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ABSTRACT

This paper proposes a uni�ed approach to testing adequacy of nonlinear time series models. The

proposed test can be applied to various nonlinear time series models, including conditional probability

distribution models, Markov chain regime-switching models, conditional duration models, conditional

intensity models, continuous-time jump di¤usion models, continuous-time regression models, and con-

ditional quantile and interval models. Our approach is built upon the fact that for many nonlinear

time series models, model adequacy usually implies that a suitably transformed process is an indepen-

dent and identically distributed (i.i.d.) sequence with some speci�ed marginal distribution. Examples

include the probability integral transform of an autoregressive conditional distribution model, the in-

tegrated hazard function of a conditional duration or intensity model, the time-change transform of

a continuous-time regression model, and the binary transformation of an autoregressive conditional

quantile or interval model. These transforms are, respectively, i.i.d.U[0,1], i.i.d.EXP(1); i.i.d. N(0,1)

and i.i.d. Bernoulli(�) for some known � 2 (0; 1) when the time series models are correctly speci�ed.

The transformed process may be called the generalized residuals of a time series model since they are

generalizations of Cox and Snell�s (1968) concept of generalized residuals to a time series context. The

proposed test checks the joint hypothesis of generalized residuals via a frequency domain approach

and has omnibus power against a wide range of model misspeci�cations. It has a convenient null

asymptotic N(0,1) distribution and is robust to dependent persistence in the underlying time series

process. A Monte Carlo simulation study illustrates the merits of the approach.

Key Words: Binary Transformation, Generalized Residual, Generalized Spectrum, Joint Testing,

Probability Integral Transform, Integrated Hazard, Time Change, Nonlinear Time Series Models.



1. Introduction

Nonlinear time series analysis has been advancing rather rapidly in the past thirty years (e.g., Fan

and Yao 2003, Gao 2007, Granger and Teräsvirta 1993, Tjøstheim 1994, Tong 1990). A variety of

nonlinear time series models have been proposed and widely used in various branches of science and

social science. Unlike linear time series models, each nonlinear time series model has its own features

and existing speci�cation tests for nonlinear time series models are often model-speci�c. There are few

uni�ed tests in the literature that can be used to check various nonlinear time series models. In this

paper, we propose a uni�ed approach to testing various nonlinear time series models, using the fact

that the adequacy of many nonlinear time series models often implies that a suitably transformed series

is an independent and identically distributed (i.i.d.) sequence with a speci�ed marginal distribution.

For example, the probability integral transform of an autoregressive conditional distribution model,

the integrated hazard function of an autoregressive conditional duration or intensity model, and the

time-change transform of a continuous-time regression model (Park 2008), and the binary transform

of an autoregressive conditional quantile or interval model are an i.i.d. sequence with a speci�ed

marginal distribution respectively when the underlying models are correctly speci�ed. Thus, as a

generally applicable approach to testing the adequacy of nonlinear time series models, one can check

the joint hypothesis of the i.i.d. property and the speci�ed marginal distribution of the transformed

process. The transformed series may be called the generalized residual of the nonlinear time series

models, since it is a generalization of Cox and Snell�s (1968) generalized residual to a time series

context. The transformation is essentially a �lter that can capture all dynamic dependence of the

time series process so that its outputs �the generalized residuals �becomes an i.i.d. sequence with

some known distribution.

It is not a trivial task to test the joint hypothesis of the i.i.d. property and a speci�ed marginal

distribution for the generalized residuals. In this paper, we propose a uni�ed approach to testing

adequacy of various nonlinear time series models using the generalized spectral approach originally

proposed in Hong (1999). In the present context, autocorrelation-based tests (e.g., Box and Pierce

1971) are not appropriate for nonlinear time series models because it is well-known that a time series

can have zero autocorrelation but are not serially independent (e.g., an ARCH process). The idea of

generalized spectrum in Hong (1999) is to �rst transform a time series via the characteristic function

and then consider spectral analysis of the transformed series. It is an analytic tool for nonlinear time

series. As an alternative to higher order spectra (Brillinger and Rosenblatt 1967a, 1967b, Subba Rao

and Gabr 1984), the generalized spectrum does not require existence of any moment condition of the

underlying time series process. It can capture not only the serial dependence of the underlying time

series but also the shape of the marginal distribution. It is thus suitable for the aforementioned joint

testing problem for the generalized residuals.

Our approach is applicable to a variety of nonlinear time series models. It can test such popular
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time series models as autoregressive conditional density models (e.g., Hansen 1994), Markov chain

regime switching models, autoregressive conditional duration models (Engle and Russell 1998), au-

toregressive conditional intensity model (Russell 1999), continuous time jump di¤usion model (e.g.,

Barndor¤-Nielsen and Shephard 2001), continuous time regression models (Park 2008), and autore-

gressive conditional quantile and interval models (e.g., Koenker and Xiao 2006). We allow but do

not restrict to test location-scale time series models that capture all serial dependence of the time

series process by the �rst two conditional moments. Our approach is applicable to time series models

with either continuous or discrete distributions. Another important feature of the proposed test is

its robustness to persistence in the original time series process, thanks to the fact that the general-

ized residuals are always i.i.d. under the null hypothesis. This is appealing for many applications

since, for example, most high-frequency economics and �nancial time series have highly persistent

dependence. It is well known that statistical inference procedures often do not perform well in �nite

samples when the underlying time series process is highly persistent. The robustness of the size per-

formance of our procedure avoids the use of bootstrap methods which usually involve reestimation

of nonlinear time series models and are computationally costly. For example, the likelihood surface

of Markov chain regime-switching models is often found to be highly irregular and contains several

local maxima, and so it is hard to achieve a convergence for parameter estimation. On the other

hand, the proposed test does not have to formulate an alternative model and has a null asymptotic

N(0,1) distribution. Moreover, the sampling variation of parameter estimation uncertainty has no

impact on the asymptotic normal distribution of the proposed test statistic. Thus, there is no need

to calculate otherwise tedious delta expressions of a nonlinear time series model. These features lead

to a convenient inference procedure.

