of Proposition 1 follows from an application of West (1996, Theorem 
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4.1). Devising a DM-type test based on the GMM estimator is straightforward for non-nested 

regression models.4 However, as is the case for the standard DM test, certain technical problems 

arise when applied to nested and overlapping models. For the standard version of the DM test, 

these problems have been studied in a series of papers by Clark and McCracken.5 For the new 

GMM version proposed here, the problems take the form of duplicated moment conditions and 

singular covariance matrices. These problems are briefly discussed in section 2.3 and left as 

directions for future research. It is well-known from GMM theory that increasing the number of 

moments generally improves asymptotic efficiency. Under the assumption of covariance 

stationarity, the population linear projection error is uncorrelated with any linear combination of 

the predictor variables.   In section 2.4 we exploit this to expand the moment functions used to 

define the GMM estimator in section 2.2.    For the simulation experiments in Section 3, tests 

based on the expanded moment functions are found to have greater power for both small and 

large samples but worse size in small samples.  In section 4 we illustrate the test with a 

forecasting application to monthly US industrial production.  Section 5 concludes.  

2. GMM Version of DM Test  

2.1 Null Hypothesis, Predictors and Restrictions 

 Given data available at time t, we consider two competing predictors 1,ˆ ty t+  and 2,ˆ ty t+  of a 

variable ty t+  at time t t+  with prediction errors, 1, 1,ˆt t te y yt t t+ + += − and 2, 2,ˆ .t t te y yt t t+ + += −  The 

DM test can be used to test the null hypothesis of equal predictive accuracy for a wide range of 

loss functions and predictors.  An important special case is equal mean squared errors: 

 

4  Recent studies that use DM tests to compare non-nested models include Naes, R.,  J.A. Skjeltorp and B.A. 
Ødegaard (2011) and  Andreou,  Ghysels and Kourtellos (2013).   
5 See, for example, Clark and McCracken (2001, 2014) and McCracken (2007).  
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2 2
1, 2,: ( ) 0o t tH E e et tθ + +≡ − =                                              (1)                  

 

We assume that (1) is to be tested using P of the τ -step ahead predictions. The predictors are of 

the form , , ,
ˆˆ j t j t j ty Xt t β+ +=    (j=1,2), where ,0 ,1 ,2

ˆ ˆ ˆ ˆ( , , )jt jt jt jtβ β β β ′= is the  least squares  estimator 

computed from the regression of ty  on , ,(1, , )j t j t tX x x= using a minimum of R in-sample  

observations.  Following West (1996), we assume a recursive forecasting scheme which also is 

commonly used in practice.6  Therefore, ( ) 1

, , ,1 1
ˆ t t

jt j s j s j s ss s
X X X yβ

−

= =
′ ′= ∑ ∑  for t=R,…,R+P-1, 

and j=1 and 2. Given the P out-of-sample predictions, the standard DM test of (1) is based on the 

following estimator: 

 
1

1, 2, 1, 2,
1ˆ ( )( )

P R

e t t t t
t R

e e e e
P t t t tθ

+ −

+ + + +
=

= − +∑                                                                                             (2) 

 
where the subscript “e” emphasizes that (2) is computed from the observations on the prediction 

errors.                 

 Since θ  is a function of the moments of 1,ˆ ,ty t+ 2,ˆ ty t+  and ,ty t+  the individual 

observations on 1,ˆ ,ty t+ 2,ˆ ty t+  and ty t+  can be used to devise an asymptotically more efficient 

estimator than (2). The basis for our approach is the following assumption: 

 

Assumption 1 

For j=1,2:  the sequence  ,{  y }j t tX  is covariance-stationary, ergodic for second moments,  and 

, ,( )j t j tE X X′  is nonsingular. 

 

6 This assumption accommodates our application of West (1996, Theorem 4.1) in section 2.3.  West (1996) assumes 
a recursive forecasting scheme but considers extensions to fixed and rolling schemes in an unpublished working 
paper, West (1994). 
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Assumption 1 imposes weak regularity conditions that are routinely maintained under the null 

hypothesis in the literature.  See, for example, West (1996, pp.1070-1071) and Clark and 

McCracken (2014, p.418).  It ensures that the moments  , ,( )j t j tE X X′  and ,( )j t tE X y′ are finite, 

1
, ,( )j t j tE X X −′  exists and, therefore, the linear projection 1

, , ,[ ( )] ( )j j t j t j t tE X X E X yβ −′ ′≡  exists for 

j=1,2.  Under Assumption 1, a law of large numbers can also be applied to show that ˆ
jtβ   

converges in probability (as )t →∞  to .jβ   A well-known property of the linear projection 

coefficient is that , ,[ ( )] 0,j t t j t jE X y X β′ − =  which is a special case of Assumption 2b maintained 

in West (1996).7  This, in turn, implies the following property which is used to restrict θ  below:  

 

, ,[ ( )] 0j t j t j t jE X y Xβ β− =                                                              (3)  

 

 The predictors and prediction errors obviously depend on the estimators, ˆ .jtβ   To reflect 

this, we let , 1
ˆ ˆ ˆ( ,..., )j jR j R Pβ β β + −= and 1 2

ˆ ˆ ˆ( , )β β β=  and rewrite êθ  and ,θ  respectively, as ˆ ˆ( )eθ β

and ˆ( ).θ β   As emphasized by Clark and McCracken (2013), hypotheses like (1) can be 

interpreted   in terms of finite-sample or population-level predictive accuracy.  The former 

concerns ˆ( )θ β  for finite R, whereas the latter concerns ˆ( )θ β  with β̂  replaced by 1 2( , )β β β= , 

