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Abstract

We use high-frequency intra-day realized volatility to evaluate the relative fore-
casting performance of several models for the volatility of crude oil daily spot re-
turns. Our objective is to evaluate the predictive ability of time-invariant and
Markov switching GARCH models over different horizons. Using Carasco, Hu
and Ploberger (2014) test for regime switching in the mean and variance of the
GARCH(1,1), we find overwhelming support for a Markov switching model. A
comprehensive out-of-sample comparison of different GARCH and Markov switch-
ing GARCH models suggests that the EGARCH-t performs better in forecasting
the volatility of crude oil returns for shorter one- and five-day horizons. In contrast,
the MS-GARCH-t tends to exhibit higher predictive accuracy at longer horizons.
This result is estabilished by computing the Equal Predictive Ability of Diebold and
Mariano(1995), the Reality Check of White (2000), the test of Superior Predictive
Ability of Hansen (2005) and the Model Confidence Set of Hansen, Lunde and Na-
son (2011) over the totality of the evaluation sample. In addition, a comparison of
the MSPE computed using a rolling window suggests that MS-GARCH-t model is
better at predicting volatility during periods of turmoil.
Keywords: Crude oil price volatility, GARCH, Markov switching, forecast.
JEL codes: C22, C53, Q47

1 Introduction

Crude oil price returns have fluctuated greatly during the last decade. In particular, the
volatility of the daily West Texas Intermediate (WTI) spot returns surged during the
financial crisis, then decreased for a few years and has increased again since the second
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semester of 2014 (see Figure 1). Although surges in the volatility of crude oil returns
have been observed before, notably around the 1986 oil price collapse and the Gulf War,
a natural question is whether the econometric tools that we possess nowadays allow us to
generate reliable forecasts.
Most studies on forecasting crude oil prices have focused on predicting the mean of

the spot price. This is natural as it is often the mean —and not the variance—that consti-
tutes an input used by economic analysts and policy makers in producing macroeconomic
forecasts (Hamilton 2009, Edelstein and Kilian 2009). Indeed, this direction of research
has provided important insights into the usefulness of macroeconomic aggregates, asset
prices, and futures prices in forecasting the spot price of oil, as well as into the extent to
which the real and the nominal price of oil are predictable.1

However, reliable forecasts of oil price volatility are of interest for various economic
agents. First and most obviously, accurate forecasts are key for those firms whose business
greatly depends on oil prices (Kellogg, 2014). Examples include oil companies that need
to decide whether or not to drill a new well, airline companies who use oil price forecasts
to set airfares, and the automobile industry. Second, they are useful for those whose
daily task is to produce forecasts of industry-level and aggregate economic activity, such
as central bankers, business economists, and private sector forecasters. Finally, oil price
volatility also plays a role in households’decisions regarding purchases of durable goods,
such as automobiles or heating systems (Kahn 1986, Davis and Kilian 2011, Plante and
Traum 2012).
Therefore, we investigate the performance of different volatility models for the con-

ditional variance (hereafter variance) of spot crude oil returns, where we replace the
unobserved variance with the realized volatility of intra-day returns (Andersen and Boller-
slev 1998). More specifically, we investigate the out-of-sample predictive ability of time-
invariant and Markov switching GARCH (MS-GARCH) models. The motivation for fo-
cusing on this class of models is twofold. On one hand, time invariant GARCH(1,1)
models have fared well in predicting the conditional volatility of financial assets (see, e.g.,
Hansen and Lunde 2005). Moreover, oil price volatility has been traditionally modeled as
a time-invariant GARCH process.2 Nonlinear GARCH models such as EGARCH (Nelson
1991) and GJR-GARCH (Glosten, Jagannathan and Runkle 1993) have been shown to
have good out-of-sample performance when forecasting oil price volatility at short hori-
zons (Mohammadi and Su 2010, and Hou and Suardi 2012). On the other hand, oil prices
are characterized by sudden jumps due to, for instance, political disruptions in the Middle
East or military interventions in oil exporting countries. Markov switching models have
been found to be better suited to model situations where changes in regimes are triggered
by those sudden shocks to the economy. Yet, it remains an open question whether MS-
GARCH models can beat the GARCH(1,1) in forecasting the volatility of spot crude oil
returns. Moreover, how does predictive ability of the different models compare during
periods of calm and periods of turmoil?
To the best of our knowledge, only two studies have evaluated the out-of-sample

1See e.g. Alquist, Kilian and Vigfusson (2013) for a comprehensive study and a survey of the literature.
2See Xu and Ouennich (2012) and references therein.
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forecasting performance of Markov switching volatility models for dailyWTI futures: Fong
and See (2002), and Nomikos and Pouliasis (2011). Both studies estimate MS-GARCH
models whereas the latter also estimates Mix-GARCH models.3 Fong and See (2002)
follow Gray’s (1996) suggestion and integrate out the unobserved regime paths. Nomikos
and Pouliasis (2011) use the estimation method proposed by Haas et al. (2004), where
they simplify the regime shifting mechanism to make the estimation computationally
tractable. The evidence found in favor of switching models is mixed. Fong and See’s (2002)
results suggest that GARCH-t4 and MS-GARCH-t models are very close competitors
when forecasting the one-step-ahead volatility of the return on WTI oil futures. Instead,
Nomikos and Pouliasis (2011) find that, for the one-step-ahead horizon, a Mix-GARCH-
X5 produces more accurate forecasts of the volatility in the returns of the NYMEX WTI
oil futures.
In this paper, we model and forecast the volatility of the daily WTI closing spot

price instead. One advantage of using this price to forecast volatility of spot prices is
that it is available with no delay and it is not subject to revisions. This eliminates
concerns regarding differences between real-time forecasts and forecasts produced with
information that only becomes available after the forecast is generated. For instance, a
researcher interested in forecasting the monthly volatility of spot returns using the refiners
acquisition cost (RAC) would have to deal with the issue that this price is released by the
Energy Information Agency with a delay and that values for the previous months tend
to be revised. In contrast, the forecast we produce using only the information contained
in the history of the daily WTI closing spot price —hereafter WTI price—is the real-time
forecast. Moreover, whereas financial investors might be more interested in volatility in
crude oil futures, models that investigate the role of oil price volatility in economic activity
and investment decisions focus more on spot oil prices.
This paper contributes to the literature in four important dimensions. First, we eval-

uate the role of regime switches in the volatility of daily returns on spot oil prices. To the
best of our knowledge, such a research question has only been explored by Vo (2009), who
uses weekly spot prices of WTI crude oil prices to estimate a Markov switching Stochas-
tic Volatility (SV) model and finds that incorporating regime switching into a SV model
enhances forecasting power. Given that spot oil prices exhibit sudden jumps and that
MS-GARCH models are well suited to capture changes in regimes triggered by sudden
shocks, evaluating their relative forecasting ability is of particular interest.
Second, in contrast with previous studies on crude oil price volatility, we formally test

for regime switches using a testing procedure proposed by Carrasco, Hu, and Ploberger
(2014). Testing for regime switching in GARCH models is especially important since
it has been noted in the literature that the commonly found high persistence in the

3The regime shifts are driven by i.i.d. mixture distributions, rather than by a Markov chain.
4t stands for Student’s t distribution of the innovation.
5The GARCH-X model adds the squared lagged basis of futures prices (i.e., the difference between the

spot price of the underlying asset and the price of its related futures contract) to the GARCH specification
of the conditional variance.
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unconditional variance in financial series may be the result of neglected structural breaks
or regime changes, see e.g., Lamoureux and Lastrapes (1990). In addition, Caporale,
Pittis, and Spagnolo (2003) show via Monte Carlo studies that fitting (mis-specified)
GARCH models to data generated by a MS-GARCH process tends to produce Integrated
GARCH (IGARCH)6 parameter estimates, leading to erroneous conclusions about the
persistence levels. Indeed, we find overwhelming evidence in favor of a regime switching
model for the daily crude oil price data.
Third, instead of following the estimation method of Gray (1996) or Haas et al. (2004),

we use the technique developed by Klaassen (2002). This methodology makes effi cient
use of the conditional information when integrating out regimes to get rid of the path
dependence. Furthermore, it has two advantages over Gray (1996): greater flexibility in
capturing persistence of volatility shocks, and multi-step-ahead volatility forecasts that
can be recursively calculated.7 Meanwhile, a close look at Haas et al. (2004) reveals that
their model has a simplified switching mechanism, where the regime switch occurs only in
the GARCH effects. The model considered in this paper allows the conditional variance
to switch to a different regime as well. For example, big shocks may be followed by a
volatile period not only because of larger GARCH effects but also because of a possible
switch to the higher variance regime. As a result, the model considered in this paper
allows for more flexibility in modeling the volatility and persistence levels compared with
Haas et al. (2004).
Last, but not least, we assess the out-of-sample forecasting performance of the different

models using a battery of tests. We first follow Hansen and Lunde (2005) in considering
several statistical loss functions (e.g., mean square error, MSE, mean absolute devia-
tion, MAD, quasi maximum likelihood, QLIKE) to evaluate out-of-sample forecasting
performance, as no single criterion exists to select the best model when comparing volatil-
ity forecasts (Bollerslev et al. 1994, Lopez 2001). Then, we compute the Success Ratio
(SR) and implement the Directional Accuracy (DA) tests from Pesaran and Timmermann
(1992), conduct pairwise comparisons between different candidate models with Diebold
and Mariano’s (1995) test of Equal Predictive Ability, and groupwise comparisons using
White’s (2000) Reality Check test and Hansen’s (2005) test of Superior Predictive Abil-
ity. In addition, we employ Hansen, Lunde and Nason (2011)’s Model Confidence Set
procedure to determine the best set of model(s) from a collection of time-invariant and
time-varying models. Finally, we discuss robustness of the employed loss functions and
also inquire into the stability of the forecasting accuracy for the preferred models over the
evaluation period.
Our results suggest that the EGARCH-t model yields more accurate out-of-sample

forecasts at short horizons of 1 day and 5 days, whereas the MS-GARCH-t model is
favored at longer horizons. We also find overwhelming evidence that a normal innovation
is insuffi cient to account for the leptokurtosis in our data, thus Student’s t or GED

6The conditional variance grows with time t and the unconditional variance becomes infinity.
7By making multi-period ahead forecasts a convenient recursive procedure, Klaassen (2002) shows

that MS-GARCH forecasts are better than single regime GARCH forecasts.
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distributions are more appropriate.8 All in all, our results suggest that at longer horizons
Markov switching models have superior predictive ability and yield more accurate forecasts
than more restricted GARCH models where the parameters are time-invariant. Moreover,
we uncover clear gains from using the MS-GARCH-t model for forecasting crude oil price
volatility during the time of turmoil at all horizons when comparing the Mean Squared
Prediction Error (MSPE) of the preferred models.
This paper is organized as follows. Section 2 introduces the econometric models used

in estimating and forecasting oil price returns and volatility. Section 3 describes the
data. Estimation results are presented in Section 4. Section 5 discusses the out-of-sample
forecast evaluation. Section 6 concludes.

2 Volatility Models

This paper focuses on the out-of-sample forecasting performance of a variety of models
for predicting oil price volatility. The models considered here belong to the conventional
GARCH family or are MS-GARCH models. We start by evaluating the predictive ability
of a series of GARCH(1,1) models, since this model has been shown to have good predictive
ability (Hansen and Lunde, 2005). In particular, we consider GARCH(1,1) models where
the innovations are assumed to follow a standard normal, Student’s t, or Generalized Error
Distribution (GED). The first distribution constitutes a natural benchmark whereas both
Student’s t and GED are able to capture extra leptokurtosis, which is observed in oil price
returns (see Table 1).
An attractive feature of the more general GARCH models, such as EGARCH and

GJR-GARCH, is that they allow for an asymmetric effect of positive and negative shocks
on the conditional variance. In fact, a well-documented feature of financial data is the
asymmetrical effects different types of shocks can have on volatility. In the case of crude
oil prices, political disruptions in the Middle East or large decreases in global demand
tend to increase volatility (see, e.g. Ferderer 1996, Wilson et al. 1996) whereas the effect
of new oil field discoveries seems to have a more muted effect. Note how Figure 1 reveals
a large increase in the volatility of WTI crude oil returns around the global financial
crisis but no decline when shale oil started to be shipped in larger quantities to Cushing,
OK.9 Thus, we also investigate the predictive ability of EGARCH and GJR-GARCH
models where the innovations are assumed to follow a standard normal, Student’s t, or
Generalized Error Distribution (GED).10

Furthermore, MS-GARCH models are of particular interest in the study of oil price
volatility as the GARCH parameters are permitted to switch between regimes (e.g., peri-

8Our findings differ from Marcucci (2005) where normal innovation is favored in modeling financial
returns.