Section 2 introduces hypotheses of interest and provides motivation. The generalized spectral

density based test statistics are given in Section 3. Section 4 derives the asymptotic normal distri-

bution of the proposed tests and investigates their asymptotic power property. Section 5 examines

their �nite sample performance via Monte Carlo experiments. Section 6 concludes. All mathematical

proofs are collected in the appendix. Throughout, we denote C for a generic bounded constant, A�

for the complex conjugate of A; ReA for the real part of A; and jjAjj for the Euclidean norm of A:

All limits are taken as the sample size T !1: The GAUSS code to implement our tests is available
from the authors upon request.

2. Hypothesis of Interest and Literature

2.1 Hypothesis of Interest and Motivation

In time series analysis, one is often interested in modeling the dynamics of a time series process

fYtg: Suppose a parametric nonlinear model, say M(�); is used to capture the dynamics of fYtg;
where � is an unknown �nite-dimensional parameter vector to be estimated using observed data. We

are interested in proposing a generally applicable method to check the adequacy of the modelM(�):
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Residual-based testing has been a popular approach in time series analysis. In linear time series

analysis, for example, Box and Pierce (1971) proposed a portmanteau test based on the estimated

residuals of a linear ARMA model. In nonlinear time series modeling, the concept of residuals is not so

obvious, but we can make use of the concept of generalized residuals in spirit of Cox and Snell (1968).

For many nonlinear time series models, there exists some transformation or �lter that can capture all

dependence structure of the underlying time series so that its outputs become an i.i.d. sequence with

some known distribution. Speci�cally, given observed data fYt; It�1gTt=1; where Yt is a real-valued
dependent variable and It�1 may contain lagged dependent variables and lagged exogenous variables

Xt; we can de�ne Zt(�0) � H(Yt; It�1; �0) given by a known measurable transformation H and an

unknown parameter �0 2 � � Rp. The transformed series fZt(�0)g can be called the generalized
residuals of the nonlinear time series models since they are the generalizations of Cox and Snell�s

(1968) concept of generalized residuals to a time series context. To illustrate this concept and the

scope of our approach, we consider a variety of nonlinear time series models below.

Example 1 [GARCH And Nonnegative Process]:

The GARCH model has been one of the popular nonlinear time series models:8><>:
Yt = �t +

p
ht"t;

�t = �(It�1; �);

ht = h(It�1; �);

(2.1)

where �(It�1; �) and h(It�1; �) are parametric models for E(YtjIt�1) and V ar(YtjIt�1) respectively,
and It�1 is the information set available at time t � 1 which is the �-�eld generated by the past
history of Yt; fYs; s < tg: We allow for an in�nite past history of information, i.e., we allow but do
not assume that Yt is Markov. Suppose further the standardized innovation f"tg is speci�ed to follow
some conditional distribution g("jIt�1; �): Then the conditional density model of Yt given It�1 is

f(yjIt�1; �) =
1p
ht
g

�
y � �tp

ht

���� It�1; �� ; �1 < y <1:

De�ne the dynamic probability integral transform

Zt(�) =

Z Yt

�1
f(yjIt�1; �)dy: (2.2)

Then Zt(�0) is i:i:d:U [0; 1] at some parameter value �0 when f(yjIt�1; �) is correctly speci�ed, i.e.,
when f(yjIt�1; �0) coincides with the true conditional probability density of Yt given It�1. See Rosen-
blatt (1952). This probability integral transform is called the generalized residual of the GARCH

model in (2.1). Note that Zt(�0) is always i.i.d. whereas the standardized innovation f"tg may not be
i.i.d. even when the model f(yjIt�1; �) is correctly speci�ed. One example is Hansen�s (1994) autore-
gressive conditional density model, which allows parametric speci�cations for conditional dependence
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beyond the mean and variance. Speci�cally, Hansen (1994) assumes

f(yjIt�1; �) = f0 [yj�(It�1; �)] ;

where f0(yj�) is a generalized skewed t-distribution and �(It�1; �) is a low-dimensional vector that
characterizes the �rst four time-varying conditional moments of Yt given It�1:

Likewise, we can also consider a general framework of multiplicative error models for nonnegative

time series processes, which are common in practice. For example, one could model the volume of

shares over a 10-minute period, or the high price minus the low price over a time period or the ask

price minus the bid price, or the time between trades, or the number of trades in a period (Engle

2002). The models for nonnegative processes can be modeled as a multiplicative form similar to the

GARCH structure: (
Yt =  t"t;

 t =  (It�1; �);
(2.3)

where  t is a parametric model for E(YtjIt�1); "t is a multiplicative error with E("tjIt�1) = 1 when  t
is correctly speci�ed for E(YtjIt�1): One example of multiplicative error models is the autoregressive
conditional duration models proposed by Engle and Russell (1998) and Engle (2000), where Yt is the

arrival time intervals between consecutive events such as the occurrence of a trade or a bid-ask quote.

The dynamic probability integral transform is also applicable to many other time series mod-

els, including Markov chain regime switching models and continuous-time jump di¤usion models, as

illustrated below.