7 This is easily verified by substituting for jβ into the expression. The quantity ,j t jX β is known as the linear 

projection of ty on ,j tX  and is formally defined as the best linear predictor of ty given ,j tX   (Hamilton 1994, 
p.74). Consistent estimation of linear projection coefficients require much weaker assumptions than the coefficients 
of structural or causal regression models which require assumptions about the functional forms of conditional means 
and other quantities.   The linear projection exists for any set of random variables with finite variances. Further 
discussions can be found in Hamilton (1994, Chapter 4), Wooldridge (2010, Chapter 2) and Hansen (2016, Chapter 
2). Applications of linear projections include Chamberlain (1982).  
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giving ( ).θ β   Following most previous work, we focus on population-level predictive accuracy 

and thus interpret (1) as " ( ) 0."θ β = 8   

     Assumption 1 provides a basis for efficiency gains over ˆ ˆ( )eθ β  through restricted GMM 

estimation of the tested parameter ( ).θ β   Substituting 1, 2, 2, 1,ˆ ˆt t t te e y yt t t t+ + + +− = −  and 

1, 2, 2, 1,ˆ ˆt t t t t te e y y y yt t t t t t+ + + + + ++ = − + −  into ˆ ˆ( )eθ β and ( )θ β  yields: 

1 1
1 1

2, 2 2, 2 1, 1 1, 1

1 1
1 1

2, 2 1, 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ                                     

P R P R

e t t t t t t t t t t
t R t R

P R P R

t t t t t t
t R t R

P X y X P X y X

P X y P X y

t t t t t t

t t t t

θ β β β β β

β β

+ − + −
− −

+ + + + + +
= =

+ − + −
− −

+ + + +
= =

= − − −

+ −

∑ ∑

∑ ∑
     (4) 

2, 2 2, 2 1, 1 1, 1

2, 2 1 1, 1

( ) [ ( )] [ ( )]
                                              [ ] [ ]

t t t t t t

t t t t

E X y X E X y X
E X y E X y

t t t t t t

t t t

θ β β β β β

β β
+ + + + + +

+ + + +

= − − −

+ −
                                        (5)                             

Equations (4) and (5) reveal that ˆ ˆ( )eθ β is equivalent to an estimator that replaces the population 

moments in (5) with the corresponding sample moments.  As such (4) is inefficient because it 

ignores restrictions on (5) implied by Assumption 1, namely (3) which restricts the first two 

terms on the right hand side of (5) to be zero.9  A more efficient restricted estimator of ( )θ β that 

incorporates (3) is developed in the next subsection.   

 The tests developed in the next sections maintain (3) under the null hypothesis of equal 

mean squared errors: ( ) 0.θ β =  It is important to emphasis that the only restriction for (3) to 

hold is Assumption 1. Hence, the null considered in the present paper is the same as that 

considered in other studies that maintain finite second-order moments and covariance stationarity 

8Exceptions include Giacomini and White (2006) and Clark and McCraken (2015).  
9 The sample counterparts of (3) clearly hold for the R in-sample observations since the least squares predictors, 1ˆ ty  

and 2ˆ ,ty are computed with these observations. However, the sample counterparts of (3) do not generally hold for 

the P observations used to compute ˆ ˆ( )eθ β and, thus, are not incorporated into the estimation of ( ).θ β    
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under the null. It should also be noted that we do not make any assumptions about the statistical 

properties of the predictors in finite samples and, therefore, do not require the predictors to be 

unbiased or efficient.  Such properties would entail imposing assumptions much more restrictive 

than Assumption 1, assumptions that the present approach avoids. Unbiasedness, for example, 

which requires that ,
ˆ( ) 0t j t jtE y X β− =  holds for finite t, would entail adding the assumption that 

,j t jX β is the conditional mean of ty  given , .j tX   In contrast, Assumption 1 and, consequently, 

(3) only require covariance stationarity and the existence of certain moments.10  Assumption 1 

does not require that either predictor is based a correctly specified model of the conditional mean 

or any other statistical functional.  

 2.2 Restricted GMM Estimation of ( )θ β  

  We next devise a more efficient restricted estimator of ( )θ β  using a GMM framework in 

which the moments in (5) are estimated jointly subject to (3). Note that (5) and (3) can be written 

as:  

 2 2
2, 2 2, 2 1, 1 1, 1( ) 2 ( ) ( ) 2 ( ) ( )   t t t t t tE X y E X E X y E Xt t t t t tθ β β β β β+ + + + + += − − +                     (6) 

2
, ,( ) ([ ] )                     1, 2j t j t j t jE X y E X jt t tβ β+ + += =                                                   (7) 

Let  µ  denote the vector of the moments in (6):  

 2 2
1, 1 2, 2 1, 1 2, 2[ ( ), ( ), ([ ] ), ([ ] )]              t t t t t tE y X E y X E X E Xt t t t t tµ β β β β+ + + + + + ′=  

 

10 The weaker assumptions imposed on the predictors can also be seen as an advantage of focusing on population-
level predictive accuracy as opposed to finite-sample predictive accuracy. Developing an analogous approach for the 

latter would require that (3) holds with β replaced by β̂  which, in turn, would require that jt jX β is the 
conditional mean.  