9Even though shale oil represents a large percentage of the crude production in the U.S., by 2014 the
U.S. production accounted only for 11% of the global production. Thus, what has been viewed as a the
large shale revolution in the U.S. might have only a small impact on a global scale.
10Because the above models are well known, and have been extensively employed in the literature, we

relegate their description to the appendix.
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ods that are perceived as of major political unrest versus periods of calm), thus providing
flexibility over the standard GARCH models. For instance, a MS-GARCH model may
better capture volatility persistence by allowing shocks to have a more persistent effect
— through different GARCH parameters — during the high volatility regime and lower
persistence during the low volatility regime. Alternatively, MS-GARCH models can also
capture the pressure-relieving effects of some large shocks, which may occur when large
shocks that are not persistent are followed by relatively tranquil periods rather than by a
switch to a higher volatility regime.
Hence, the last volatility model considered here follows Klaassen’s (2002) modification

of Gray’s (1996) MS-GARCH(1, 1) model
yt = µSt + εt,

εt =
√
ht · ηt, ηt ∼ iid(0, 1)

ht = αSt0 + αSt1 ε
2
t−1 + γSt1 ht−1,

(1)

where we allow both the conditional mean µStand the conditional variance ht to be subject
to a hidden Markov chain, St. In this paper, we focus on a two-state first-order Markov
chain. That is, the transition probability of the current state, St, only depends on the
most adjacent past state, St−1:

P (St | St−1, It−2) = P (St | St−1) ,

where It−2 denotes the information set up to t − 2. We use pij to denote the transition
probability that state i is followed by state j. We assume the Markov chain is geometric
ergodic. More precisely, if St takes two values 1 and 2, and has transition probabilities
p11 = P (St = 1 | St−1 = 1) and p22 = P (St = 2 | St−1 = 2), St is geometric ergodic if
0 < p11 < 1 and 0 < p22 < 1.
Estimating the model in (1) is computationally intractable, because the conditional

variance ht depends on the state-dependent ht−1, consequently on all past states. Maxi-
mizing the likelihood function would require integrating out all possible unobserved regime
paths, which grow exponentially with sample size T. Gray (1996) suggests integrating out
the unobserved regime path S̃t−1 = (St−1, St−2, ...) to avoid the path dependence. Such
specification avoids the path dependence issue and makes estimation very straightforward;
yet, it has the disadvantage that multi-step-ahead forecasting becomes very complicated.
In this paper we follow Klaassen (2002) and Marcucci (2005) and replace ht−1 by its

expectation conditional on the information set at t − 1 plus the current state variable,
namely,

h
(i)
t = α

(i)
0 + α

(i)
1 ε

2
t−1 + γ

(i)
1 Et−1

[
h

(i)
t−1 | St

]
,

where

Et−1

[
h

(i)
t−1 | St

]
=

2∑
j=1

pji,t−1

[(
µ

(j)
t−1

)2

+ h
(j)
t−1

]
−
[

2∑
j=1

pji,t−1µ
(j)
t−1

]2

,

and pji,t−1 = P (St−1 = j | St = i, It−2) , i, j = 1, 2, and calculated as

pji,t−1 =
pji Pr(St−1 = j | It−2)

Pr(St = i | It−2)
=

pjipj,t−1∑2
j=1 pjipj,t−1

.
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Similar to Gray (1996), this specification circumvents the path dependence by integrat-
ing out the path-dependent ht−1. However, it uses the information set at time t− 1 plus
the current state St, which embodies Gray’s It−2 information set. Given that regimes
are often observed to be highly persistent, St contains lots of information about St−1.
Klaassen (2002) discovers that an empirical advantage of this specification over Gray’s is
the effi cient use of all information available to the researcher. It also has the theoreti-
cal advantage of entailing a straightforward computation of the m-step-ahead volatility
forecasts at time T as follows:11

ĥT,T+m =

m∑
τ=1

ĥT,T+τ =

m∑
τ=1

2∑
i=1

P (ST+τ = i | IT )ĥ
(i)
T,T+τ ,

where the τ -step-ahead volatility forecast in regime i made at time T can be calculated
recursively

ĥ
(i)
T,T+τ = α

(i)
0 +

(
α

(i)
1 + γ

(i)
1

)
ET

[
h

(i)
T,T+τ−1 | ST+τ

]
.

Parameter estimates can be obtained by maximizing the log likelihood function

L =
T∑
t=1

log [p1,tft(yt | St = 1) + p2,tft(yt | St = 2)] ,

where ft(yt | St = i) is the conditional density of yt given regime i occurs at time t, and
the ex-ante probabilities pj,t are calculated as

pj,t = Pr(St = j | It−1) =
2∑
i=1

pij
ft−1(yt−1 | St−1 = i)pi,t−1∑2
k=1 ft−1(yt−1 | St−1 = k)pk,t−1

, j = 1, 2.

In addition, since oil price returns exhibit leptokurtosis, and to maintain comparability
between the GARCH and MS-GARCH models, we also consider three different types of
distributions for ηt: normal, Student’s t, and GED distributions.
Finally, note that the estimation method used here differs from Fong and See (2002)

and Nomikos and Pouliasis (2011). The former follow Gray’s (1996) suggestion and in-
tegrate out the unobserved regime paths. Instead, Nomikos and Pouliasis (2011) use the
procedure proposed by Haas et al. (2004), where they simplify the regime shift mechanism
by restricting the switch on GARCH parameters only. Consequently the regime variance
only depends on past shocks and their own lagged values, therefore the path dependence
is removed and the estimation is standard. However, the estimation method used herein
(see Klaassen 2002 and Marcucci 2005) can be applied to more general MS-GARCH mod-
els, meanwhile making effi cient use of the conditional information when integrating out
regimes.

11The m-step-ahead volatility is the summation of the volatility at each step because of the absence of
serial correlation in oil price returns.
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3 Data Description

We use the daily spot price for the West Texas Intermediate (WTI) crude oil obtained
from the U.S. Energy Information Administration. The sample period ranges from July
1, 2003 to April 2, 2015; the start of the sample coincides with the period when oil
futures started to be traded around the clock. Over this period of time, the average price
for a barrel of crude oil was $75.39, the median value equaled $76.08, and the standard
deviation was $23.97. A maximum price of $145.31 was observed on July 3, 2008 and the
minimum price of $26.93 was on September 19, 2003. To model the returns in the oil price
and its volatility, we calculate daily oil returns by taking 100 times the difference in the
logarithm of consecutive days’closing prices. Table 1 shows the descriptive statistics for
WTI rates of return. The mean rate of return is about 0.0162 with a standard deviation
of 2.34. Note also that WTI returns are slightly negatively skewed. Kurtosis is high at the
value of 7.91, compared with 3 for a normal distribution. These findings are consistent
with previous studies by, e.g., Abosedra and Laopodis (1997), Morana (2001), Bina and
Vo (2007), among others. Figure 1 plots the returns of the WTI spot prices and the
squared deviations over the sample period. Large variations are observed during the
global financial crisis in late 2008 and since crude oil prices started decreasing in July
2014. Indeed, Figure 1 suggests crude oil returns are characterized by periods of low
volatility followed by high volatility in the face of major political or financial unrest.
The object of interest here is the true volatility of crude oil returns, which is unob-

served. Thus, to evaluate the out-of-sample performance of the various volatility models
we follow Andersen and Bollerslev (1998) and compute an estimated measure of the real-
ized volatility using high-frequency intra-day returns on oil futures. More specifically, we
obtained 5-minute prices of 1-month WTI oil futures contracts series from TickData.com.
These contracts cover are traded around the clock (with the exception of a 45-minute
trading halt from 5:15pm to 6:00pm EST), Sunday through Friday, excluding market
holidays from July 1, 2003 (when this futures contract started trading) to April 2, 2015.
Following Blair, Poon and Taylor (2001), we constructed the daily realized volatility RVt
by summing the squared 5-minute returns over the trading hours. 12

We list the summary statistics for both the RV 1/2
t and the logarithm of RV 1/2

t in

12Hansen and Lunde (2005) suggest an alternative way to measure the daily realized volatility. They

first calculate the constant ĉ = [n−1
n∑
t=1

(rt − µ̂)
2
]/[n−1

n∑
t=1

rvt], where rt and µ̂ are the close-to-close

return of the daily prices and the mean respectively, and rvt is the 5-minute realized volatility during
the trading hours only. Then they scale the realized volatility rvt by the constant ĉ. This measure is less
noisy compared with directly adding the overnight returns. However, it is not suitable here since the
value for ĉ varies with sub-samples for our data series. For instance, prior to 7/1/2003, oil futures were
traded from 10:00am until 2:30pm and ĉ = 1.19. After 7/1/2003, trading hours were expanded to the
entire day, with the exception of a 45-minute period from 5:15pm to 6:00pm when trading is halted. For
the sub-sample of 7/1/2003 to 4/2/2013, ĉ = 1.12. If instead we focus on the sample period 1/2/1992
to 1/31/1997 from Fong and See (2002), ĉ = 1.03, whereas if we use the sample period 1/23/1991 to
12/31/1997 from Nomikos and Pouliasis (2011), ĉ = 1.33. Finally, for our out-of-sample period 1/3/2012
to 4/2/2015, ĉ = 1.17. Nevertheless, we have tried scaling and it turns out that our results are robust to
scaling for the daily 45-minute period when trading is halted.
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Table 1. The RV 1/2
t series is severely right-skewed and leptokurtic. However, the loga-

rithmic series appears much closer to a normal distribution, which is further confirmed
by comparing its kernel density estimates with the normal distribution in Figure 2.13

We then evaluate the forecasting performance of various GARCH and MS-GARCH
models with the realized volatility as reference. Since the forecasts will be utilized by
agents who have differing investment horizons, we evaluate relative forecasting perfor-
mance of the different models at various horizons. For example, central bankers typically
need a monthly forecast. Oil exploration and production firms might be interested in
longer horizons and this horizon might vary across regions. For instance, while the time
to complete oil wells averages 20 days in Texas, it averages 90 days in Alaska. Therefore,
we focus on 4 forecasting horizons at m = 1, 5, 21, and 63 days, corresponding to 1 day,
1 week, 1 month and 3 months respectively. Then, to calculate m-step-ahead realized
volatility at time T , we simply sum the daily realized volatility over m days, denoted by:

R̂V T,T+m =
m∑
j=1

R̂V T+j.

We divide the whole sample into two parts: the first 2388 observations (corresponding
to a period of July 1, 2003 to December 31, 2012) are used for in-sample estimation,
while the remaining observations are used for out-of-sample forecast evaluation (January
2, 2013 to December 31, 2014).14

4 Estimation Results

We estimate the models by setting the conditional mean to be rt = µ + εt. Testing the
residuals from such a simple specification reveals very small autocorrelations yet tremen-
dous ARCH effect.

4.1 GARCH and Nonlinear GARCH

The ML estimates for GARCH(1, 1), EGARCH(1, 1), and GJR-GARCH(1, 1) models are
collected in Table 2. For each model, we report the results with Normal, Student’s t, and
GED innovations. Asymptotic standard errors are reported in parentheses.
The conditional mean in the GARCH models is significantly positive at around 0.1

regardless of the distributions. When EGARCH or GJR-GARCH are used, the conditional
mean is lower, but still significantly positive when t or GED distribution is used. Under
normal specification, EGARCH and GJR-GARCH has zero mean statistically. Moreover,
recall that the kurtosis of this return series is 7.90 from Table 1, the degrees of freedom
for the t distribution are estimated at around 8.6 in all three GARCH models15 and the
13Anderson et al. (2003) have similar findings for the realized volatility on exchange rates.
14Our observations extend to April 2, 2015 to accommodate the m-step-ahead forecast at m = 63.
15This suggests that the conditional moments exist up to the 8th order. Morever, since the conditional

kurtosis for the t distribution is calculated by 3(ν − 2)/(ν − 4), ν = 8.6 implies fatter tails than normal
distributions.
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estimated shape parameter for GED distribution is around 1.4816, which is consistent
with the common finding in the literature that the normal error might not be able to
account for all the mass in the tails in the distributions of daily returns.
The asymmetric effect (ξ) is significant in EGARCH and GJR-GARCH models across

all distributions, suggesting that a negative shock would increase the future conditional
variance more than a positive shock of the same magnitude.
The estimates of the variance parameters reveal high persistence levels (indicated by

α1+γ1 close to 1) throughout the GARCH specifications. In EGARCH and GJR-GARCH
models, the persistence levels are measured by γ1 and α1+γ1+0.5ξ instead. The estimates
are also very close to 1, suggesting high persistence in all cases.