Example 2 [Markov Chain Regime-Switching model]:

The Markov chain regime-switching model has been popularly used in time series econometrics

(e.g., Hamilton 1994, Ch.22). It posits that the conditional distribution of a time series depends on an

underlying latent state, which can take one of a �nite number of values and evolves through time as a

Markov chain. This model allows for complex nonlinear dynamics and yet remains tractable. Testing

regime-switching models has been an interesting problem in time series and yet little e¤ort has been

devoted to speci�cation testing for this class of models. In fact, the generalized residual provides a

convenient way to test this class of models. Consider a time series Yt; the conditional distribution

of which depends on the latent state variable St; which occurs at time t and takes K discrete values

indexed by j 2 f1; � � � ;Kg: Assume that the state dependent conditional distribution of Yt is given
as follows:

f (yjSt = j; It�1) = f0 (yjSt = j; It�1; �0) for some �0 2 �;

where f0(yj�; �) is a known parametric density, It�1 denotes the information set available in period
t � 1; and the latent regime St evolves through time as a �rst order Markov chain with transition
probabilities given by the K �K transition matrix P with element (i; j)
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P (St = jjSt�1 = i) = pij ; i; j = 1; � � � ;K:

Then when the Markov chain regime-switching model is correctly speci�ed, we have

Zt(�0) =

KX
j=1

P (St = jjIt�1)
Z Yt

�1
f0(yjSt = j; It�1; �0)dy � i:i:d:U [0; 1]:

Example 3 [Continuous-time Jump diffusion models]:

Continuous-time jump di¤usion models have been popularly used in mathematical �nance. Con-

sider a class of jump di¤usion models (e.g., Barndor¤-Nielsen and Shephard 2001, Du¢ e, Pan and

Singleton 2001):

dYt = �(Yt; �)dt+ �(Yt; �)dWt + JdNt;

where �(Yt; �) is a drift model, �(Yt; �) is a di¤usion model, Wt is a Brownian motion and Nt is a

Poisson process, which determines the random arrival of jump J; with the intensity �t(�): Given the

speci�cations of �(Yt; �); �(Yt; �) and �t(�); the transition density model of Yt is then determined as

a parametric model f(yjYt��; �); where � is any given sampling frequency. When the jump di¤usion

model is correctly speci�ed, we have

Zt(�0) =

Z Yt

�1
f(yjYt��; �0)dy � i:i:d:U [0; 1]:

This result holds when the Brownian motion Wt is replaced with the more general Levy process.

In addition to the probability integral transform, there are alternative transforms which can

be used to construct the generalized residuals. In duration or survival analysis, for example, the

integrated hazard function will follow an i.i.d.EXP(1) when an autoregressive conditional duration

or survival model is correctly speci�ed.

Example 4 [Autoregressive Conditional Intensity model]:

De�ne a counting process Nt = fN(t); t � 0g by N(t) =
P1
i=1 1(Ti � t) for all t � 0; where 1(�) is

the indicator function. The corresponding point process is the random arrival time fTi; i = 0; 1; 2; � � � g:
Then, the conditional intensity function (hazard function), which assesses the instantaneous risk of

demise (e.g., credit default) at time t; is given as follows:

�(tjFt) = lim
�t!0

Pr(N(t+�t)�N(t) > 0jFt)
�t

;

where Ft = �(Ns; s 2 [0; t]) is the history generated by Nt; and N(t) is assumed to be adapted

to the �ltration Ft: In time series survival analysis, a parametric model �0(tjFt; �) is often used to
approximate the hazard function �0(tjFt):We can de�ne the generalized residuals of the hazard model
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�(tjFt) by

Zi(�) = 1�
Z t

0
�0(sjFi; �)ds:

Then Zi(�0) � i:i:d:EXP (1) when the hazard model �0(tjFt; �) is correctly speci�ed (Yashin and
Arjas (1988)).

We can also de�ne generalized residuals fZt(�)g for an instantaneous conditional mean model
in continuous time. The following time-change transform for the continuous-time regression model

(Park 2008) provides such an example.

Example 5 [Park�s (2008) time change in continuous-time]:

Consider a continuous time regression model (Park 2008)

dYt = �(Yt; �)dt+ dUt;

where fYtg is a stochastic process, fFtg is a �ltration to which fYtg is adapted, �(Yt; �) is a parametric
model for the instantaneous conditional mean lim�!0+ E

h
Yt+��Yt

�

���Fti ; and fUtg is a martingale
process with respect to the �ltration fFtg so that dUt is a martingale di¤erence sequence (m.d.s.)
with E(dUtjFt) = 0: De�ne a time change, a non-decreasing collection of stopping times, by

Tt = inf
s>0
fhUis > tg;

where hUit is the quadratic variation process of Ut: Then we have

UTt = Vt or Ut = VhUit ;

where Vt is the standard Brownian motion (see Park 2008). Thus, with an appropriate time change,

the martingale regression (instantaneous conditional mean) model can always be transformed into a

regression model with the error process given by the Brownian motion. It follows that with the time

change Tt; we have

dYTt = �(YTt ; �)dTt + dUTt = �(YTt ; �)dTt + dVt;

and Vt � Vt(�) is a standard Brownian motion at � = �0 when the instantaneous conditional mean

model �(Yt; �) is correctly speci�ed. This imples that the error process in the time changed regression

model is the standard Brownian motion. We can thus de�ne a generalized residual for the continuous-

time regression model as

Zt(�) = Vt(�)� Vt��(�)

= ��1=2

 
YTt� � YT(t�1)� �

Z Tt�

T(t�1)�

�(Yt; �)dt

!
; t = 1; � � � ; n;

where � is any given sampling frequency for the observed data. Then Zt(�0) is i.i.d.N(0; 1) for some
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�0 2 � when the instantaneous conditional mean model �(Yt; �) is correctly speci�ed. Therefore, the
method based on generalized residuals can serve as a speci�cation test for continuous-time models.

The last example is the class of autoregressive conditional quantile and interval models.