9 
 

                                                           



In what follows each element of µ  is treated as a parameter to be estimated.  The orthogonality 

condition for the GMM estimator of µ  is [ ( , )] 0,tE g t µ β+ =  where ( , ) ( )t tg mt tm β β m+ += −  and 

2 2
1, 1 2, 2 1, 1 2, 2( ) [ , ,  ( ) ,  ( ) ]t t t t t t tm y X y X X Xt t t t t t tβ β β β β+ + + + + + + ′=  

The feasible sample analog of [ ( , )]tE g t µ β+  is thus 11ˆ ˆ( , ) ( , ),R P
t tt R

g P g tµ β µ β+ −−
+=

= ∑ where

1 2
ˆ ˆ ˆ( , ).t t tβ β β=   The two restrictions in (7) can be expressed as 0,Qµ =  where 

1 0 1 0
 

0 1 0 1
Q

− 
=  − 

 

The restricted GMM estimator of µ , ˆ( ),µ β   solves the problem:   

    ˆ ˆˆ ( , ) ( , )min g Wgm β m β
m

′  subject to 0Qµ =                               (8) 

where Ŵ is a weighting matrix.  The solution to (8) is: 

*ˆ ˆ ˆ( ) ( )Aµ β µ β=                                                                          (9) 

where 1 1 1ˆ ˆ ˆ[ ]A I W Q QW Q Q− − −′ ′= −  and
1

* 1ˆ ˆ( ) ( )
R P

t t
t R

P m tm β β
+ −

−
+

=

= ∑ is the unrestricted GMM 

estimator of .µ  The restricted GMM estimator of ( )θ β  is ˆ ˆ( ) ( )y cθ β µ β=

  where 

( )2 2 1 1 ,c = − −  while *ˆ ˆ ˆ( ) ( )e cθ β µ β=   is the unrestricted GMM estimator. Consequently 

given regularity conditions, the asymptotic efficiency of ˆ( )yθ β relative to ˆ ˆ( )eθ β  can be 

established using standard results on restricted estimation.  

 Under the next assumptions, the limiting distributions of    ˆ( )yPθ β and  ˆ ˆ( )ePθ β  

follow from an application of West (1996, Theorem 4.1).  
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Assumption 2 

ˆplimP W W→∞ = where W is positive definite.   

Assumption 3 

a) Let ( ) ( ) / ,t tm mβ β β∇ = ∂ ∂ , ,t j t j t jy Xε β= −  and * the Euclidean norm. Then for j=1,2 and 

some d>1, 
4

, ,sup [ ( ( )) , ( ) , ]
d

t t t j t t jE vec m m Xβ β e′ ′ ′ ′∇ < ∞ . 

b) For j=1,2 and some d>1, , ,[ ( ( ) ( )) , ( ( ) ( )) , ]t t t t j t t jvec m E m m Em Xβ β β β e′ ′ ′ ′∇ − ∇ − is strong 

mixing with mixing coefficients of size -3d/(d-1).  

c) For j=1,2:  , ,[ ( ( )) , ( ) , ]t t j t t jvec m m Xβ β e′ ′ ′ ′∇ is covariance stationary.  

d) Let ( )mm mmj
V j∞

=−∞
= Γ∑ where ( ) [ ( ) ( ))( ( ) ( )].mm t t t j tj E m Em m Emβ β β β−Γ = − −  Then mmV is 

positive definite.   

Assumption 4 

,lim /R P P R π→∞ = where 0 .π≤ ≤ ∞  

 

Assumptions 3 and 4 are the same as Assumptions 3 and 4 in West (1996, p.1073) with different 

notation. Assumption 3 restricts serial correlation while Assumption 4 specifies the asymptotics 

for the numbers of in-sample and out-of-sample observations. 

Proposition 1 

For j=1,2: let ( ) 1
1

, ,1
( ) ,t

j j s j ss
B t t X X

−
−

=
′= ∑ 1 2( ) ( ( ), ( )),B t diag B t B t= lim ( ),tB p B t→∞=

( )1
, ,1

( ) ,t
j j s j ss

H t t X ε−
=

′= ∑ 1 2( ) [ ( ) , ( ) ] ,H t H t H t′ ′ ′= ( )1, 1, 2, 2,( ) ,t t t t th X Xβ ε ε ′=  

( ) ( ( ) ( )) ,mh t t t jj E m Em hβ β −′Γ = − ( ) [ ],hh t t jj E h h −′Γ = ( ),mh mhj
V j∞

=−∞
= Γ∑  ( ),hh hhj

V j∞

=−∞
= Γ∑

,hhV BV Bβ ′=  ,mm mh

mh

V V B
S

BV Vβ

′ 
=  ′ 

11 ln(1 )π π−Π = − + for 0 ,π< < ∞  0Π =  for 0π = , and  

1Π = for .π = ∞  

 If S is positive definite, then under Assumptions 1, 2, 3 and 4: 
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(i) * ˆ( ( ) ) (0, )
dist

P Nµ β µ− → Ω where 

[( ( )) ( ( )) ] 2 ( ( )) ( ( )) .mm t mh mh t t tV E m BV V B E m E m V E mββ β β β′ ′ ′ ′Ω = +Π ∇ + ∇ + Π ∇ ∇  

ˆ(ii) ( ( ) ( )) (0,  )
dist

yP N cA A cθ β θ β ′ ′− → Ω where 1 1 1[ ] .A I W Q QW Q Q− − −′ ′= −  

ˆ ˆ(iii) ( ( ) ( )) (0,  )
dist

eP N c cθ β θ β ′− → Ω   

 (iv) Let 1.W −= W  Then c c′Ω - cA A c′ ′Ω = 1[ ]c Q Q Q Q c−′ ′ ′Ω Ω Ω  

Proof: See Appendix.  