4.2 MS-GARCH

Studies that estimate MS-GARCH models for oil price returns (e.g. Fong and See 2002,
Vo 2009, and Nomikos and Pouliasis 2011) or a stock price index (e.g. Marcucci 2005),
proceed to estimate the MS-GARCH models without testing for the existence of regime
switching. In fact, testing for Markov switching in GARCH models is complicated mainly
for two reasons. First, the GARCH model itself is highly nonlinear. When the parameters
are subject to regime switching, path dependence together with nonlinearity makes the
estimation intractable, consequently (log) likelihood functions are not calculable. Second,
standard tests suffer from the famous Davies problem, where the nuisance parameters
characterizing the regime switching are not identified under the null. Therefore, standard
tests like the Wald or LR test do not have the usual Chi-squared distribution. Markov
switching tests by e.g., Hansen (1992) or Garcia (1998) are not applicable here either since
they both involve examining the distribution of the likelihood ratio statistic, which is not
feasible for MS-GARCH. We adopt the testing procedure developed by Carrasco, Hu,
and Ploberger (2014). The advantage of this test is that it only requires estimating the
model under the null hypothesis of constant parameters, yet the test is still optimal in the
sense that it is asymptotically equivalent to the LR test. In addition, it has the flexibility
to test for regime switching in both the means and the variances or any subset of these
parameters. We describe in detail how to conduct their test for regime switching in mean
and variances. Specifically, the model under the null hypothesis (H0) is a GARCH(1,1)
with constant mean and the alternative (H1) model is (1).
Given our model, the (conditional) log likelihood function under H0 is

lt = −1

2
ln 2π − 1

2
ln
(
α0 + α1ε

2
t−1 + γ1ht−1

)
− (yt − µ)2

2
(
α0 + α1ε2

t−1 + γ1ht−1

) . (2)

We first obtain the MLE for the parameters θ̂ under H0, where θ = (µ, α0, α1, γ1)′.
Then, we calculate the first and second derivatives of the log likelihood (2) with respect
to θ evaluated at θ̂.
16The kurtosis for the GED distribution is given by (Γ (1/ν) Γ (5/ν)) /Γ2 (3/ν) . When ν = 1.48, the

kurtosis is at 3.81, again confirming fat tails.
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The Markov chain St and the parameters driven by it (µSt , αSt0 , α
St
1 , γ

St
1 )′ in (1) are

not present under H0, therefore we cannot consistently estimate them. This problem is
called the Davies problem and standard test like Wald or LR test does not have the usual
Chi-squared distribution. The test proposed by Carrasco, Hu and Ploberger (2014) is in
essence a Bayesian test: given the nuisance parameters ζ not identified under the null,
they first derive the test statistic process µ2,t

(
ζ, θ̂

)
which is asymptotically equivalent

to the LR test; then they integrate out the process with respect to the prior distribution
on ζ. More specifically, the nuisance parameters specifying the alternative model are
ζ = (η, ρ : ‖η‖ = 1,−1 < ρ < ρ < ρ̄ < 1), where η is a normalized 4 × 1 vector and
characterizes the direction of the alternative and ρ specifies the autocorrelation of the
Markov chain.17 Given ζ, the first key component of Carrasco, Hu, and Ploberger (2014)

test is Γ∗T =
∑
µ2,t

(
ζ, θ̂

)
/
√
T , and

µ2,t

(
ζ, θ̂

)
=

1

2
η′

[(
∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

)(
∂lt
∂θ

)′)
+ 2

∑
s<t

ρ(t−s)
(
∂lt
∂θ

)(
∂ls
∂θ

)′]
η,

where the first part is the element of the information matrix test commonly seen in
testing for random coeffi cients, and the second part comes from the serial dependence of
the time-varying coeffi cients.
The second component, ε̂∗, the residual of the regression of µ2,t

(
ζ, θ̂

)
on l(1)

t

(
θ̂
)
, is

the extra term to compensate for the difference in the likelihood ratio when we replace
the true parameter θ by its MLE θ̂ under H0. Then the sup test simply takes the form:

supTS = sup
{h,ρ:‖h‖=1,ρ<ρ<ρ̄}

1

2

(
max

(
0,

Γ∗T√
ε̂∗′̂ε∗

))2

. (3)

Alternatively, the exp test is:

expTS = avg
{h,ρ:‖h‖=1,ρ<ρ<ρ̄}

Ψ (η, ρ) ,

where

Ψ (η, ρ) =


√

2π exp

[
1
2

(
Γ∗T√
ε̂∗′ε̂∗
− 1
)2
]

Φ
(

Γ∗T√
ε̂∗′ε̂∗
− 1
)
if ε̂∗′̂ε∗ 6= 0,

1 otherwise.

That is, the unidentified nuisance parameters ζ are integrated out with respect to some
prior distributions in the supremum or exponential form to deliver an optimal test in the
Bayesian sense.
To compute the test statistics, we generate the 4× 1 vector η uniformly over the unit

sphere 60 times18, corresponding to the switching mean and the three GARCH parame-
ters.19 The supTS is maximized over η and a grid search of ρ on the interval [−0.95, 0.95]

17ζ is defined this way to guarantee identification.
18That is, we use a uniform prior for η.
19To test for switching in the variance equation only, we can simply set the first element of h to be 0

and generate the remaining 3× 1 vector uniformly over the unit sphere.
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with the step length of 0.05. Meanwhile, expTS is the average of Ψ (η, ρ) above computed
over those η and ρ′s. For our data, the sup and exp test statistics are calculated to be
0.004 and 0.674, respectively. Then we simulate the critical values by bootstrapping using
1, 000 iterations. We reject the null of constant parameters in favor of regime switching
in both the mean and variance equations with p-values of 0.022 for supTS and 0.007 for
expTS. These results reveal overwhelming support for a Markov switching model. Hence
we estimate the MS-GARCH models with a two-state Markov chain.
Table 3 presents the parameter estimates for the three MS-GARCH models: MS-

GARCH-N, MS-GARCH-t, and MS-GARCH-GED, respectively. MS-GARCH-t and MS-
GARCH-GED estimates are very close to each other, but normal innovations lead to
different results, where the ARCH parameter estimates in both regimes are insignificant.
Thus we focus on MS-GARCH-t and MS-GARCH-GED. In both models, regime 2 cor-
responds to a significantly positive mean at around 0.1, while the conditional mean in
regime 1 is insignificantly different from 0. The transition probabilities, p11 and p22, are
significant and close to one, implying that both regimes are highly persistent. However,
the ergodic probabilities suggest that regime 2 occurs more often. About 70% of the ob-
servations are in regime 2, with the remaining 30% in regime 1. The standard deviations
from both regimes are close, however, shocks are very persistent in regime 2 as α(2)

1 + γ
(2)
1

is close to 1, but not in regime 1. In summary, regime 1 is a relatively bad regime with
zero expected returns, and any shocks to the system do not persist for long and only
30% of the observations are in this regime. Majority of the observations are in regime 2,
characterized by positive expected returns and persistent shock to the volatility, i.e., the
shocks would remain in the system for a long time.

5 Forecast Evaluation

5.1 Performance Metrics

To evaluate the relative predictive ability of the different volatility models we follow
Hansen and Lunde (2005) in computing six different loss functions, where the realized
volatility is substituted for the latent conditional variance. These functions are: the Mean
Squared Error (MSE) functions written in terms of the standard deviation, MSE1, and
the variance, MSE2; the Mean Absolute Deviation (MAD) functions, also in terms of
the standard deviation, MAD1, and the variance, MAD2; the logarithmic loss function
of Pagan and Schwert (1990), R2LOG, which is similar to the R2 from a regression of the
squared first difference of the logged oil price on the conditional variance, and it penalizes
volatility forecasts asymmetrically in low and high volatility regimes; and the QLIKE,
which is equivalent to the loss implied by a Gaussian likelihood. In addition, to evaluate
the ability of the models to predict the direction of the change in the volatility, we calculate
the Success Ratio (SR) and apply the Directional Accuracy (DA) test of Pesaran and
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Timmermann (1992).20 This battery of test allow us to provide a first ranking of the
different volatility models.
To further assess the relative predictive accuracy of the volatility models we implement

Diebold and Mariano’s (1995) test of Equal Predictive Ability (EPA), White’s (2000) Re-
ality Check (RC) test for out-of-sample forecast evaluation, and Hansen’s (2005) Superior
Predictive Ability (SPA) test. Note that the distribution of the SPA test under the null
is N(µ̂,Ω), where µ̂ is a chosen estimator for µ. Since different choices of µ̂ would result
in difference p-values, Hansen proposes three estimators µ̂l ≤ µ̂c ≤ µ̂u. We name the
resulting tests SPAl, SPAc, and SPAu, respectively. SPAu has the same asymptotic
distribution as the RC test.
On a final note, the distinction between Hansen’s SPA test and Diebold and Mariano’s

EPA test simply lies in the null hypothesis. The null hypothesis is a simple hypothesis
in EPA whilst it is a composite hypothesis in SPA. In other words, EPA is a pairwise
comparison, meanwhile SPA is a groupwise comparison.

5.2 Relative Out-of-Sample Performance

Out-of-sample performance is evaluated using 504 out-of-sample volatility forecasts (cor-
responding to the years 2013 and 2014) for the 1-, 5-, 21-, and 63-step horizons, which
are computed using a rolling scheme. That is, we employ the first 2388 daily observations
spanning the period between July 1, 2003 and December 31, 2012 to estimate the volatil-
ity models; these estimates are then used to compute the forecasts at all horizons for the
first out-of-sample period, January 2, 2013. We move to the next window by adding an
observation at the end of the estimation period and drop an observation at the beginning,
re-estimate our parameters, and compute a new forecast.
The volatility forecasts obtained from the EGARCH-t and MS-GARCH-t models for

the 1-, 5-, 21-, and 63-day horizons are collected in Figure 3.21 The corresponding realized
volatility is also plotted for reference. At 1- and 5-day horizons, the forecasts the two
models yield are very similar. They move closely with the realized volatility and are able
to capture the huge spikes and dips in the realized volatility. Similarly, at a 21-day horizon,
both models are also able to forecast the major upward and downward movements in the
realized volatility. Only when we increase the forecast horizon to 63 days, or 3 months,
our forecasts contain less information about the aggregated realized volatility during the
out-of-sample period, which is as expected.
The estimated loss functions of our out-of-sample forecasts, in addition to the Success

Ratio (SR) and the Directional Accuracy (DA) test, are reported in Tables 4a and 4b.
Recall that our volatility proxy is the realized volatility measure calculated from the
5-minute futures returns. At the 1- and 5-day forecast horizons, the EGARCH-t and
MS-GARCH-t are tied with the MSE1, MSE2 and QLIKE ranking the MS-GARCH-t
higher and the EGARCH-t being ranked first by the three remaining loss functions. At

20See the Appendix for a precise definition of the loss functions, the Success Ratio and the Directional
Accuracy test.
21To economize space, plots for the remaining models are relegated to the online appendix.
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longer horizons such as 21 and 63 days (one and three months, respectively), evidence
in favor of a switching model is stronger: the MS-GARCH-t is ranked first by four loss
functions.
The SR averages over 50% for most models and forecast horizons, indicating that most

models forecast the direction of the change correctly in more that 50% of the sample.
For the 1-, 5- and 21-day forecast horizons, the SR exceeds 60% for all models except
EGARCH-N at 21-day horizon (averages 70%, 71% and 68% respectively). In addition,
at a longer 63-day horizon the SR averages 60% across all models, suggesting the direction
of the change is more diffi cult to predict for this longer 63-day horizon. Notice that at this
horizon the SR is less than 50% for the three GARCH models and the EGARCH-N , yet
all three MS-GARCH models have SR higher than 70%, which indicates that MS-GARCH
models can do a much better job at predicting the direction of the change in volatility than
the time-invariant models in the long run. The results of the DA test are consistent with
this finding. Recall that a significant DA statistic indicates that the model forecasts have
predictive content for the underlying volatility. In particular, the DA test is significant at
the 1% level for majority of the models at 1- and 5-day forecast horizons. In contrast, for
the longer 21- and 63-day forecast horizons the number of models that exhibit a significant
DA decreases to six and four, respectively, and all MS-GARCH models are included.
Tables 5a and 5b reports selected DM test statistics with EGARCH-t andMS-GARCH-

t as benchmark models.22 These test results are in line with the rankings reported in
Tables 4a and 4b. Consider first the 1-day-ahead forecast where the EGARCH-t was
ranked higher by three loss functions R2LOG, MAD1 and MAD2. As Table 5a shows,
we reject the null of Equal Predictive Ability at 5% level for at least seven of the eleven
competing models under the three loss functions, favoring the benchmark EGARCH-t
model. Furthermore, all models but the EGARCH-t are shown to have equal or lower
predictive accuracy than the MS-GARCH-t (see Table 5b). Regarding the 5-day horizon
(1 week), there is some statistical difference in the forecast accuracy comparison between
the benchmark model and the non-switching models. The EGARCH-t has higher pre-
dictive accuracy than 8 of the 11 competing models for MAD1 and MAD2. Yet, the
MS-GARCH-t is found to have equal accuracy as the benchmark EGARCH-t. When the
MS-GARCH-t is considered to be the benchmark, it has higher predictive accuracy than
all the GARCH and GJR models for QLIKE, R2LOG, MAD1 and MAD2. In contrast,
as the forecast horizon increases to 21 and 63 days (1 and 3 months), statistical evidence
that the forecast accuracy differences are negative, in favor of switching models —especially
the MS-GARCH-t—is prevalent. Indeed, the EGARCH-t has significantly better accuracy
than majority of the non-switching models forMAD1 andMAD2, but the MS-GARCH-t
has higher predictive accuracy than the GARCH and GJR classes according to all six loss
functions. Moreover, it is worth noting that MS-GARCH-t is favored over the EGARCH-t
for both MSE2 and QLIKE at 63-day horizon. In fact, at this longest horizon, the MS-
GARCH-t has significantly higher predictive accuracy than all the 11 competing models
for QLIKE.