Example 6 [Autoregressive Conditional Quantile and Interval Models]:

An autoregressive conditional �-quantile model Q�(It�1; �) obeys the following condition

P [Yt � Q�(It�1; �)jIt�1] = � for some � = �0

when the quantile model is correctly speci�ed. Examples are J.P. Morgan�s RiskMetrics and Engle

and Manganelli�s (2004) CAViaR models for Value at Risk in �nancial risk management. Also see

Koenker and Xiao�s (2006) quantile autoregression model.

We de�ne the binary stochastic process

Zt(�) = 1 [Yt � Q�(It�1; �)] :

Under correct model speci�cation of Q�(It�1; �); fZt(�0)g is an i.i.d. Bernoulli(�) sequence, and this
property can be used to test adequacy of autoregressive conditional quantile models.

This method also applies to autoregressive con�dence interval models. 100(1 � �)% interval

forecast (e.g., Christo¤ersen (1998)) (L�(It�1; �); U�(It�1; �)) is correctly speci�ed i¤

P [L�(It�1; �) � Yt � U�(It�1; �)jIt�1] = 1� � a:s:

where L�(It�1; �) and U�(It�1; �) are lower and upper bounds of the conditional interval model for

Yt given It�1 at con�dence level 1� �: De�ne

Zt(�) = 1 [L�(It�1; �) � Yt � U�(It�1; �)] ;

then under correct model speci�cation of (L�(It�1; �); U�(It�1; �));

fZt(�0)g � i.i.d. Bernoulli(�) sequence:

All the aforementioned examples can be formulated as a uni�ed hypothesis of interest

H0 : fZt(�0)g � i:i:d:F�0(z) for some unknown �0 2 �; (2.4)

where F�(�) is a known probability distribution function, which can be a continuous, discrete, or mixed
continuous and discrete distribution, and parameter � is unknown. This provides a uni�ed approach

to testing various nonlinear time series models, as illustrated above. There are other advantages of

testing H0 via the generalized residual Zt(�). For example, given the i.i.d. property of fZt(�)g under
H0; the size of the test is expected to be robust to dependence persistence of fYtg in �nite samples.
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Intuitively, in some cases (i.e., location-scale time series models which capture all serial dependence via

the �rst two conditional moments), the i.i.d. property of fZt(�)g characterizes correct speci�cation
of the dynamic dependence structure of a time series model, and the speci�ed parametric distribution

F�(z) characterizes correct speci�cation of the marginal error distribution of the time series model.

The goal of this paper is to propose a novel and generally applicable test to various nonlinear time

series models which can be characterized as H0 when they are correctly speci�ed.
The di¢ culty of testing H0 in (2.4) is this joint hypothesis in a nonlinear time series setup. Often,

the Kolmogorov-Smirnov (KS) test is suggested to test H0: However, the KS test only focuses on
the marginal distribution F�(�) and does not check the serial dependence structure in fZt(�)g: It has
no power if Zt(�) follows a marginal distribution F�(�) but fZt(�)g is serially dependent. Moreover,
the asymptotic critical values of the KS statistic will be a¤ected by sampling variation of parameter

estimation.

2.2 Comparison with the Literature

There have been tests for some speci�c nonlinear time series models using the probability integral

transforms. For example, Bai (2003) proposes a generalized KS test using the probability integral

transform and Khmaladze�s (1981) martingale transform. The latter nicely removes the impact of

parameter estimation uncertainty, delivering an asymptotically distribution-free test. However, Bai�s

(2003) test checks U [0; 1] under the i.i.d. property of the generalized residuals, and it still has no

power if Zt(�) is U [0; 1] but not serially independent.

Thompson (2008) uses probability integral transforms to test continuous-time di¤usion models.

He uses the Cramer-von Mises-type statistic based on the empirical distribution function of Zt(�) (to

test uniformity) and the periodogram (to test independence). This test checks the joint hypothesis

of i.i.d. U [0; 1] but it may lack power against nonlinear alternatives because periodogram will miss

dependence with zero autocorrelation. Furthermore, sampling variation of the parameter estimation

has impact on the asymptotic distribution which calls for use of a parametric bootstrap. Also in the

continuous time context, Hong and Li (2005) test both i.i.d. and U [0; 1] simultaneously by using

a smoothed bivariate nonparametric kernel density estimator of the probability integral transforms,

but they check individual lags rather than all lags jointly and nonparametric smoothing is required

at each individual lag.

Berkowitz (2001) considers a test for density forecast evaluation by extending the probability

integral transform to normality (i.e., using quantile transformation). That is, the probability integral

transform is further converted into i.i.d.N(0; 1) by inverting the CDF using the normal distribution.

Based on normality, Berkowitz (2001) considers a likelihood-ratio test. However, the LR test only

has power to detect nonnormality through the �rst two moments of the distribution, and need to

specify the likelihood of alternative. Speci�cally, he considers the combined statistic for the joint test

of independence and zero mean and unit variance, and only considers an AR(1) alternative. Also,

8



he does not consider the impact of parameter estimation by noting that in his context �the cost of

abstracting from parameter uncertainty may not be severe�.

Hong and T.Lee (2003) propose a test for the following class of location-scale nonlinear time series

models

Yt = �(It�1; �) +
p
h(It�1; �)"t: (2.5)

where the standardized innovation f"tg is an i.i.d. sequence. For this class of time series models,
the �rst two conditional moments capture all serial dependence of Yt: Hong and T.Lee (2003) check

adequacy of model (2.5) by testing whether the standardized innovations f"tg is an i.i.d. sequence.
This test does not apply to test H0 here, because it only checks serial dependence and does not check
the marginal distribution F�(z): In other words, Hong and T. Lee�s (2003) test, even when applied

to the generalized residuals fẐtg; will have no power when Zt is i.i.d. but its marginal distribution
is not F�(�): This can occur, e.g., when fYtg is a GARCH(1,1) process with an i.i.d. t-distributed
innovation but it is speci�ed as a GARCH(1,1) model with an i.i.d. N(0,1) innovation. In this case,

the probability integral transforms are an i.i.d. sequence but with a non-uniform distribution. As a

result, Hong and T.Lee�s (2003) test has no power despite the misspeci�cation in the distribution of

"t: Note that each generalized covariance function �j(u; v) 8j in our approach is di¤erent from one

in Hong and T. Lee (2003). Each �j(u; v) contains the information about the marginal distribution

as well as serial dependence. Thus, our approach is fundamentally di¤erent from Hong and T. Lee

(2003).