  

 Using Proposition 1 to devise DM tests is straightforward when the predictors are based 

on non-nested models. In this case, the asymptotic variance-covariance of * ˆ( ),µ β ,Ω  is generally 

nonsingular and the tests are asymptotically standard normal.    The original DM test statistic is:  

ˆ ˆ ˆ ˆ ˆ( ( )) ( ) /e eDM P c cθ β θ β ′= Ω                                  (10) 

while the analog based on ˆ( )yθ β is:  

ˆ ˆ ˆ ˆˆ( ( )) ( ) /y yDM P cA A cθ β θ β ′ ′= Ω                            (11) 

where Ω̂ is a consistent estimate of .Ω  It follows from parts (ii) and (iii) of Proposition 1 that 

(10) and (11) are each asymptotically standard normal under the null hypothesis, ( ) 0.θ β =  It 

follows from part (iv) that  ˆ( )yθ β is asymptotically efficient relative to ˆ ˆ( )eθ β when ˆ( )yθ β is 

based on the optimal choice for the weight matrix, W= 1.−Ω   The asymptotic efficiency 

advantage suggests that (11) may have greater power than (10). Consistent estimation of the 

components of Ω is discussed in West (1996, pp. 1074-1075). A Newey and West (1987) type 

estimator can be used for mmV , mhV and ;Vβ  π can be consistently estimated by P/R, and B and 

( )tE m β∇ by their sample analogues. The matrix Ω is the sum of four terms.  As noted by West 

12 
 



(1996,p.1072), the first term,  ,mmV reflects the uncertainty that is present in the estimation of µ  

conditional on the value of ,β  while the remaining three terms reflect the uncertainty due to the 

estimation of .β  If 0π = , then the latter terms do not contribute to asymptotic variance  of either  

ˆ ˆ( )eθ β or  ˆ( ).yθ β  If 0,π ≠ however, then the uncertainty due to the estimation of β  contributes 

to the asymptotic variance of  ˆ( )yθ β  but not to the asymptotic variance of ˆ ˆ( ).eθ β  This can be 

seen by noting that  

1,

2,

1, 1 1,

2, 2 2,

0
0

( )
02

20

t t

t t
t

t t

t t

y X
y X

m
X X

X X

β
β

β

 
 
 ∇ =
 
  
 

 

 

and therefore ( ) 0,tcE m β∇ =  since β is defined to be a projection coefficient. For the optimal 

weighting matrix, W= 1,−Ω    the expressions for the asymptotic variances of ˆ ˆ( )eθ β and ˆ( )yθ β

thus simplify, respectively, to:    

 

mmc c cV c′ ′Ω =                                                                  (12)  

1( )mmcA A c cV c c Q Q Q Q c−′ ′ ′ ′ ′ ′Ω = − Ω Ω Ω                         (13)              

 

 where ( ( )) .mm mh tc cV c V B E m β′ ′Ω = + Π ∇   

 

2.3 Nested and overlapping models 

 The DM tests are less straightforward for nested and overlapping models.    For these 

models, 1 1 2 2t tX Xβ β= can characterize the null hypothesis   which results in duplicated moment 

conditions and, consequently, singular .Ω    When 1 1 2 2 ,t tX Xβ β= we have 0,c c′Ω =

13 
 



ˆ ˆ( ) (1)e pP oθ β =  and, therefore, the asymptotic distribution of (10) is not obvious.11 For the 

special case of one-step ahead prediction and serially uncorrelated prediction errors, Clark and 

McCraken (2001) and McCraken (2007) show (10) has a non-standard distribution that is a 

function of Brownian motion if 0,π > and is asymptotically standard normal if 0.π = 12    

 Unlike ˆ ˆ( ),eθ β  the asymptotic distribution of the restricted estimator ˆ( )yθ β depends on 

the choice of W.  One problem for nested and overlapping models is that the standard optimal 

choice 1W −= W  is obviously not available if Ω  is singular.  In a different context, Penaranda

and Sentana (2012 pp. 306-308) extend Hanson’s (1982) optimal GMM theory to address the 

problem of a singular asymptotic covariance matrix. 13 They propose a two-step GMM estimator 

that is asymptotically equivalent to the infeasible optimal (asymptotically efficient) GMM based 

on  the generalized inverse of the singular covariance matrix.  For the present problem, this 

would entail replacing Assumption 2 with the assumption that  ˆlimPp + +
→∞ Ω = Ω  for some 

estimator  ˆ +Ω  of  the generalized inverse .+Ω   It is not clear, however, how such an estimator 

could be constructed for the present problem.   Unlike the ordinary inverse, generalized inverses 

are discontinuous.  Consequently, as noted by Andrews (1987), consistency of Ω̂  for Ω  does 

not, in general, ensure the consistency of   ˆ +Ω  for .+Ω   Andrews (1987, Theorem 2) provides an 

additional necessary and sufficient condition for the latter to hold.  The condition is 