22The complete list of all DM test statistics can be requested from the authors.

14



The p-values for the RC and SPA tests are reported in Tables 6a and 6b, where each
model is compared against all the others. Recall that the null hypothesis here is that
no other models outperform the benchmark. The model in each row is the benchmark
model under consideration. The RC, SPAc, and SPAl correspond to the Reality Check
p-value, Hansen’s (2005) consistent, and lower p-values, respectively.23 For the 1- and
5-day horizons, all three EGARCH models fail to reject the null regardless of the loss
function (except for EGARCH-GED with QLIKE and MAD1) at 5% level, implying no
other models can outperform the EGARCH models. Meanwhile, the MS-GARCH-t also
outperforms other models when the MSE1, MSE2 or QLIKE is used, but not for the
other loss functions (see Table 6a). Yet, consistent with the out-of-sample evaluation and
the Diebold and Mariano’s EPA test results, as the forecast horizon increases we fail to
reject the null, not only for EGARCH models, but also for the MS-GARCH-t, with the
exception of MAD1 and MAD2.
It is interesting to consider here how our results differ from Fong and See (2002)

and Nomikos and Pouliasis (2011), who find some evidence that MS-GARCH models are
preferred over GARCH models for forecasting the volatility of oil futures. Recall that
both studies use an estimation methodology that does not allow for a straightforward
calculation of multi-step forecasts. Hence, they only compute one-step-ahead forecasts.
Fong and See (2002) use three loss functions (MSE, MAE, which correspond to MSE2

andMAD2 in our paper, together with the R2) to evaluate the out-of-sample performance
of a MS-GARCH-t and a GARCH-t models. They find that the MS-GARCH-t yields a
lower loss when the MSE2 or MAD2 are used, however, the ranking is reversed when
the R2 is used. Thus, it is not clear that the switching model performs unanimously
better than the non-switching model for a short forecast horizon. In contrast, when we
evaluate volatility in spot oil prices at the 1-day horizon, the EGARCH-t is ranked above
the switching models for four out of six loss functions. Yet, the MS-GARCH-t is ranked
higher than the the GARCH-t for all loss functions. In other words, had we restricted
ourselves to the models and loss functions used by Fong and See (2002), we would have
reached similar conclusions.
Nomikos and Pouliasis (2011), on the other hand, consider a wider range of models

and forecast evaluation methods than Fong and See (2002) but do not estimate EGARCH
models. They instead focus on GARCH, MS-GARCH, and Mix-GARCH and also com-
pute the one-step-ahead forecasts. Overall, they find evidence that the Mix-GARCH-X
model yields smaller forecast errors and more accurate forecasts for NYMEXWTI futures.
This result is also consistent with our finding that at the 1-day horizon MS-GARCH mod-
els are somewhat less favorable.

5.3 Model Confidence Set

A disadvantage in doing a pairwise or groupwise forecast evaluation, as in the DM, RC
or SPA tests, is that one has to specify a benchmark model for comparison. Hansen,

23The p-values are calculated using the stationary bootstrap from Politis and Romano (1994). The
number of bootstrap re-samples B is 3000 and the block length q is 2.
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Lunde and Nason (2011) proposed the alternative Model Confidence Set (MCS), which
does not require a pre-specified benchmark model. Instead, it determines a set of “best”
modelsM∗ with respect to some loss functions given some level of confidence. Namely,
rather than choosing a single model based on some model selection criteria, MCS is a
data-dependent set of best models. Given a collection of competing models, M0 and a
criterion, L, MCS is constructed based on an equivalence test, δM and an elimination
rule, eM. MCS procedure is a sequential testing procedure. First, the equivalence test
is applied to the set of models M =M0; if rejected, there is evidence that the models
in M are not equally “good”and eM is used to eliminate an object with poor sample
performance fromM. The procedure is repeated until δM is accepted and the MCS now
includes the set of surviving models and is referred to as the MCS.
Define the relative performance variable dij,t = Li,t − Lj,t for i, j ∈ M0. Let µij =

E [dij,t] . The set of superior objects is defined as

M∗ =
{
i ∈M0 : µij ≤ 0 for all j ∈M0

}
.

The EPA hypothesis for a given set of modelsM can be formulated in two ways:

H0,M : µij = 0 for all i, j ∈M ⊂M0, (4)

HA,M : µij 6= 0 for some i, j ∈M ⊂M0,

or

H0,M : µi. = 0 for all i, j ∈M ⊂M0, (5)

HA,M : µi. 6= 0 for some i, j ∈M ⊂M0,

where d̄ij = n−1
∑n

t=1 dij,t, d̄i. = m−1
∑

j∈M d̄ij and µi. = E(di.). According to Hansen,
Lunde and Nason (2001), we construct the t-statistics as in DM test for testing the pair
(4):

tij =
d̄ij√
v̂ar(d̄ij)

, i, j ∈M.

Similarly, to test (5), the t-statistics is

ti. =
d̄i.√
v̂ar(d̄i.)

, i, j ∈M,

where d̄i. is the sample loss of the i-th model relative to the average across models inM,
and v̂ar(d̄i.) is the estimates of var(d̄i.).
Then the null hypotheses in (4) and (5) map to the two following test statistics re-

spectively:
TR,M = max

i,j∈M
|tij| and Tmax,M = max

i∈M
ti..

The asymptotic distributions of TR,M and Tmax,M are nonstandard and can be simu-
lated through bootstrap, and the elimination rules applied are

eR,M = arg max
i∈M

{
sup
j∈M

tij

}
and emax,M = arg max

i∈M
{ti.} .
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We run both tests with confidence level at 0.25 and the bootstrap iteration is 3000.
Our results suggest that (Tmax,M, emax,M) are conservative and produce relatively large
model confidence sets, which is consistent with the Corrigendum to this paper. We follow
the authors’suggestion and focus on (TR,M, eR,M). The output reinforces our findings.
At 1-day horizon, EGARCH-t is the sole model left inM∗ according to R2LOG, which is
a very strong statement in support of the EGARCH-t model. When MAD1 and MAD2

are used,M∗ consists of two EGARCH models, EGARCH-N and EGARCH-t. At 5-day
horizon, results are very similar except that R2LOG finds all three EGARCH models
are indistinguishably better than the rest. At 21-day horizon, MS-GARCH-t is the sole
model inM∗ according to QLIKE, meanwhile EGARCH-t is the sole model according
to MAD1 and MAD2. Finally, at 63-day horizon, both MSE1 and QLIKE select the
single model MS-GARCH-t, yet MAD1 and MAD2 still prefers EGARCH-t. Meanwhile,
at this longer horizon the GARCH models are always eliminated. To summarize, the two
MAD criteria prefers EGARCH-t across all forecast horizons, however, MS-GARCH-t is
the best according to QLIKE at 21- and 63-day horizons.

5.4 Preferences for Loss Functions

Our empirical findings suggest that EGARCH-t and MS-GARCH-t are the two closest
competitors in forecasting volatility. EGARCH-t is mostly favored for forecasting at
short horizons whilst MS-GARCH-t generally does better job at longer horizons. When we
investigate further the combined results from the EPA, RC, SPA and MCS tests, we notice
that different loss functions have persistent preferences over certain models. Specifically,
the two MAD loss functions seem to favor the EGARCH-t across all horizons. However,
the MSE criteria and especially QLIKE often rank the MS-GARCH-t higher. Now the
question of interest is, are certain loss functions better than others in volatility forecast?
It is trivial to see that theMSE2 and QLIKE loss functions generate optimal forecast

equal to the conditional variance σ2
t . Patton (2001) shows that only these two among the

six loss functions are robust to noise in the volatility proxy and all the rest suffer from
bias distortion. Furthermore, Patton demonstrates that employing a measure of realized
volatility —as we do here—to proxy for σ2

t , alleviates the bias distortion relative to using
other proxies such as the daily squared returns. Yet, as many authors have noted, the
MSE2 is sensitive to extreme observations and the level of volatility of returns. Such
episodes of extreme volatility are present in spot oil returns, which provides a motivation
for using the QLIKE in forecasting their volatility. Not surprisingly, Patton (2011) ar-
gues that the moment conditions required under MSE2 are also substantially stronger
than those under QLIKE, which suggests employing the latter loss. Brownlees et al.
(2011) also favor QLIKE for two reasons: first, the QLIKE only depends on the mul-
tiplicative forecast error, thus it is easier to identify when a model fails to adequately
capture predictable movements in volatility; second, the MSE2 has a bias that is propor-
tional to the square of the true variance, suggesting that obtaining a large MSE2 could
be a consequence of high volatility without necessarily corresponding to deterioration of
forecasting ability. In addition, Patton and Sheppard (2009) find that the power of the
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DM tests using QLIKE loss is higher than those using MSE2 loss. In brief, there is
ample motivation in the literature for using the QLIKE loss rather than any of the other
loss functions considered in this paper in forecasting volatility. In turn, using the QLIKE
loss favors the MS-GARCH-t model, especially at the longer horizons.

5.5 How Stable is the Forecasting Accuracy of the Preferred
Models?

One concern with using a single model to forecast over a long time period is that the pre-
dictive accuracy might depend on the out-of-sample period used for forecast evaluation.
In particular, a model might be chosen for its highest predictive accuracy when evalu-
ating the loss functions over the whole out-of-sample period, yet one of the competing
models might exhibit a lower Mean Squared Predictive Error (MSPE) at a particular
point (or points) in time during the evaluation period. As we have already mentioned,
Table 4 indicates that for the evaluation period of 2013-2014, the MS-GARCH-t exhibits
lower MSPE —as measured by three loss functions (MSE1, MSE2, QLIKE)— for the
1- and 5-day forecast horizons, whereas the EGARCH-t results in smaller MSPE when
the remaining loss functions are used. In addition, the switching model yields smaller
MSPE for the longer 21- and 63-day horizons. To investigate the stability of the forecast
accuracy, we compute the MSPE from the QLIKE loss over 441 rolling sub-samples in
the evaluation period, where the first sub-sample consists of the first 63 forecasts (three
months) in the evaluation period, the second sub-sample is created by dropping the first
forecast and adding the 64th forecast at the end, and so on. In brief, these MSPEs
are now computed as the average QLIKE over a rolling window of size n = 63. Figure
4 plots the ratio of the MSPE for GARCH-t and EGARCH-t models relative to the
MS-GARCH-t at each of the four horizons. Note that, because the last window used to
compute the MSPE spans the period between October 2, 2014 and December 31, 2014,
the last MSPE ratio is reported at October 1, 2014. Figure 4 illustrates that at the
1- and 5-day horizons the MS-GARCH-t almost always has higher predictive accuracy
than the GARCH-t as evidenced by the MSPE ratio exceeding 1 over almost all of the
evaluation period except for the first quarter of 2013 where the ratio is slightly below 1.
Although being ranked lower in Table 4a, the EGARCH-t has higher predictive accuracy
than MS-GARCH-t during the beginning of the evaluation period and mid 2013 through
mid 2014. As for the longer 1-month and 3-month horizons, the MS-GARCH-t has been
more accurate than the GARCH-t model throughout the whole evaluation period. At all
horizons, relative to its closest competitor EGARCH-t, the Markov switching model did
worse during most of the evaluation period, but did a better job at predicting the increase
in volatility during the second half of 2014, when the volatility of spot oil returns increased
significantly. We conclude that there are clear gains from using the MS-GARCH-t model
for forecasting crude oil return volatility, especially during periods of turmoil. Whereas
these gains are not evident for the 1- and 5-day horizons over the two-year evaluation
period (Table 4), some gains become clear when we plot the ratio of the rolling window
MSPEs of a sub-period of three months, especially towards the end of the evaluation
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period.