On the other hand, there exist time series models in the form of (2.5) but the standardized

innovation f"tg is not i.i.d. An example is Hansen�s (1994) autoregressive conditional density model.
For this model, f"tg is a conditionally homoskedastic m.d.s. with E("tjIt�1) = 0 and V ar("tjIt�1) = 1
but its conditional higher order moments (e.g., skewness and kurtosis) are time-varying even when the

time series model is correctly speci�ed. Hong and T.Lee�s (2003) test cannot be applied to test this

model, because the i.i.d. property of f"tg is not a characteristic of the correct speci�cation of these
models. Of course, Hong and T. Lee�s (2003) test can be applied to the generalized residuals fZtg to
test serial dependence of fZtg; but as pointed out above, it ignores testing the marginal distribution
F�(z) of H0:

In this paper, we will propose a new generally applicable test for H0 that avoid the drawback of the
aforementioned tests for various nonlinear time series models. We test the i.i.d. property and F�(�)
jointly using a generalized spectral approach. The test statistic has an asymptotic N(0,1) distribution

under H0 and parameter estimation has no impact on the limit distribution, thus resulting in a
convenient procedure. Also, we test many lags simultaneously, and our approach naturally provides

a downward weighting, which may enhance power when a large number of lag orders are considered.

3. Approach and Test Statistics

To describe our approach, we �rst introduce the generalized spectrum proposed in Hong (1999).
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For notational simplicity, we put Zt = Zt(�0); where �0 = p lim(�̂) and �̂ is a parameter estimator for

the parametric model M(�) of time series process fYtg: Suppose fZtg is a strictly stationary time
series process. Then, following Hong (1999), the generalized spectral density of fZtg is de�ned by

f(!; u; v) =
1

2�

1X
j=�1

�j(u; v)e
�ij!; i =

p
�1;�1 < u; v <1; (3.1)

where �j(u; v) is a generalized autocovariance function

�j(u; v) = cov(eiuZt ; eivZt�jjj); �1 < u; v <1: (3.2)

Intuitively, the generalized spectrum f(!; u; v) is the spectrum of the transformed time series

feiuZtg: As the power spectral density, which is the Fourier transform of the autocovariance function

of fZtg; is a basic analytic tool for linear time series, the generalized spectral density f(!; u; v) is
a basic analytic tool for nonlinear time series and an alternative to higher order spectra (Brillinger

and Rosenblatt 1967a, 1967b, Subba Rao and Gabr 1984). The exponential function transformation

enables f(!; u; v) to capture both linear and nonlinear dependence. Observe that

�j(u; v) = cov(eiuZt ; eivZt�jjj) = 'j(u; v)� '(u)'(v);

where 'j(u; v) = EeiuZt+ivZt�jjj is the joint characteristic function of the pair of random variables

(Zt; Zt�jjj); and '(u) = EeiuZt is the marginal characteristic function of Zt: The function �j(u; v) = 0

for all u; v if and only if Zt and Zt�jjj are independent. Thus, f(!; u; v) can capture any pairwise

serial dependence, including the serial dependence patterns for which fZtg is serially uncorrelated
but not serially independent (e.g., an ARCH process). This can be also seen by taking a Taylor series

expansion of f(!; u; v) with respect to (u; v) at the origin (0; 0) :

f(!; u; v) =

1X
m=0

1X
l=0

(iu)m(iv)l

m!l!
f (0;m;l)(!; 0; 0); (3.3)

where the derivative function

f (0;m;l)(!; 0; 0) =
1

2�

1X
j=�1

cov(Zmt ; Z
l
t�jjj)e

�ij!:

Note that the partial derivative f (0;1;1)(!; 0; 0) is the conventional power spectral density of fZtg:
The Taylor series expansion in (3.3) requires that all moments of Zt exist. The generalized spectrum

in (3.1) does not have such a requirement. It is well de�ned even when the moment of Zt does

not exist. Moreover, since the generalized autocovariance function �j(u; v) is de�ned in terms of the

characteristic function, f(!; u; v) can also be used to capture the marginal and pairwise distributional

properties of the time series process fZtg: Thus, it provides a natural approach to testing the joint
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hypothesis H0: Our idea here is to compare the shapes of the generalized spectral density function
under H0 and under the alternative to H0 respectively. When H0 holds, the generalized autocovariance
function �j(u; v) becomes the following:

�j(u; v) = �j(u; vj�0)

= Cov�0(e
iuZt ; eivZt�j )

=

(
'�0(u+ v)� '�0(u)'�0(v) if j = 0

0 if j 6= 0
(3.4)

where Cov�0(�; �) is the covariance operator under H0 and

'�0(u) = E�0(e
iuZt) =

Z
eiuzdF�0(z) (3.5)

is the marginal characteristic function of the distribution F�0(z): It follows that under H0; f(!; u; v)
becomes �a �at spectrum�:

f�0(!; u; v) �
1

2�
�0(u; vj�0); (3.6)

which is a constant function of frequency ! 2 [��; �]: This may be called the restricted generalized
spectral density implied by H0: It can be consistently estimated by

f�̂(!; u; v) =
1

2�
�0(u; vj�̂); ! 2 [��; �]; (3.7)

where �̂ is a consistent estimator for �0 under H0:
Under the alternative to H0; the generalized spectral density f(!; u; v) can be consistently esti-

mated by a smoothed kernel estimator

f̂(!; u; v) =
1

2�

T�1X
j=1�T

k(j=p)(1� jjj=T )�̂j(u; v)e�ij!; (3.8)

where

�̂j(u; v) =
1

T � jjj

TX
t=jjj+1

'̂t(u)'̂t�j(v); (3.9)