ˆProb[ ( ) ( )] 1rank rankΩ = Ω →  as P .→∞   This condition, however, is unlikely to be satisfied in 

11 ˆ ˆ( ) (1)e pP oθ β = follows from equation (4.1) in West (1996) since ( ) 0.tcm β =  
12 Hansen and Timmermann (2015) demonstrate that for nested models, (10) can be expressed as the difference 
between two conventional Wald statistics testing the hypothesis that the coefficient in the larger model is zero, one 
statistic based on the full sample and the other based on a subsample. They show that this dilutes local power over 
the conventional full-sample Wald test. They then argue that this raises “serious questions” about testing population-
level accuracy for nested models using out-of-sample tests. 
13 Also see Diez de los Rios (2015).  
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the present problem if  Ω̂  is a standard covariance   estimator.  The reason is that  Ω̂  will 

generally be nonsingular if 1, 1 1 2, 1 2
ˆ ˆ

t t t tX Xβ β+ +≠ which will hold with probability one for all finite 

P if components of 1, 1tX +  or 2, 1tX + are continuously distributed.   We leave for future research the 

problem of constructing consistent estimators for .+Ω    

 Yet another approach would be a two-step procedure in which the first step consists of 

testing the hypothesis that the models are overlapping against the alternative that the models are 

non-nested. Such tests have been proposed by Vuong (1989), Marcellino and Rossi (2008) and 

Clark and McCracken (2014). If the test fails to reject the hypothesis of overlapping models then 

the procedure stops. If the hypothesis of overlapping models is rejected, then, in the second step, 

the hypothesis ( ) 0θ β =  is tested with (11) using an estimate of the optimal weight matrix for   

ˆ( ).yθ β   

2.4 Additional Moments and Restrictions 

 Under Assumption 1, , ,( ( )) 0j t t j t jE X y Xt t t β+ + +′ − =   which implies that the product 

,t j t jy Xt t β+ +−  and any linear combination of the predictor variables has zero expectation.  

Consequently, many different specifications of µ and ( )tm t β+ are possible.  Up to this point our 

specification consists of the four cross-product moments in the restriction 

, ,[ ( )] 0j t j t j t jE X y Xt t tβ β+ + +− =  j=1,2, giving: 

2 2
1, 1 2, 2 1, 1 2, 2[ ( ), ( ), ([ ] ),   ([ ] )]t t t t t tE y X E y X E X E Xt t t t t tµ β β β β+ + + + + + ′=                                           

2 2
1, 1 2, 2 1, 1 2, 2( ) [ , ,  ( ) ,  ( ) ]t t t t t t tm y X y X X Xt t t t t t tβ β β β β+ + + + + + + ′=                                                           (14) 
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Six additional restrictions implied by , ,( ( )) 0j t t j t jE X y Xt t t β+ + +′ − =  are 

2 ,[ ( )] 0t j t i t iE x y Xt t tβ β+ + +− =  and ,( ) 0t j t jE y Xt t β+ +− =  i,j=1,2. This suggests using the 

following expanded vectors: 

2 2
1, 1 2, 2 1, 1 2, 2

1, 1 2, 2 12 22 12 1, 1

[ ( ), ( ), ([ ] ), ([ ] ), ( ),
             ( ), ( ), ( y ), ( y ), ( ),
                                    (

t t t t t t t

t t t t t t t t

E y X E y X E X E X E y
E X E X E x E x E x X

E x

t t t t t t t

t t t t t t t t

µ β β β β

β β β β β β
+ + + + + + +

+ + + + + + + +

=

12 2, 2 22 2, 2 22 1, 1), ( ), ( )]t t t t t tX E x X E x Xt t t t t tβ β β β β β+ + + + + + ′
2 2

1, 1 2, 2 1, 1 2, 2 1, 1 2, 2

12 22 12 1, 1 12 2, 2 22 2, 2 22 1, 1

( ) [ , ,  [ ] ,  [ ] , , , ,
             y , y , , , , ]

t t t t t t t t t t

t t t t t t t t t t t t

m y X y X X X y X X
x x x X x X x X x X

t t t t t t t t t t

t t t t t t t t t t t t

β β β β β β β

β β β β β β β β β β
+ + + + + + + + + +

+ + + + + + + + + + + +

=

′



         

(15)     

It is well known from standard GMM theory that incorporating additional moments and 

restrictions generally improves asymptotic efficiency. Consequently, (15) offers potential 

efficiency gains over (14) at least asymptotically.  

 Extending the theory of the section 2.2 to accommodate (15) is straightforward. It is a 

matter of replacing ( )tm t β+ and µ in Proposition 1 with ( )tm t β+ and .µ   Using (15) instead of 

(14) does not change ˆ ˆ( )eθ β since unrestricted GMM is equivalent to equation by equation OLS 

in the present setting.  It does, however, change the asymptotic covariance of ( )yPθ β  and, 

consequently, the optimal weighting matrix.  