6 Conclusion

This paper offered an extensive empirical investigation of the relative forecasting perfor-
mance of different models for the volatility of daily spot oil price returns. Our results
suggest five key insights for practitioners interested in crude oil price volatility. First,
given the extremely high kurtosis present in the data, models where the innovations are
assumed to follow a Student’s t or a GED distribution are favored over those where a
normal distribution is presumed. Second, for the one day horizon the EGARCH-t is often
ranked higher in terms of loss functions and tends to yield more accurate forecasts than
other EGARCH and all GARCH models. Yet, predictive accuracy appears to be similar to
that of the MS-GARCH-t. Third, as the length of the forecast horizon increases, the MS-
GARCH-t model outperforms non-switching GARCH models and other regime switching
specifications. Fourth, the QLIKE, being the most popular loss function for its good
properties, favors the sole MS-GARCH-t model at longer horizons, which reinforces our
findings. Lastly, when we analyzed the stability of the forecasting accuracy over different
evaluation periods, we found MS-GARCH-t model has higher predictive accuracy for all
horizons towards the end of the evaluation period when oil returns became considerably
more volatility. All in all, our analysis suggested that the MS-GARCH-t model yields
more accurate long-term forecasts of spot WTI return volatility and that it does a better
job at forecasting during periods of turmoil.
Three caveats are needed here. First, as it is well known in the literature, EGARCH

models deliver an unbiased forecast for the logarithm of the conditional variance, but the
forecast of the conditional variance itself would be biased following Jensen’s Inequality
(e.g., Andersen et al. 2006, among others). For practitioners who prefer unbiased fore-
casts, caution must be taken when using EGARCH models. Second, our finding that the
MS-GARCH-t model is clearly preferred at long horizons is robust to a longer in-sample
period ranging from Jan 2, 1986 to Dec 30, 2011 and evaluating the forecasting abil-
ity on a shorter out-of-sample period of year 2012 only that excludes the large increase
in volatility of the last semester of 2014. Lastly, long horizon volatility forecasts that
might be of interest to oil companies, such as the 1- and 3-month horizons, may be com-
puted in three different ways. For instance, if a researcher was interested in obtaining a
one-month-ahead forecast, she could compute a “direct”forecast by first estimating the
horizon-specific (e.g., monthly) GARCH model of volatility and then using the estimates
to directly predict the volatility over the next month. Alternatively, as we do here, she
could compute an “iterated” forecast where a daily volatility forecasting model is first
estimated and the monthly forecast is then computed by iterating over the daily fore-
casts for the 21 working days in the month. In this paper we use the “iterated”forecast
to evaluate the relative out-of-sample performance of different models in the context of
multi-period volatility forecast. Ghysels, Rubia, and Valkanov (2009) find that iterated
forecasts of stock market return volatility typically outperform the direct forecasts. Thus
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we opt for this forecasting scheme. Nevertheless, evaluating the relative performance of
these two alternative methods and comparing it to the more recent mixed-data sampling
(MIDAS) approach proposed by Ghysels, Santa-Clara, and Valkanov (2005, 2006) is the
aim of our future research.
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Table 1: Descriptive Statistics
WTI Returns

Mean Std. Dev Min Max Variance Skewness Kurtosis
0.0162 2.34 -12.83 16.41 5.45 -0.017 7.91

RV 1/2

Mean Std. Dev Min Max Variance Skewness Kurtosis
0.0197 0.0099 0.0040 0.187 0.00010 3.55 36.82

ln(RV 1/2)
Mean Std. Dev Min Max Variance Skewness Kurtosis
-4.02 0.41 -5.53 -1.67 0.17 0.39 4.10

Note: WTI returns denotes the log difference of the West Texas Intermediate daily spot closing price. RV denotes realized
volatility computed from the 5-minute returns on oil futures. WTI returns, RV 1/2, and the natural logarithm of RV 1/2

series are from the sample period of July 1, 2003 to April 2, 2015 for 2955 observations
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Table 2: MLE Estimates of Standard GARCH Models

GARCH EGARCH GJR

N t GED N t GED N t GED

µ 0.0944** 0.1068** 0.1122** 0.0349 0.0700* 0.0747*** 0.0603 0.0858** 0.0898**
(0.0402) (0.0397) (0.0393) (0.0424) (0.0398) (0.0398) (0.0426) (0.0402) (0.0401)

α0 0.2145** 0.1890** 0.2048** 0.0203** 0.0142** 0.015** 0.2026** 0.1670** 0.1847**
(0.0336) (0.0408) (0.0451) (0.0045) (0.0059) (0.006) (0.0321) (0.0391) (0.0429)

α1 0.0756** 0.0754** 0.0753** 0.0864** 0.0965** 0.0912** 0.0381** 0.0348** 0.0367**
(0.0079) (0.0126) (0.0118) (0.0089) (0.0165) (0.0146) (0.0087) (0.0126) (0.0124)

γ1 0.8809** 0.8854** 0.8826** 0.9887** 0.9461** 0.9895** 0.8857** 0.8931** 0.8896**
(0.0124) (0.0162) (0.0168) (0.0026) (0.0036) (0.0037) (0.0127) (0.0152) (0.0164)

ξ - - - -0.0483** -0.0539* -0.0501** 0.0708** 0.0746** 0.0707**
(0.0065) (0.0111) (0.0099) (0.0168) (0.0219) (0.0221)

ν - 8.6309** 1.4799** - 8.4794** 1.4774** - 8.8579** 1.4924**
(1.1318) (0.0441) (1.0315) (0.0417) (1.1456) (0.0436)

Log(L) -5253.15 -5210.74 -5220.12 -5244.00 -5195.39 -5209.08 -5242.84 -5200.47 -5211.42

Note: * and ** represent significance at 5% and 1% level respectively. A one-sided test is conducted on ξ. Each model
is estimated with Normal, Student’s t, and GED distributions. The in-sample data consist of WTI returns from 7/1/03
to 12/30/12. The conditional mean is rt = µ + εt. The conditional variances are ht = α0 + α1ε2t−1 + γ1ht−1, log(ht) =

α0 +α1

(∣∣∣∣ εt−1√
ht−1

∣∣∣∣− E ∣∣∣∣ εt−1√
ht−1

∣∣∣∣)+ ξ
εt−1√
ht−1

+γ1 log(ht−1), and ht = α0 +α1ε2t−1 + ξε2t−1I{εt−1<0}+γ1ht−1 for GARCH,

EGARCH, and GJR-GARCH respectively. Asymptotic standard errors are in parenthesis.
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Table 3: Maximum Likelihood Estimates of MS-GARCH Models
MS-GARCH-N MS-GARCH-t MS-GARCH-GED

µ(1) -0.6921** 0.0932 0.1112
(0.2004) (0.0801) (0.0739)

µ(2) 0.1727** 0.1141** 0.1010**
(0.0452) (0.0485) (0.0493)

σ(1) 9.3085** 2.0452* 2.253**
(0.5011) (1.2379) (1.0062)

σ(2) 1.6697** 2.3174** 1.9709**
(0.3459) (0.1902) (0.1640)

α
(1)
1 0.0142 0.0980 0.1628**

(0.0145) (0.0649) (0.073)
α

(2)
1 0.005 0.0625** 0.0484**

(0.019) (0.0130) (0.0119)
γ

(1)
1 0.9750** 0.5697** 0.5004**

(0.029) (0.2755) (0.0187)
γ

(2)
1 0.8234** 0.9221** 0.9369**

(0.0348) (0.0164) (0.0146)
p11 0.9003** 0.9936** 0.9856**

(0.0027) (0.0051) (0.0081)
p22 0.9787** 0.9973** 0.9941**

(0.0068) (0.0020) (0.0032)
ν(1) - 3.7976** 1.0240**

(0.8557) (0.0885)
ν(2) - 17.8335** 1.9512**

(7.3007) (0.1431)
Log(L) -5222.04 -5194.95 -5197.09

N.of Par. 10 12 12
π1 0.1760 0.2967 0.2906
π2 0.8240 0.7033 0.7094

α
(1)
1 + γ

(1)
1 0.9892 0.6677 0.6632

α
(2)
1 + γ

(2)
1 0.8284 0.9846 0.9853

Note: * and ** represent significance at 5% and 1% level respectively. Each MS-GARCH model is estimated using different
distribution as described in the text. The in-sample data consist of WTI returns from 7/1/03 to 12/30/12. The superscripts

indicate the regime. The standard deviation conditional on the regime is reported: σ(i) =
(
α
(i)
0 /(1− α(i)1 − γ

(i)
1 )
)1/2

. πi

is the ergodic probability of being in regime i; α(i)1 + γ
(i)
1 measures the persistence of shocks in the i-th regime. Asymptotic

standard errors are in the parentheses.
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Table 4a: Out-of-sample evaluation of the one- and five-step-ahead volatility forecasts

1-step-ahead volatility forecasts
Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD1 Rank MAD2 Rank SR DA
GARCH-N 0.2106 5 2.5312 4 1.4239 5 0.5348 7 1.1161 7 0.3998 7 0.73 6.7663**
GARCH-t 0.1914 2 2.3649 2 1.4083 2 0.4890 5 1.0424 5 0.3751 5 0.73 6.7298**
GARCH-GED 0.2019 3 2.4422 3 1.4175 3 0.5160 6 1.0836 6 0.3895 6 0.73 6.6049**
EGARCH-N 0.2205 6 3.7800 10 1.4900 11 0.3785 2 0.8226 2 0.2855 2 0.64 0.9844
EGARCH-t 0.2043 4 3.5487 8 1.4773 10 0.3537 1 0.7812 1 0.2717 1 0.66 0.2615
EGARCH-GED 0.2257 7 3.8399 11 1.5042 12 0.3858 3 0.8267 3 0.2885 3 0.61 -1.4866
GJR-N 0.2756 11 3.9916 12 1.4404 8 0.5991 11 1.3186 12 0.4407 12 0.73 5.8730**
GJR-t 0.2478 8 3.5014 7 1.4235 4 0.5494 8 1.2207 8 0.4122 8 0.73 5.5640**
GJR-GED 0.2606 9 3.6928 9 1.4326 7 0.5758 10 1.2693 11 0.4274 11 0.73 5.7040**
MS-GARCH-N 0.2671 10 3.4140 5 1.4289 6 0.5746 9 1.2256 10 0.4131 9 0.7 5.2922**
MS-GARCH-t 0.1899 1 2.3194 1 1.4012 1 0.4708 4 0.9980 4 0.3566 4 0.68 5.2429**
MS-GARCH-GED 0.2829 12 3.5010 6 1.4501 9 0.6441 12 1.2234 9 0.4234 10 0.69 5.2802**

5-step-ahead volatility forecasts
Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD1 Rank MAD2 Rank SR DA
GARCH-N 1.0821 5 55.7240 4 3.0784 7 0.5241 10 5.8666 8 0.9330 9 0.72 5.6439**
GARCH-t 0.9652 2 50.3921 2 3.0610 3 0.4739 5 5.4392 5 0.8715 5 0.72 5.7700**
GARCH-GED 1.0289 4 52.9307 3 3.0713 5 0.5035 8 5.6788 6 0.9076 8 0.72 5.9367**
EGARCH-N 1.1074 6 83.8685 11 3.1599 11 0.3628 2 4.0577 2 0.6245 2 0.63 0.1611
EGARCH-t 0.9816 3 71.7613 7 3.1348 10 0.3389 1 3.8626 1 0.6017 1 0.67 -0.8195
EGARCH-GED 1.1509 8 85.6236 12 3.1880 12 0.3833 3 4.1365 3 0.6458 3 0.61 -3.3194
GJR-N 1.2642 11 81.1383 10 3.0805 8 0.5469 11 6.4601 12 0.9766 12 0.76 7.6863**
GJR-t 1.1128 7 69.3462 6 3.0618 4 0.4934 6 5.9303 9 0.9073 7 0.76 7.4437**
GJR-GED 1.1803 10 73.8522 8 3.0715 6 0.5205 9 6.1823 10 0.9426 10 0.76 7.3697**
MS-GARCH-N 1.1690 9 67.3210 5 3.0591 2 0.4969 7 5.7440 7 0.8767 6 0.73 6.8979**
MS-GARCH-t 0.8777 1 46.1996 1 3.0384 1 0.4196 4 4.9220 4 0.7826 4 0.67 4.2898**
MS-GARCH-GED 1.4373 12 75.7412 9 3.1015 9 0.6319 12 6.3387 11 0.9750 11 0.7 5.5531**