'̂t(u) = eiuẐt � '̂(u); '̂(u) = T�1
PT
t=1 e

iuẐt ; Ẑt = Zt(�̂) is the estimated generalized residual of

the time series model M(�); k(�) is a kernel function that assigns weights to various lag orders,
and p = p(T ) is a bandwidth. The estimator f̂(!; u; v) may be called an unrestricted generalized

spectral density estimator. Under H0; this unrestricted estimator will converge to the same limit as
the restricted estimator f�̂(!; u; v): If they converge to di¤erent limit functions, the null hypothesis

H0 is rejected.
To obtain a global measure of the discrepancy between two function-valued estimators f̂(!; u; v)

11



and f�̂(!; u; v); we use the quadratic form

Q̂ = �T

ZZZ �

��

���f̂(!; u; v)� f�̂(!; u; v)���2 d!dW (u)dW (v)
=

1

2

ZZ
T
����̂0(u; v)� �0(u; vj�̂)���2 dW (u)dW (v) + 2 T�1X

j=1

k2(j=p)(T � j)
ZZ

j�̂j(u; v)j2 dW (u)dW (v)

=
T�1X
j=1�T

aT (j)(T � j)
ZZ

j~�j(u; v)� �j(u; vj�0)j2 dW (u)dW (v) +OP (1) under H0; (3.10)

where

aT (j) =

(
1
2k
2(j=p) if j = 0

k2(j=p) if j 6= 0
=

(
1
2 if j = 0

k2(j=p) if j 6= 0;

and ~�j(u; v) be de�ned in the same way as �̂j(u; v) with the unobservable generalized residuals

fZt � Z(It�1; �0)gTt=1: The last equality in (3.10) holds only under H0 because �j(u; vj�0) = 0 for all
j 6= 0 under H0; and replacing �̂ with �0 results in an e¤ect of OP (1):

Intuitively, the term associated with j = 0 in (3.10) checks whether fZtg has a marginal dis-
tribution F�0(z); and the terms associated with all nonzero lags in (3.10) check whether fZtg is
serially independent. Thus, the generalized spectral approach can be used to test the joint hypothesis

H0: It has the advantage over the KS-type test in the sense that the latter only tests the marginal
distribution speci�cation and does not test the serial dependence of fZtg:

Our spectral kernel estimation approach provides a �exible weighting for various lags via the

kernel function. For many commonly used kernels, k(�) is downward weighting (see, e.g., Priestley
1981, p.442). Thus, the term with j = 0; which focuses on the marginal distribution, receives a largest

weight aT (0) = 1
2 ; while other terms with j 6= 0 receives a downward weighting scheme k

2(j=p) as j

increases. Downward weighting is expected to be more powerful than uniform weighting against many

alternatives of practical importance as the state today is more a¤ected by the recent events than the

remote past events. When a large p is employed to capture serial dependence at higher order lags,

downward weighting will alleviate the loss of a large number of degrees of freedom, thus enhancing

good power of the proposed test.

The proposed test statistic is an appropriately centered and scaled version of the quadratic form

Q̂ :

M̂1 =
Q̂� Âp

V̂
; (3.11)

where

Â =

Z "
T�1

TX
t=1

j'̂t(u)'̂t(v)j2 �
����0(u; vj�̂)���2# dW (u)dW (v) + 2 �Z �0(u;�uj�̂)dW (u)

�2 T�1X
j=1

aT (j);
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V̂ =

�ZZ
j�0(u; vj�̂)j2dW (u)dW (v)

�2
2

T�1X
j=1�T

a2T (j):

The factors Â and V̂ are approximately the mean and variance of the quadratic form Q̂ under

H0: Since the centering factor Â is a bit tedious to compute, we also de�ne the following simpli�ed

and asymptotically equivalent test statistic:

M̂2 =
Q̂�

hR
�0(u;�uj�̂)dW (u)

i2XT�1

j=1�T
aT (j)rhRR

j�0(u; vj�̂)j2dW (u)dW (v)
i2
2
XT�1

j=1�T
a2T (j)

: (3.12)

Both M̂1 and M̂2 are asymptotically N(0; 1) under H0 as T ! 1 (see Theorem 1 below). Since

these tests are the centered and scaled versions of the quadratic form Q̂; the asymptotic normality

implies that a properly scaled version of the Q̂ statistic is asymptotically Chi-squared distributed

with a large numbers of degrees of freedom. For example, under H0; we have that when T !1;

2Â

V̂
Q̂

a� �2q̂ ; (3.13)

where the degrees of freedom

q̂ =
2Â2

V̂
= q[1 + oP (1)] �

4
�R
�0(u;�uj�0)dW (u)

�4 �R
k2(z)dz

�2�ZZ
�0(u; vj�0)dW (u)dW (v)

�2 R
k4(z)dz

p[1 + oP (1)]:

Note that q̂ goes to in�nity at a rate p as p!1: For a very large q̂; the asymptotic normality and the
�2q̂ approximation will deliver the same conclusion. When q̂ is not large, there may be some di¤erence

in �nite samples; we expect that the Chi-square approximation may perform better than normal

approximation in �nite sample with a moderate size of q̂ because the Chi-square approximation may

capture possible skewness of the �nite sample distribution of Q̂:We will investigate their �nite sample

performance via a simulation study.