 

3.  Simulation Experiments 

3.1 Design  

 Simulation experiments were conducted to examine the finite-sample properties of the 

various estimators and tests.  Samples were drawn from the following model:  
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  1 1 1, 2 2, 10.3t t t t ty y x x uδ δ+ += + + +                                                (16) 

where tu and ,i tx are independent, serially uncorrelated, (0,10)tu N  and  , (0,0.5).i tx N  The 

tests were evaluated for one-step ahead ( 1τ = ) predictions from the two models: 

1 10 11 1, 12 1, 1t t t ty x y uβ β β+ += + + +                                                  (17a) 

1 20 21 2, 22 2, 1t t t ty x y uβ β β+ += + + +                                                 (17b) 

The models were estimated by OLS and a recursive scheme was used to generate predictions.  

 In all experiments the tests are conducted at the 10 percent significance level and for 

5,000 replications. Experiments were run for P=20, 50, 100, 200 with R=jP, and j=2,3,4,5.  

Samples were generated from (16) using a non-nested specification in which we set 1 2δ = −  in 

all experiments.  The expected value of the squared prediction error in this case equals 10+0.5 2
2δ

for (17a) and equals 12 for (17b).   In the  size experiments we set 2 2,δ = −  and in  the power 

experiments 2 1.δ = −   In what follows, the DM test based on a given estimator is denoted by 

DM(“estimator”). The restricted GMM estimator based on the optimal weight matrix for j 

moments is denoted ( )
ˆ( )y jθ β , j=4,13. It is computed from the two-step GMM estimator ˆ( )µ β

given by (9).   The first-step estimator is OLS.  The weight matrix is the inverse of a consistent 

estimate of the asymptotic covariance.  The latter is serial-correlation robust, and uses a Bartlett 

kernel and the automatic lag-selection algorithm proposed by Newey and West (1994).  
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3.2 Relative Efficiencies of the GMM Estimators 

 We have argued that tests based on (4)
ˆ( )yθ β  and (13)

ˆ( )yθ β  may have greater power than 

tests based on ˆ ˆ( )eθ β because of the asymptotic efficiency of restricted estimation.  Before 

evaluating the tests, we first examine the efficiency issue by comparing the sample means and 

standard deviations of ˆ ˆ( )eθ β , (4)
ˆ( )yθ β  and (13)

ˆ( )yθ β  for the samples used to evaluate the tests. 

Under the null hypothesis of equal mean squared prediction errors, the standard deviations and 

means are reported, respectively, in Tables 1 and 2.  In all cases the sample means are much 

smaller than the standard deviations and, consequently, biasedness is not a significant source of 

the estimation error. Consistent with the asymptotic efficiency of restricted estimation, the 

standard deviations of (13)
ˆ( )yθ β and (4)

ˆ( )yθ β  are smaller than those of  ˆ ˆ( )eθ β  for all P and R. 

Also as expected, the standard deviations of (4)
ˆ( )yθ β  are (slightly) larger than those of (13)

ˆ( ).yθ β  

Averaging the percentages over R, the standard deviation of (13)
ˆ( )yθ β is about 61% of the 

standard deviation of ˆ ˆ( )eθ β for P=20,  59% for  P=50 and P=100,  and 57% for P=200.  The 

efficiency gains generally increase as P/R decreases.  The percentages range from 64% to 67% 

for P/R=1/2, 57% to 61% for P/R=1/3, 52% to 59% for P/R=1/4, and 52% to 55% for P/R=1/5. 

The efficiency gains for (4)
ˆ( )yθ β  over ˆ ˆ( )eθ β are only slightly less.   

3.3. Size and Power Results 

 Next we evaluate the size and power of the tests.  As Proposition 1 shows, the asymptotic 

covariance matrix Ω  depends on is the limit of P/R, .π   When R is large relative to P one might 

consider setting π =0 which greatly simplifies the estimated asymptotic covariance. In initial 
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experiments, however, we found that (4)
ˆ( ( ))yDM θ β  and (13)

ˆ( ( ))yDM θ β were greatly oversized 

for all P and R when π =0 was imposed. For example, for the 10% nominal size under the null 

hypothesis, the rejection rates for (4)
ˆ( ( ))yDM θ β  with π =0 imposed   ranged from an average of 

30% for P=200 to an average of 57% for P=20. Although  β̂  is asymptotically irrelevant in the 

distributions of (4)
ˆ( )yθ β  and (13)

ˆ( )yθ β if the true value of π  is zero, in finite samples the 

distributions generally depend on the distribution of ˆ.β   Imposing π =0 in finite samples 

neglects this dependence and, consequently, the estimated asymptotic variance may be a poor 

approximation to the finite-sample variance. Consistent with this, the size of (4)
ˆ( ( ))yDM θ β  and 

(13)
ˆ( ( ))yDM θ β improved considerably when π =0 was not imposed.    As discussed below, the 

rejection rates of (4)
ˆ( ( ))yDM θ β  and (13)

ˆ( ( ))yDM θ β are typically within two or three percent of 

the nominal size when π =0 is not imposed.    In contrast, the value of π  is not an issue for 

ˆ ˆ( ( )).eDM θ β    As equations (12) and (13) reveal, unlike (4)
ˆ( )yθ β  and (13)

ˆ( ),yθ β  β̂  is 

asymptotically irrelevant in the distribution of ˆ ˆ( )eθ β for all values of .π  

 Table 3 reports the rejection rates under the null hypothesis for a nominal size of 10%.  In 

line with previous studies, the standard form of the DM test, ˆ ˆ( ( )),eDM θ β performs well in terms 

of size. It is slightly oversized in most cases but   the rejection rates are within 2% of the nominal 

size for all cases in which P≥50 and within about 3% for P=20.  For similar sample sizes, Clark 

and McCracken (2014, pp.425-426) also found ˆ ˆ( ( ))eDM θ β to be slightly oversized. They 

conjecture that both P and R might have to be larger “for the asymptotics to kick in.”  The 

rejection rates of (13)
ˆ( ( ))yDM θ β  are, except two cases, within about 2 percent of the nominal 
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size for P≥50 with P/R≤1/3. The rejection rates of (4)
ˆ( ( ))yDM θ β are somewhat better as they 

are within 2 percent of the nominal size for P≥20 with P/R≤1/3 for 14 out of 15 cases.  