Note: The volatility proxy is given by the realized volatility calculated with five-minute returns aggregated with the overnight returns. * and ** denote 5% and 1%
significance levels for the DA statistic, respectively.
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Table 4b: Out-of-sample evaluation of the 21- and 63-step-ahead volatility forecasts

21-step-ahead volatility forecasts
Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD1 Rank MAD2 Rank SR DA
GARCH-N 6.5310 10 1282.5777 8 4.6439 9 0.6981 12 31.8949 12 2.3934 12 0.6 0.2237
GARCH-t 5.7824 4 1140.2466 5 4.6229 6 0.6327 8 29.5494 8 2.2426 9 0.65 1.4476
GARCH-GED 6.2000 6 1214.6674 6 4.6356 8 0.6715 11 30.8988 10 2.3332 11 0.63 0.9705
EGARCH-N 6.9819 11 2177.7107 11 4.8243 11 0.4940 3 21.7580 3 1.5319 2 0.54 -8.0191
EGARCH-t 6.3365 8 1997.8148 10 4.7864 10 0.4533 2 20.1877 1 1.4342 1 0.68 -4.6892
EGARCH-GED 7.0592 12 2179.0182 12 4.8473 12 0.5100 5 21.5664 2 1.5457 3 0.62 -7.8636
GJR-N 6.3119 7 1276.5772 7 4.6272 7 0.6652 10 31.0036 11 2.3073 10 0.75 6.4341**
GJR-t 5.4339 3 1058.1458 2 4.6041 3 0.5964 6 28.0513 6 2.1302 6 0.77 7.0618**
GJR-GED 5.7918 5 1138.4597 4 4.6146 4 0.6270 7 29.3222 7 2.2109 8 0.76 6.6794**
MS-GARCH-N 4.8156 2 1079.0748 3 4.5745 2 0.5078 4 25.0264 5 1.8810 5 0.73 6.2937**
MS-GARCH-t 3.9713 1 850.7942 1 4.5488 1 0.4290 1 22.1929 4 1.6899 4 0.7 5.7630**
MS-GARCH-GED 6.4389 9 1412.2395 9 4.6184 5 0.6489 9 29.9198 9 2.1904 7 0.71 5.5031**

63-step-ahead volatility forecasts
Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD1 Rank MAD2 Rank SR DA
GARCH-N 35.7379 12 26523.4547 9 5.9959 9 1.0258 12 146.4412 12 5.6748 12 0.44 -6.5344
GARCH-t 32.6550 7 24671.2528 7 5.9764 7 0.9459 10 139.1392 10 5.4326 10 0.46 -6.1886
GARCH-GED 34.4449 9 25730.9848 8 5.9891 8 0.9939 11 143.5644 11 5.5856 11 0.45 -6.4869
EGARCH-N 35.5025 11 34950.0898 12 6.3686 11 0.7458 6 94.9033 4 3.5231 3 0.49 -13.1858
EGARCH-t 33.1379 8 33130.0637 10 6.3244 10 0.6996 4 87.8113 1 3.2958 1 0.67 -5.6943
EGARCH-GED 34.8127 10 34380.0924 11 6.3803 12 0.7401 5 90.2934 2 3.3933 2 0.61 -11.7889
GJR-N 30.7294 6 20893.3086 6 5.9514 6 0.9227 9 131.0116 9 5.2017 9 0.55 -0.6735
GJR-t 26.9771 4 18340.4726 2 5.9263 4 0.8336 7 121.9424 7 4.9126 7 0.69 3.2183**
GJR-GED 28.4416 5 19317.8082 3 5.9370 5 0.8698 8 125.5674 8 5.0319 8 0.63 1.4474
MS-GARCH-N 21.2259 2 20094.1955 5 5.8686 2 0.5779 2 101.8794 5 3.9724 5 0.76 7.9407**
MS-GARCH-t 18.8717 1 16793.6501 1 5.8408 1 0.5278 1 94.4618 3 3.6995 4 0.7 6.0831**
MS-GARCH-GED 23.6958 3 19438.8779 4 5.8857 3 0.6962 3 114.0805 6 4.4590 6 0.75 8.3764**

Note: The volatility proxy is given by the realized volatility calculated with five-minute returns aggregated with the overnight returns. * and ** denote 5% and 1%
significance levels for the DA statistic, respectively.
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Table 5a: Diebold and Mariano test - EGARCH-t Benchmark

Panel A: One day Horizon Panel B: Five day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2

GARCH-N -0.10 0.80 0.70 -2.18* -3.62** -3.23** GARCH-N -0.31 0.58 0.68 -1.88 -3.30** -3.07**
GARCH-t 0.21 0.93 0.91 -1.68 -3.01** -2.58** GARCH-t 0.05 0.78 0.90 -1.41 -2.76** -2.48*

GARCH-GED 0.04 0.87 0.79 -1.98* -3.37** -2.94** GARCH-GED -0.14 0.69 0.77 -1.69 -3.08** -2.81**
EGARCH-N -1.16 -1.25 -0.63 -1.07 -1.24 -1.36 EGARCH-N -1.06 -1.09 -0.81 -0.85 -0.72 -1.00
EGARCH-GED -1.34 -1.32 -1.17 -1.40 -1.54 -1.43 EGARCH-GED -1.11 -1.04 -1.10 -1.26 -1.70 -1.57

GJR-N -1.00 -0.24 0.47 -2.72** -4.60** -4.06** GJR-N -0.80 -0.25 0.64 -1.99* -3.56** -3.43**
GJR-t -0.62 0.03 0.69 -2.21* -3.89** -3.51** GJR-t -0.37 0.07 0.86 -1.51 -2.96** -2.83**

GJR-GED -0.80 -0.08 0.57 -2.50* -4.29** -3.83** GJR-GED -0.57 -0.06 0.74 -1.76 -3.28** -3.14**
MS-GARCH-N -0.84 0.10 0.61 -2.14* -3.39** -3.34** MS-GARCH-N -0.49 0.15 0.89 -1.41 -2.48* -2.46*
MS-GARCH-t 0.23 0.94 1.01 -1.43 -2.34* -1.99* MS-GARCH-t 0.31 0.92 1.17 -0.85 -1.86 -1.65

MS-GARCH-GED -1.07 0.04 0.34 -2.56* -3.36** -3.20** MRS-GARCH-GED -1.16 -0.15 0.38 -2.25* -3.09** -3.01**

Panel C: Twenty-one day Horizon Panel D: Sixty-three day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2

GARCH-N -0.08 0.93 1.00 -1.61 -3.22** -2.70** GARCH-N -0.27 0.77 1.54 -1.48 -3.74** -3.73**
GARCH-t 0.25 1.13 1.16 -1.22 -2.79** -2.22* GARCH-t 0.05 1.03 1.66 -1.16 -3.55** -3.50**

GARCH-GED 0.06 1.02 1.07 -1.46 -3.05** -2.50* GARCH-GED -0.14 0.88 1.59 -1.36 -3.70** -3.67**
EGARCH-N -1.66 -1.59 -1.25 -1.45 -1.65 -2.27* EGARCH-N -2.33* -2.36* -1.40 -1.77 -2.13* -2.83**
EGARCH-GED -1.69 -1.52 -1.58 -1.91 -2.33* -2.32* EGARCH-GED -1.53 -1.50 -1.46 -1.50 -1.41 -1.73

GJR-N 0.01 0.86 1.10 -1.37 -2.74** -2.23* GJR-N 0.23 1.18 1.70 -0.99 -2.68** -2.22*
GJR-t 0.37 1.11 1.26 -0.94 -2.22* -1.63 GJR-t 0.61 1.45 1.84 -0.62 -2.38* -1.84

GJR-GED 0.23 1.02 1.19 -1.14 -2.46* -1.89 GJR-GED 0.46 1.35 1.78 -0.77 -2.52* -2.00*
MS-GARCH-N 0.68 1.26 1.52 -0.38 -1.58 -1.19 MS-GARCH-N 1.60 2.06+ 2.36+ 0.69 -1.46 -1.36
MS-GARCH-t 1.06 1.45 1.72 0.18 -0.94 -0.49 MS-GARCH-t 1.69 1.99+ 2.42+ 0.95 -0.79 -0.53

MS-GARCH-GED -0.04 0.79 1.19 -1.22 -2.53* -2.26* MS-GARCH-GED 1.06 1.73 2.10+ 0.02 -2.04* -1.91

Note: * and ** represent the DM test statistic for which the null hypothesis of equal predictive accuracy can be rejected at 5% and 1%, respectively and the DM
statistic is negative. + and ++ represent the 5% and 1% significance level when the DM test statistic is positive.
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Table 5b: Diebold and Mariano test - MS-GARCH-t Benchmark

Panel A: One day Horizon Panel B: Five day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -1.69 -0.93 -2.81** -2.67** -3.45** -2.60** GARCH-N -3.18** -1.45 -4.89** -4.51** -5.09** -4.03**
GARCH-t -0.13 -0.23 -0.88 -0.75 -1.51 -1.03 GARCH-t -1.40 -0.74 -2.92** -2.45* -3.21** -2.35*
GARCH-GED -0.99 -0.60 -2.07* -1.91 -2.70** -1.96* GARCH-GED -2.44* -1.14 -4.23** -3.78** -4.47** -3.40**
EGARCH-N -0.42 -1.01 -1.05 1.06 1.96 1.53 EGARCH-N -0.55 -1.00 -1.17 0.54 1.59 1.23
EGARCH-t -0.23 -0.94 -1.01 1.43 2.34+ 1.99+ EGARCH-t -0.31 -0.92 -1.17 0.85 1.86 1.65
EGARCH-GED -0.48 -1.04 -1.16 0.94 1.77 1.42 EGARCH-GED -0.61 -1.00 -1.26 0.32 1.32 1.09
GJR-N -2.28* -1.30 -3.12** -3.26** -3.82** -2.72** GJR-N -2.58** -1.33 -3.61** -3.65** -4.32** -3.08**
GJR-t -1.73 -1.15 -1.75 -1.95 -2.61** -2.10* GJR-t -1.73 -1.11 -2.02* -2.07* -2.93** -2.23*
GJR-GED -2.04* -1.22 -2.54* -2.70** -3.32** -2.47* GJR-GED -2.18* -1.22 -2.92** -2.94** -3.75** -2.71**
MS-GARCH-N -2.34* -2.17* -1.87 -2.06* -2.66** -2.73** MS-GARCH-N -1.92 -1.91 -1.51 -1.67 -2.12* -2.20*
MS-GARCH-GED -3.07** -2.60** -3.27** -3.36** -3.29** -3.15** MS-GARCH-GED -3.34** -2.92** -3.79** -3.73** -3.69** -3.52**

Panel C: Twenty-one day Horizon Panel D: Sixty-three day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -8.96** -6.39** -9.55** -8.98** -9.98** -9.73** GARCH-N -9.32** -7.23** -8.50** -9.90** -10.79** -10.52**
GARCH-t -7.60** -4.45** -9.29** -8.49** -9.66** -8.93** GARCH-t -10.35** -7.60** -9.85** -10.61** -12.35** -12.02**
GARCH-GED -8.72** -5.63** -9.85** -9.10** -10.37** -9.85** GARCH-GED -10.04** -7.68** -9.35** -10.43** -11.84** -11.53**
EGARCH-N -1.21 -1.51 -1.73 -0.44 0.58 0.10 EGARCH-N -1.86 -2.10* -2.42* -1.15 0.35 -0.04
EGARCH-t -1.06 -1.45 -1.72 -0.18 0.94 0.49 EGARCH-t -1.69 -1.99* -2.42* -0.95 0.79 0.53
EGARCH-GED -1.22 -1.51 -1.79 -0.53 0.51 0.15 EGARCH-GED -1.76 -2.01* -2.41* -1.10 0.59 0.32
GJR-N -5.93** -2.47* -6.34** -7.10** -6.36** -4.95** GJR-N -4.91** -1.68 -4.64** -7.39** -5.84** -4.56**
GJR-t -3.90** -1.44 -5.12** -5.60** -5.30** -3.72** GJR-t -4.14** -0.71 -4.30** -7.32** -5.73** -4.00**
GJR-GED -4.95** -1.91 -5.90** -6.58** -5.98** -4.36** GJR-GED -4.54** -1.12 -4.55** -7.48** -5.89** -4.31**
MS-GARCH-N -1.84 -1.58 -2.42* -2.36* -2.67** -2.35* MS-GARCH-N -1.57 -1.47 -2.40* -2.07* -2.22* -1.81
MS-GARCH-GED -3.77** -3.16** -4.49** -4.38** -4.83** -4.46** MS-GARCH-GED -2.73** -1.42 -2.49* -4.53** -4.17** -3.70**

Note: * and ** represent the DM test statistic for which the null hypothesis of equal predictive accuracy can be rejected at 5% and 1%, respectively and the DM
statistic is negative. + and ++ represent the 5% and 1% significance level when the DM test statistic is positive.