We summarize the procedures to implement the tests M̂1 and M̂2 :

� Step 1: Obtain a
p
T -consistent estimator �̂ for the model of interest.

� Step 2: Given a proper transformation, obtain and save the generalized residual Ẑt = Zt(�̂):

� Step 3: Compute the test statistic M̂1 in (3.11) or M̂2 in (3.12).

� Step 4: Compare M̂1 or M̂2 with an upper-tailed N(0,1) critical value (e.g., 1.65 at the 5%

level), and reject H0 at a given level if M̂1 or M̂2 is larger than the critical value.

13



4. Asymptotic Theory

4.1 Asymptotic Distribution

We now investigate the asymptotic properties of the test statistics M̂1 and M̂2 under the null and

alternative hypotheses. To derive the asymptotic distribution of M̂1 and M̂2 under H0; we impose
the following regularity conditions.

Assumption A.1: (i) With probability one, Zt(�) � Z(It; �) is twice continuously di¤erentiable
with respect to � 2 � such that sup�2�Ejj @@�Zt(�)jj

2 � C and sup�2�Ejj @2

@�@�0
Zt(�)jj � C; (ii)

sup�2�
@
@� k'(uj�)k < C; where '(uj�) = E�(e

iuZt) and E�(�) is the expectation operator under F�(�);
(iii) for each � 2 �; the process fZt(�); @

@�0
Zt(�)g0 is a strictly stationary �-mixing process with the

�-mixing coe¢ cient satisfying
P1
j=�1 �(j)

��1
� � C for some � > 1:

Assumption A.2: For a non-Markovian process fYtg; the information set It = fYt; Yt�1; � � � g is
in�nite dimensional. Let Ît = fYt; Yt�1; � � � ; Y1; Ĵ0g be the observed information set available at period
t that may contain some assumed initial values Ĵ0: Then sup�2�

PT
t=1

���Z(Ît; �)� Z(It; �)��� = OP (1):

Assumption A.3:
p
T (�̂ � �0) = OP (1); where �0 � p lim(�̂) 2 int(�); and �0 is the same as in H0:

Assumption A.4: k : R ! [�1; 1] is symmetric continuous on all except a �nite number of points
in the real line. Furthermore, k(0) = 1 and jk(z)j � Cjzj�b for b > 3=2 as jzj ! 1.
Assumption A.5: W : R ! R+ is a positive, nondecreasing, and right continuous weight function
that weighs sets around zero equally, with

R
u4dW (u) � C:

Assumption A.1(i) imposes regularity conditions on the generalized residual Zt(�) of the model

M(�) for time series fYtg: Assumption A.1(ii) imposes a condition on the marginal distribution
function F�(�): Suppose F�(�) is an absolutely continuous distribution with probability density function
f�(z) = F 0�(z): Then Assumption A.1(ii) holds if supE�jj @@� ln f�(Zt)jj � C: Assumption A.1(iii)

imposes some temporal dependence conditions on the related processes.

As pointed out earlier, we allow a non-Markovian process (e.g., GARCH models) for fYtg and
so the information set It contains all its past history dating back to the in�nite past. Since It

is in�nite-dimensional, one may have to use a truncation version of It; that is, one has to use Ît =

fYt; Yt�1; � � � ; Y1; Ĵ0g; where Ĵ0 denotes some assumed initial values. For example, consider an AR(1)-
GARCH(1,1)-i.i.d.N(0,1) model, which is a special case of (2.1) with �t = �0 + �1Yt�1 and ht =

�0 + �1ht�1 + �2(Yt�1 � �t�1)
2: Then Ĵ0 = (Ŷ�1; Ŷ0; ĥ0)0 are some assumed initial value for Y�1; Y0;

and h0 respectively. Assumption A.2 states that the truncation of the possibly infeasible information

set It has asymptotically negligible impact. Also see Bai (2003) for related discussion.

Assumption A.3 requires a
p
T -consistent estimator �̂ under H0: We do not require any asymp-

totically most e¢ cient estimator or a speci�ed estimator. This is convenient for practitioners because

for some nonlinear time series models, it is di¢ cult to obtain asymptotically most e¢ cient estimators.

Assumption A.4 is the regularity condition on the kernel function. The continuity of k (�) at 0 and
k (0) = 1 ensures that the bias of the generalized spectral estimator f̂ (!; u; v) vanishes to zero asymp-
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totically as T ! 1: The condition on the tail behavior of k (�) ensures that higher order lags have
asymptotically negligible impact on the statistical properties of f̂ (!; u; v) : Assumption A.4 covers

most commonly used kernels (e.g., Priestley 1981, p.442). For kernels with bounded support, such as

the Bartlett and Parzen kernels, b =1: For kernels with unbounded support, b is some �nite positive
real number. For example, b = 2 for the Daniell and Quadratic-Spectral kernels. Finally, Assumption

A.5 imposes mild conditions on the weighting function W (�) : Any CDF with �nite fourth moments
satis�es Assumption A.5. In empirical characteristic function literature, it has been noted that any

suitable positive, integrable and symmetric function will be su¢ cient for weight function (see, e.g.,

Huskova and Meintanis (2008)).

We now derive the asymptotic distribution of M̂1 and M̂2 under H0:

Theorem 1: Suppose Assumptions A.1�A.5 hold, and p = cT � for � 2 (0; 12) and c 2 (0;1): Then
under H0; M̂1 � M̂2

p! 0; M̂1
d! N(0; 1); and M̂2

d! N(0; 1) as T !1:

An important feature of M̂1 and M̂2 is their robustness to persistence in the original time series

fYtg: This occurs because the generalized residual series fZtg is always i.i.d. under H0 no matter
how persistent serial dependence of fYtg is. The robustness of the size performance avoids the use
of bootstrap methods which may involve reestimating nonlinear time series models and are compu-

tationally costly. Moreover, some time series models such as Examples 6 and 7 in Section 2 do not

fully specify the conditional distributions of Yt: As a result, the usual parametric bootstrap cannot be

used. Indeed, the robust inference based on asymptotic normality approximation is rather convenient

in practice.