Therefore, (4)
ˆ( ( ))yDM θ β  performs about as well as ˆ ˆ( ( ))eDM θ β  in these cases.  One difference, 

however, is that whereas ˆ ˆ( ( ))eDM θ β tends to be slightly oversized, (4)
ˆ( ( ))yDM θ β and 

(13)
ˆ( ( ))yDM θ β  tend to be undersized and, therefore, are more conservative. It should also be 

noted that the rejection rate of ˆ ˆ( ( ))eDM θ β is generally less sensitive to P/R than (4)
ˆ( ( ))yDM θ β

and (13)
ˆ( ( )).yDM θ β  Again, this might be explained by the fact that the asymptotic variance of 

ˆ ˆ( )eθ β does not depend on .π  

 Table 4 reports the rejection rates under the alternative hypothesis.  In terms of power, the 

rejection rate of ˆ ˆ( ( ))eDM θ β is also less sensitive to the value of P/R than the other tests.  For the 

cases of P≥50 with P/R≤1/3 in which the tests have similar size, (13)
ˆ( ( ))yDM θ β and 

(4)
ˆ( ( ))yDM θ β  have much greater power than ˆ ˆ( ( )).eDM θ β   For example with P/R=1/5, the 

rejection rate of (13)
ˆ( ( ))yDM θ β  is about 2.3 times greater than ˆ ˆ( ( ))eDM θ β  for P=50,  2.1  times 

greater for P=100 and 1.5 times greater for P=200.  As expected (4)
ˆ( ( ))yDM θ β   has less power 

than (13)
ˆ( ( ))yDM θ β  but greater power than  ˆ ˆ( ( )).eDM θ β  

4.  Illustrative Empirical Application  

 We next illustrate the tests using a forecasting application to monthly US industrial 

production.  The data were downloaded from FRED website of the Federal Reserve Bank of St. 

Louis.  One forecasting model is a regression of the growth rate of the industrial production 
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index on a constant, one lag of the growth rate and two lags of the spread between Moody’s Aaa 

and Baa corporate bond yields.   The other model replaces the credit spread with the log of 

housing starts for privately owned housing. The data are monthly from 1959:03 to 2015:08.  We 

apply the tests to one-month ahead forecasts for 2011:06 to 2015:08. The models were estimated 

recursively.  Using 4,999 bootstrap draws, we applied the bootstrap test of Clark and McCraken 

(2014, p.421) to determine if the models are overlapping or non-nested.  The null hypothesis that 

the models are overlapping can be rejected at the 5% level. For the null hypothesis of equal 

predictive accuracy we obtain ˆ ˆ( ( )) 1.47eDM θ β =  which is insignificant at the 10% level, 

whereas (13)
ˆ( ( )) 3.025yDM θ β = and (4)

ˆ( ( )) 2.162yDM θ β = which are significant, respectively, at 

the 1% and 5% levels.  

5. Conclusion 

 The test proposed by Diebold and Mariano (1995) is widely regarded as an important test 

that addresses the need to formally assess whether differences in the accuracy of two predictors 

are purely sampling error. Using a GMM framework, we proposed a more powerful version that 

can be used to compare the accuracy of regression predictors based on non-nested models.  One 

advantage of the original DM test is that it circumvents the problem of imposing assumptions on 

the predictors by imposing assumptions directly on the prediction errors.  As we demonstrated, 

however, this comes with a cost in terms of power. Specifically, we showed that more powerful 

versions of the tests can be devised by exploiting properties of linear projections that require 

assuming only the existence of certain moments and covariance-stationarity. The simulation 

experiments illustrate that the potential gains in power can be considerable.  Directions for future 

research include extensions to hypotheses of finite-sample (as opposed to population-level) 
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predictive accuracy, and the estimation of the optimal weight matrix when the covariance matrix 

is singular for tests of overlapping and nested models.   

 

 

 

                                                            Appendix 

  To prove part (i) of Proposition 1, it suffices to show that Assumptions 1 through 4 of 

West (1996) hold for ( ).tm β   The result then follows directly from Theorem 4.1 of West (1996) 

which also assumes a recursive forecasting scheme.  As noted above, our Assumptions 3 and 4 

are Assumptions 3 and 4 in West (1996) in different notation.   Clearly, ( )tm β is measurable and 

twice continuously differentiable with second-order derivatives that do not depend on .β   Under 

our Assumption 1, the second-order derivatives have finite expectation. Therefore, Assumption 1 

of West (1996) holds. Next note that under our Assumption 1:  ˆ ( ) ( )t B t H tβ β− = where 

1 2( ) ( ( ), ( )),B t diag B t B t=  1
1 2 1

( ) [ ( ) , ( ) ] ( ),t
ss

H t H t H t t h β−
=

′ ′ ′= = ∑   lim ( ),tB p B t→∞=  B has full 

column rank, and ( ) 0.tEh β =  Therefore, Assumption 2 of West (1996) holds. Consequently, 

part (i) follows from West (1996, Theorem 4.1).   