31



Table 6a: Reality Check and Superior Predictive Ability Tests

Horizon: One day Horizon: Five days
Loss Function Loss Function

Benchmark MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Benchmark MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
SPAl 0.624 0.870 0.433 0 0 0 SPAl 0.438 0.824 0.406 0 0 0

GARCH-N SPAc 0.339 0.168 0.053 0 0 0 GARCH-N SPAc 0.306 0.126 0.048 0 0 0
RC 0.373 0.168 0.059 0 0 0 RC 0.322 0.126 0.048 0 0 0
SPAl 0.979 0.979 0.760 0.002 0 0 SPAl 0.870 0.955 0.575 0.004 0 0

GARCH-t SPAc 0.665 0.409 0.136 0.002 0 0 GARCH-t SPAc 0.431 0.290 0.043 0.004 0 0
RC 0.665 0.409 0.136 0.002 0 0 RC 0.431 0.290 0.078 0.004 0 0
SPAl 0.806 0.936 0.526 0 0 0 SPAl 0.626 0.901 0.470 0.001 0 0

GARCH-GED SPAc 0.422 0.264 0.046 0 0 0 GARCH-GED SPAc 0.350 0.180 0.040 0.001 0 0
RC 0.422 0.264 0.075 0 0 0 RC 0.393 0.180 0.041 0.001 0 0
SPAl 0.352 0.177 0.062 0.513 0.453 0.526 SPAl 0.338 0.172 0.062 0.640 0.625 0.650

EGARCH-N SPAc 0.258 0.169 0.062 0.122 0.061 0.062 EGARCH-N SPAc 0.247 0.162 0.062 0.236 0.183 0.168
RC 0.352 0.177 0.062 0.449 0.074 0.306 RC 0.338 0.172 0.062 0.563 0.247 0.454
SPAl 0.586 0.217 0.093 0.991 0.997 0.999 SPAl 0.490 0.191 0.084 0.966 0.982 0.990

EGARCH-t SPAc 0.369 0.197 0.093 0.599 0.595 0.646 EGARCH-t SPAc 0.325 0.184 0.084 0.571 0.521 0.553
RC 0.586 0.217 0.093 0.990 0.996 0.998 RC 0.490 0.191 0.084 0.965 0.982 0.987
SPAl 0.315 0.155 0.061 0.415 0.387 0.512 SPAl 0.286 0.149 0.047 0.441 0.418 0.517

EGARCH-GED SPAc 0.227 0.143 0.061 0.077 0.034 0.051 EGARCH-GED SPAc 0.215 0.149 0.047 0.130 0.043 0.064
RC 0.315 0.155 0.061 0.345 0.235 0.280 RC 0.286 0.149 0.047 0.375 0.257 0.313
SPAl 0.047 0.123 0.331 0 0 0 SPAl 0.065 0.157 0.348 0 0 0

GJR-N SPAc 0.046 0.123 0.060 0 0 0 GJR-N SPAc 0.064 0.156 0.059 0 0 0
RC 0.047 0.123 0.060 0 0 0 RC 0.064 0.157 0.059 0 0 0
SPAl 0.148 0.214 0.454 0 0 0 SPAl 0.212 0.250 0.488 0.001 0 0

GJR-t SPAc 0.143 0.179 0.064 0 0 0 GJR-t SPAc 0.205 0.164 0.049 0.001 0 0
RC 0.145 0.214 0.065 0 0 0 RC 0.206 0.213 0.049 0.001 0 0
SPAl 0.089 0.177 0.389 0 0 0 SPAl 0.142 0.220 0.417 0 0 0

GJR-GED SPAc 0.088 0.165 0.065 0 0 0 GJR-GED SPAc 0.140 0.192 0.048 0 0 0
RC 0.088 0.177 0.065 0 0 0 RC 0.140 0.208 0.048 0 0 0
SPAl 0.070 0.215 0.405 0 0 0 SPAl 0.090 0.234 0.447 0.001 0 0

MS-GARCH-N SPAc 0.070 0.111 0.058 0 0 0 MS-GARCH-N SPAc 0.090 0.111 0.052 0.001 0 0
RC 0.070 0.215 0.405 0 0 0 RC 0.090 0.234 0.447 0.001 0 0
SPAl 0.956 0.944 0.997 0.008 0 0 SPAl 0.992 0.974 1 0.031 0 0.005

MS-GARCH-t SPAc 0.667 0.556 0.532 0.008 0 0 MS-GARCH-t SPAc 0.679 0.557 0.574 0.031 0 0.004
RC 0.956 0.944 0.997 0.008 0 0 RC 0.992 0.974 1 0.031 0 0.005
SPAl 0.022 0.158 0.223 0 0 0 SPAl 0.014 0.158 0.207 0 0 0

MS-GARCH-GED SPAc 0.022 0.103 0.056 0 0 0 MS-GARCH-GED SPAc 0.014 0.088 0.047 0 0 0
RC 0.022 0.158 0.223 0 0 0 RC 0.014 0.158 0.207 0 0 0

Note: This table presents the p-values of White’s (2000) Reality Check test, and Hansen’s (2005) Superior Predictive Ability test. The SPAl and SPAc are the
lower and consistent p-values from Hansen (2005), respectively. RC is the p-value from White’s (2000) Reality Check test. Each row contains the benchmark model.
The null hypothesis is that none of the alternative models outperform the benchmark. The p-values are calculated using 3000 bootstrap replications with a block
length of 2.
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Table 6b: Reality Check and Superior Predictive Ability Tests

Horizon: Twenty-one days Horizon: Sixty-three days
Loss Function Loss Function

Benchmark MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Benchmark MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
SPAl 0.351 0.775 0.388 0 0 0 SPAl 0.308 0.703 0.360 0 0 0

GARCH-N SPAc 0.270 0.121 0.036 0 0 0 GARCH-N SPAc 0.238 0.101 0.023 0 0 0
RC 0.272 0.121 0.264 0 0 0 RC 0.279 0.101 0.223 0 0 0
SPAl 0.816 0.940 0.549 0.003 0 0 SPAl 0.745 0.92 0.505 0.006 0 0

GARCH-t SPAc 0.422 0.254 0.043 0.003 0 0 GARCH-t SPAc 0.359 0.218 0.027 0.006 0 0
RC 0.469 0.254 0.054 0.003 0 0 RC 0.388 0.218 0.029 0.006 0 0
SPAl 0.549 0.857 0.449 0.001 0 0 SPAl 0.471 0.830 0.421 0.001 0 0

GARCH-GED SPAc 0.322 0.162 0.035 0.001 0 0 GARCH-GED SPAc 0.272 0.138 0.025 0.001 0 0
RC 0.359 0.162 0.037 0.001 0 0 RC 0.324 0.138 0.025 0.001 0 0
SPAl 0.331 0.155 0.064 0.637 0.626 0.607 SPAl 0.311 0.144 0.044 0.590 0.619 0.581

EGARCH-N SPAc 0.258 0.155 0.064 0.237 0.193 0.143 EGARCH-N SPAc 0.243 0.144 0.044 0.203 0.175 0.128
RC 0.331 0.155 0.064 0.561 0.251 0.404 RC 0.311 0.144 0.044 0.554 0.478 0.386
SPAl 0.585 0.193 0.077 0.964 0.976 0.991 SPAl 0.594 0.189 0.063 0.980 0.979 0.993

EGARCH-t SPAc 0.341 0.181 0.077 0.561 0.512 0.567 EGARCH-t SPAc 0.326 0.172 0.063 0.580 0.528 0.533
RC 0.585 0.193 0.077 0.964 0.976 0.990 RC 0.594 0.189 0.063 0.980 0.979 0.991
SPAl 0.279 0.141 0.044 0.417 0.412 0.505 SPAl 0.239 0.137 0.035 0.353 0.369 0.455

EGARCH-GED SPAc 0.231 0.141 0.044 0.120 0.044 0.064 EGARCH-GED SPAc 0.202 0.137 0.035 0.104 0.025 0.035
RC 0.279 0.141 0.044 0.382 0.242 0.291 RC 0.239 0.137 0.035 0.317 0.207 0.242
SPAl 0.085 0.160 0.378 0 0 0 SPAl 0.080 0.151 0.355 0 0 0

GJR-N SPAc 0.084 0.152 0.049 0 0 0 GJR-N SPAc 0.079 0.135 0.030 0 0 0
RC 0.084 0.160 0.049 0 0 0 RC 0.079 0.151 0.030 0 0 0
SPAl 0.244 0.275 0.509 0.002 0 0 SPAl 0.240 0.266 0.500 0.004 0 0

GJR-t SPAc 0.232 0.176 0.053 0.002 0 0 GJR-t SPAc 0.216 0.170 0.023 0.004 0 0
RC 0.234 0.227 0.053 0.002 0 0 RC 0.23 0.203 0.023 0.004 0 0
SPAl 0.166 0.212 0.430 0 0 0 SPAl 0.156 0.218 0.404 0 0 0

GJR-GED SPAc 0.161 0.172 0.042 0 0 0 GJR-GED SPAc 0.151 0.167 0.025 0 0 0
RC 0.161 0.172 0.042 0 0 0 RC 0.151 0.170 0.025 0 0 0
SPAl 0.119 0.253 0.487 0.002 0 0 SPAl 0.138 0.266 0.511 0.005 0 0

MS-GARCH-N SPAc 0.119 0.120 0.050 0.002 0 0 MS-GARCH-N SPAc 0.138 0.113 0.040 0.005 0 0
RC 0.119 0.253 0.487 0.002 0 0 RC 0.138 0.247 0.475 0.005 0 0
SPAl 0.995 0.972 1 0.042 0 0.001 SPAl 0.998 0.979 1 0.068 0 0.002

MS-GARCH-t SPAc 0.697 0.564 0.660 0.042 0 0.001 MS-GARCH-t SPAc 0.718 0.566 0.742 0.067 0 0.002
RC 0.995 0.957 1 0.042 0 0.001 RC 0.998 0.963 1 0.068 0 0.002
SPAl 0.010 0.127 0.219 0 0 0 SPAl 0.010 0.114 0.197 0 0 0

MS-GARCH-GED SPAc 0.010 0.079 0.039 0 0 0 MS-GARCH-GED SPAc 0.010 0.057 0.028 0 0 0
RC 0.010 0.127 0.219 0 0 0 RC 0.010 0.114 0.197 0 0 0

Note: This table presents the p-values of White’s (2000) Reality Check test, and Hansen’s (2005) Superior Predictive Ability test. The SPAl and SPAc are the
lower and consistent p-values from Hansen (2005), respectively. RC is the p-value from White’s (2000) Reality Check test. Each row contains the benchmark model.
The null hypothesis is that none of the alternative models outperform the benchmark. The p-values are calculated using 3000 bootstrap replications with a block
length of 2.
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Figure 1: Daily WTI Crude Oil Returns and Squared Deviations. The sample period extends from
July 1, 2003 through April 2, 2015.
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Figure 2: ln(RV 1/2) distributions. The solid line is the kernel density. The
dotted line is a normal density scaled to have the same mean and standard
deviation of the data. The sample period extends from July 1, 2003 through

April 2, 2015.

35



Jan13 Mar13 May 13 Jul13 Sep13 Nov 13 Jan14 Mar14 May 14 Jul14 Sep14 Nov 14

V
ol

at
ili

ty

0

5

10

15

20

25
Panel A: 1­day Horizon

Real.Vol. 5 min.
EGARCH­t
MS­GARCH­t

Jan13 Mar13 May13 Jul13 Sep13 Nov13 Jan14 Mar14 May14 Jul14 Sep14 Nov14

V
ol

at
ili

ty

0

10

20

30

40

50

60

70

80
Panel B: 5­day Horizon

Real.Vol. 5 min.
EGARCH­t
MS­GARCH­t

Jan13 Mar13 May13 Jul13 Sep13 Nov13 Jan14 Mar14 May14 Jul14 Sep14 Nov14

V
ol

at
ili

ty

0

50

100

150

200

250

300
Panel C: 21­day Horizon

Real.Vol. 5 min.
EGARCH­t
MS­GARCH­t

Jan13 Mar13 May13 Jul13 Sep13 Nov13 Jan14 Mar14 May14 Jul14 Sep14 Nov14

V
ol

at
ili

ty

0

100

200

300

400

500

600

700

800
Panel D: 63­day Horizon

Real.Vol. 5 min.
EGARCH­t
MS­GARCH­t

Figure 3: Volatility Forecast Comparisons for Select Models. The out-of-sample period extends
from January 2, 2013 through Dec 31, 2014.
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7 Appendix

7.1 Conventional GARCH Models

The first model we estimate is the standard GARCH(1, 1) proposed by Bollerslev (1986):
yt = µt + εt,

εt =
√
ht · ηt, ηt ∼ iid(0, 1)

ht = α0 + α1ε
2
t−1 + γ1ht−1,

(6)

where µt is the time-varying conditional mean possibly given by β
′xt with xt being the

k × 1 vector of stochastic covariates and β a k × 1 vector of parameters to be estimated.
α0, α1 and γ1 are all positive and α1 + γ1 ≤ 1.24

Denote the parameters of interest as θ = (β,α0, α1, γ1)′. Let f(ηt; ν) denote the density
function for ηt = εt(θ)/

√
ht(θ) with mean 0, variance 1, and nuisance parameters ν ∈ Rj.

The combined parameter vector is further denoted as ψ = (θ′, ν ′)′. The likelihood function
for the t-th observation is then given by

ft(yt) = ft(yt;ψ) =
1√
ht(θ)

f

(
εt(θ)√
ht(θ)

; ν

)
. (7)

When ηt is assumed to follow a standard normal the probability density function (pdf)
is

f(ηt) =
1√
2π

exp

(
−η

2
t

2

)
. (8)

Alternatively, if ηt is assumed to be distributed according to the Student’s t with ν degrees
of freedom, the pdf of ηt is then given by

f(ηt; ν) =
Γ
(
ν+1

2

)√
(ν − 2)πΓ

(
ν
2

) (1 +
η2
t

ν − 2

)− (ν+1)
2

, (9)

where Γ(·) is the Gamma function and ν is constrained to be greater than 2 so that the
second moment exists and equals 1. Then, ν is a nuisance parameter that needs to be
estimated.
Instead, if a GED distribution is assumed, the pdf of ηt is modeled as

f(ηt; ν) =
ν exp

[
−1

2

∣∣ηt
λ

∣∣ν]
λ2(1+ 1

ν )Γ
(

1
ν

) , (10)

with

λ ≡


(

2−
2
ν Γ
(

1
ν

))
Γ
(

3
ν

)


1
2

,

24When α1 + γ1 = 1, εt becomes an integrated GARCH process, where a shock to the variance will
remain in the system. However, it is still possible for it to come from a strictly stationary process, see
Nelson (1990).
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and ν defines the shape parameter indicating the thickness of the tails and satisfying
0 < ν <∞. When ν = 2, the GED distribution becomes a standard normal distribution.
If ν < 2, the tails are thicker than normal.
For the Exponential GARCH (EGARCH) model introduced by Nelson (1991) the

logarithm of the conditional variance is defined as

log(ht) = α0 + α1

(∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣− E
∣∣∣∣∣ εt−1√

ht−1

∣∣∣∣∣
)

+ ξ
εt−1√
ht−1

+ γ1 log(ht−1). (11)

Note that the equation for the conditional variance is in log-linear form. Thus, the implied
value of ht can never be negative, permitting the estimated coeffi cients to be negative. In
addition, the level of the standardized value of εt−1,

∣∣∣εt−1/
√
ht−1

∣∣∣, is used instead of ε2
t−1.

The EGARCH model allows for an asymmetric effect, which is measured by a negative
ξ. The effect of a positive standardized shock on the logarithmic conditional variance is
α1 + ξ; the effect of a negative standardized shock would be α1 − ξ instead.
Notice that in the EGARCH, E

∣∣∣εt−1/
√
ht−1

∣∣∣ takes different values under different
distribution specifications. When ηt is normal, E

∣∣∣εt−1/
√
ht−1

∣∣∣ is the constant√ 2
π
. Under

the t distribution specified in (9),

E

∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣ = E
∣∣ηt−1

∣∣ =
2
√
ν − 2Γ

(
ν+1

2

)
√
π · (ν − 1) · Γ

(
ν
2

) .
Under the GED distribution specified in (10),

E

∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣ = E
∣∣ηt−1

∣∣ =
Γ
(

2
ν

)[
Γ
(

1
ν

)
Γ
(

3
ν

)]1/2 .
Finally, the conditional variance for the GJR-GARCH developed by Glosten, Jagan-

nathan, and Runkle (1993) is modeled as

ht = α0 + α1ε
2
t−1 + ξε2

t−1I{εt−1<0} + γ1ht−1,

where I{ω} is the indicator function equal to one if ω is true, and zero otherwise. Then
the asymmetric effect is characterized by a significant ξ. ML estimation of GJR-GARCH
can be conducted similarly under different distributional specifications.

7.2 Forecast Evaluation Metrics

7.2.1 Statistical Loss Functions

The statistical loss functions used in this paper are defined as follows. Let the σ2
t denote

the latent volatility, which is replaced by the 5-minute realized volatility, and ĥt denote the
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model forecast. The first two metrics are the usual mean squared error (MSE) functions
given by

MSE1 = n−1

n∑
t=1

(
σt − ĥ1/2

t

)2

(12)

and

MSE2 = n−1

n∑
t=1

(
σ2
t − ĥt

)2

. (13)

We also compute two Mean Absolute Deviation (MAD) functions, as these criteria
are more robust to outliers than the MSE functions. These are given by

MAD1 = n−1

n∑
t=1

∣∣∣σt − ĥ1/2
t

∣∣∣ , (14)

MAD2 = n−1

n∑
t=1

∣∣∣σ2
t − ĥt

∣∣∣ . (15)

The last two criteria are the R2LOG and the QLIKE:

R2LOG = n−1

n∑
t=1

[
log(σ2

t ĥ
−1
t )
]2

, (16)

QLIKE = n−1

n∑
t=1

(
log ĥt + σ2

t ĥ
−1
t

)
. (17)

Equation (16) represents the logarithmic loss function of Pagan and Schwert (1990),
whereas (17) is equivalent to the loss implied by a Gaussian likelihood.

7.2.2 Success Ratio and Directional Accuracy

The percentage of times ĥt moves in the same direction as σ2
t is given by:

SR = n−1

n∑
t=1

I{σ2t ·ht>0}, (18)

where σ2
t is the demeaned volatility at t, and ht is the demeaned volatility forecast at t.

If the volatility and the forecasted volatility move in the same direction, then I{ω>0} is
equal to 1; 0 otherwise.
Having computed the SR, we calculate SRI = PP̂ + (1 − P )(1 − P̂ ) where P is the

fraction of times that σ2
t is positive and P̂ is the fraction of times that ht is positive. The

DA test is given by

DA =
SR− SRI√

V ar(SR)− V ar(SRI)
, (19)

where V ar(SR) = n−1SRI(1−SRI) and V ar(SRI) = n−1(2P̂ −1)2P (1−P )+n−1(2P −
1)2P̂ (1 − P̂ ) + 4n−2PP̂ (1 − P )(1 − P̂ ). A significant DA statistic indicates the model
forecast ĥt has predictive content for the underlying volatility σ2

t .
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7.2.3 Test of Equal Predictive Ability

Suppose
{
ĥi,t

}n
t=1
and

{
ĥj,t

}n
t=1
are two sequences of forecasts of the volatility σ2

t generated

by two competing models, i and j. Consider the loss function L(.) and define the loss
to be L(ĥt, σ

2
t ) if one makes the prediction ĥt when the underlying value is σ

2
t . Then the

difference between the two forecasts are defined as dt ≡ Li,t−Lj,t = L(ĥi,t, σ
2
t )−L(ĥj,t, σ

2
t ),

where Li,t ≡ L(ĥi,t, σ
2
t ) denotes the loss function for the benchmark model i and Lj,t is

the loss function for the alternative model j. Giacomini and White (2006) show that if
the parameter estimates are constructed using a rolling scheme with a finite observation
window, the asymptotic distribution of the sample mean loss differential d = n−1

∑n
t=1 dt

is asymptotically normal as long as {dt}nt=1 is covariance stationary with a short memory.
So the DM statistic for testing the null hypothesis of equal forecast accuracy between

models i and j is simply DM = d/
√
v̂ar(d), where the asymptotic variance v̂ar(d) can be

estimated by Newey-West’s HAC estimator.25 DM has a standard normal distribution
underH0. If the test statisticDM is significantly negative, the benchmark model is better
since it has a smaller loss function; if DM is significantly positive, then the benchmark
model is outperformed.

7.2.4 Test of Superior Predictive Ability

Consider comparing l + 1 forecasting models where model 0 is defined as the benchmark
model and k = 1, ..., l denote the l alternative models. Again Lk,t ≡ L(ĥk,t, σ

2
t ) denotes

the loss if a forecast ĥk,t is made with the k-th model when the true volatility is σ2
t .

Similarly, the loss function of the forecasts from the benchmark model is denoted by L0,t.
The performance of the k-th forecast model relative to the benchmark is given by

dk,t = L0,t − Lk,t, k = 1, ..., l; t = 1, ..., n.

Under the assumption that dk,t is stationary, the expected relative performance of
model k to the benchmark can be defined as µk = E [dk,t] for k = 1, ..., l. The value
of µk will be positive for any model k that outperforms the benchmark. Thus, the null
hypothesis for testing whether any of the competing models significantly outperform the
benchmark may be defined in terms of µk for k = 1, ..., l or, more specifically:

H0 : µmax ≡ max
k=1,...,l

µk ≤ 0.

The alternative is that the best model has a smaller loss function relative to the bench-
mark. If the null is rejected, then there is evidence that at least one of the competing
models has a significantly smaller loss function than the benchmark. As a result, White’s

25 v̂ar(d) = n−1 (γ̂ + 2
∑q

k=1 ωkγ̂k), where q = h − 1, ωk = 1 − k
q+1 is the lag window and γ̂i is an

estimate of the i-th order autocovariance of the series {dt} , where γ̂k = 1
n

∑n
t=k+1

(
dt − d

) (
dt−k − d

)
for k = 1, ..., q.
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RC test is constructed from the test statistic

TRCn ≡ max
k=1,...,l

n
1
2 d̄k,

where d̄k = n−1
∑n

t=1 dk,t. T
RC
n ’s asymptotic null distribution is also normal with mean 0

and some long-run variance Ω.
Note that TRCn ’s asymptotic distribution relies on the assumption that µk = 0 for all k,

however, any negative values of µk would also conform with H0. Hansen (2005) proposes
an alternative Super Predictive Ability (SPA) test statistic:

T SPAn = max
k=1,...,l

n
1
2 d̄k√

v̂ar(n
1
2 d̄k)

,

where v̂ar(n
1
2 d̄k) is a consistent estimator of the variance of n

1
2 d̄k obtained via bootstrap.

The distribution under the null is N(µ̂,Ω), where µ̂ is a chosen estimator for µ that
conforms with H0. Since different choices of µ̂ would result in difference p-values, Hansen
proposes three estimators µ̂l ≤ µ̂c ≤ µ̂u. We name the resulting tests SPAl, SPAc,
and SPAu, respectively. SPAc would lead to a consistent estimate of the asymptotic
distribution of the test statistic. SPAl uses the lower bound of µ̂ and the p-value is
asymptotically smaller than the correct p-value, making it a liberal test. In other words,
it is insensitive to the inclusion of poor models. SPAu uses the upper bound of µ̂ and it
is a conservative test instead. It has the same asymptotic distribution as the RC test and
is sensitive to the inclusion of poor models.
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