 Part (ii) follows from part (i) by noting that Â converges in probability to A under 

Assumption 2 and *ˆ ˆ ˆ( ( ) ( )) ( ( ) )yP cA Pθ β θ β µ β µ− = − since 0Qµ = under Assumption 1.  

Part (iii) follows from part (i) by noting that *ˆ ˆ ˆ( ( ) ( )) ( ( ) ).eP c Pθ β θ β µ β µ− = −  Part (iv) 

follows from substituting 1W −= W into A and multiplying out .cA A c′ ′Ω  
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                                                          Table 1  

                        Standard Deviations under the Null Hypothesis             

       

                    P          R           ˆ ˆ( )eθ β            (13)
ˆ( )yθ β             (4)

ˆ( )yθ β                         
                    _____________________________________________     
                    20        40             3.21             2.16                 2.18                      
                    20        60             3.18             1.93                 1.94                      
                    20        80             3.25             1.91                 1.92                                         
                    20       100            3.04             1.78                 1.79                      
 
                    50       100            1.97             1.27                 1.33                                           
                    50       150            1.86             1.15                 1.22                      
                    50       200            1.90             1.11                 1.18                      
                    50       250            1.89             1.03                 1.09                                          
 
                    100     200            1.38             0.881               0.947                                       
                    100     300            1.34             0.809               0.888                                       
                    100     400            1.34             0.755               0.816                                       
                    100     500            1.33             0.726               0.793                                        
 
                    200     400            0.966           0.627               0.684                                        
                    200     600            0.954           0.547               0.618                    
                    200     800            0.945           0.510               0.567                    
                    200   1000            0.942           0.483               0.529                    
                    _____________________________________________ 
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                                                           Table 2  

                                  Means under the Null Hypothesis             

       

                    P          R           ˆ ˆ( )eθ β            (13)
ˆ( )yθ β             (4)

ˆ( )yθ β                         
                    __________________________________________     
                    20        40            -0.019          -0.026             -0.036                      
                    20        60            -0.196           0.013              0.019                   
                    20        80            -0.097           0.046             -0.043                 
                    20       100           -0.094          -0.082             -0.066                
 
                    50       100            0.103          -0.048              -0.053                
                    50       150            0.153           0.069              -0.068                
                    50       200           -0.044          -0.021               0.032                 
                    50       250            0.076          -0.037               0.023                 
 
                    100     200           -0.033         -0.041              -0.017                  
                    100     300            0.016          0.004                0.004                
                    100     400            0.011         -0.023              -0.025                  
                    100     500            0.016           0.009               0.010                 
 
                    200     400            0.012           0.021               0.002                 
                    200     600            0.001          -0.007              -0.007               
                    200     800            0.003           0.039               0.016                 
                    200   1000           -0.007         -0.020              -0.006               
                    __________________________________________                          
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                                                  Table 3 

 Rejection Rates for nominal size of 10% under the Null Hypothesis  

               P        R       ˆ ˆ( ( ))eDM θ β  (13)
ˆ( ( ))yDM θ β  (4)

ˆ( ( ))yDM θ β    
               ______________________________________________ 
               20        40           0.116         0.070               0.053                
               20        60           0.131          0.103               0.085                
               20        80           0.142          0.157               0.109                
               20       100          0.129          0.178               0.120               
 
               50       100          0.119          0.067                0.069                
               50       150          0.112          0.090               0.088                
               50       200          0.093          0.104               0.109                
               50       250          0.109          0.144               0.115                
 
               100     200          0.112          0.064              0.069                
               100     300          0.099          0.093               0.089               
               100     400          0.103          0.105               0.092                
               100     500          0.103          0.117               0.112                
 
               200     400          0.099          0.056               0.073               
               200     600          0.107          0.057               0.075                
               200     800          0.115          0.083               0.090                
               200   1000          0.091          0.085               0.095                
               _____________________________________________ 
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                                                        Table 4  

    Rejection Rates for nominal size of 10% under the Alternative Hypothesis  

                    P        R         ˆ ˆ( ( ))eDM θ β       (13)
ˆ( ( ))yDM θ β   (4)

ˆ( ( ))yDM θ β  
                        ______________________________________________________ 
                    20        40           0.189                    0.160               0.087                         
                    20        60           0.192                    0.218               0.157                         
                    20        80           0.181                    0.323               0.257                         
                    20       100          0.194                    0.380               0.295                         
 
                    50       100          0.281                     0.348              0.339                        
                    50       150          0.272                     0.533              0.452                         
                    50       200          0.278                     0.589              0.516                         
                    50       250          0.282                     0.653              0.577                         
 
                    100     200          0.433                     0.652              0.618                         
                    100     300          0.420                     0.778              0.723                         
                    100     400          0.439                     0.874              0.811                         
                    100     500          0.424                     0.910              0.842                         
 
                    200     400         0.655                      0.898              0.889                         
                    200     600         0.626                      0.976             0.945                         
                    200     800         0.643                      0.986              0.973                         
                    200   1000         0.672                      0.996              0.986                         
                    _____________________________________________ 
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