Intuitively, since a
p
T -consistent estimator �̂ converges to �0 under H0 faster than the non-

parametric estimator f̂(!; u; v) converges to f(!; u; v); the asymptotic distribution of M̂1(p) is solely

determined by the nonparametric estimator f̂(!; u; v): Consequently, the sampling variation of pa-

rameter estimator �̂ has no impact on the asymptotic normal distribution. In other words, the

asymptotic distribution of M̂1 remains unchanged when �̂ is replaced by its probability limit �0: This

holds no matter whether the asymptotically most e¢ cient estimator or a speci�c estimator is used.

This asymptotic nuisance parameter free property leads to a convenient procedure. Our simulation

study shows that the sampling error of �̂ has little impact on the distribution of M̂1 and M̂2: This is

particularly appealing for testing some nonlinear time series models because, for example, it has been

well-known that e¢ cient estimators of jump di¤usion models and Markov chain regime-switching

models are di¢ cult to obtain.

Both M̂1 and M̂2 are asymptotically equivalent but M̂2 is a bit more convenient to compute. We

will examine their �nite sample performance via simulation.

4.2 Asymptotic Power

We now investigate the asymptotic power property of the proposed tests under the alternatives

to H0:
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Theorem 2: Suppose Assumptions A.1�A.5 hold, and p = cT � for � 2 (0; 12) and c 2 (0;1): Then
under the alternative to H0; we have as T !1; for i = 1; 2;

p
p

T

�Z 1

�1
k2(z)dz

�
M̂i

p!
ZZ �

��
jf(!; u; v)� f�0(!; u; v)j

2 d!dW (u)dW (v)

=
1

2

Z
j�0(u; v)� �0(u; vj�0)j2dW (u)dW (v) + 2

1X
j=1

Z
j�j(u; v)j2dW (u)dW (v):

When fZt(�)g is not i.i.d. or Zt(�) does not have the marginal distribution F�(z); M̂1 will

have asymptotic power one (i.e., Pr(M̂1 > C) ! 1 as T ! 1 for any given constant C) provided

that the weighting function W (�) is positive, monotonically nondecreasing and continuous with un-
bounded support on R. Speci�cally, when the marginal distribution of Zt is not F�(z); the �rst
term 1

2

R
j�0(u; v) � �0(u; vj�0)j2dW (u)dW (v) is positive. When fZtg is not pairwise independent,

the second term 2
P1
j=1

R
j�j(u; v)j2 dW (u)dW (v) is positive. Thus, we expect that M̂1 has rela-

tively omnibus power against a wide variety of misspeci�cation either in lag structure and parametric

marginal distribution F�(z): This is con�rmed in our simulation below.

4.3 Data-Driven Bandwidth

A practical issue in implementing our tests is the choice of lag order or bandwidth p. An advantage

of our generalized spectral approach is that it can provide a data-driven method to choose p; which

let data themselves determine a proper p for M̂1 and M̂2: To justify the use of a data-driven lag

order, p̂ say, we impose a Lipschitz continuity condition on the kernel k(�): This condition rules out
the truncated kernel k(z) = 1(jzj � 1); where 1(�) is the indicator function, but it still includes most
commonly used kernels.

Assumption A.6: For any x; y 2 R; jk(x)� k(y)j � Cjx� yj for some constant C 2 (0;1):

Theorem 3: Suppose Assumptions A.1�A.6 hold, and p̂ is a data-driven bandwidth such that p̂=p =

1 + OP (p
�( 3

2
��1)) for some � > (2b � 1

2)=(2b � 1); where b is as in Assumption A.4, and p is a
nonstochastic bandwidth with p = cT � for � 2 (0; 12) and c 2 (0;1): Then under H0; M̂i(p̂) �
M̂i(p)

p�! 0 and M̂i(p̂)
d�! N(0; 1); i = 1; 2:

Theorem 3 implies that, as long as p̂ converges to p su¢ ciently fast, the use of p̂ rather than p

has no impact on the limit distribution of M̂1: Theorem 3 allows for a wide range of admissible rates

for p̂: One plausible choice of p̂ is the nonparametric plug-in method similar to that considered in

Hong (1999). It is an estimation based optimal bandwidth (e.g, Härdle and Mammen (1993), Hjellvik

and Tjøstheim (1995), Li (1999), Chen, Härdle and Li (2003)) in that it minimizes an asymptotic

integrated mean square error (IMSE) criterion for the estimator f̂(!; u; v) (see, Hong (1999) Theorem

1). Nonparametric plug-in methods are not uncommon in the literature (e.g., Newey and West 1994,

Silverman 1986). It considers some �pilot� generalized spectral derivative estimators based on a
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preliminary bandwidth �p :

�f(!; u; v) � 1

2�

T�1X
j=1�T

(1� jjj=T )
1
2 �k(j=�p)�̂j(u; v)e

�ij!; (4.1)

�f (q;0;0)(!; u; v) � 1

2�

T�1X
j=1�T

(1� jjj=T )
1
2 �k(j=�p)�̂j(u; v)jjjqe�ij!; (4.2)

where the kernel �k : R! [�1; 1] need not be the same as the kernel k(�) used in (3.8). For example,
�k(�) can be the Bartlett kernel while k(�) is the Daniell kernel. Note that �f(!; u; v) is an estimator for
f(!; u; v) and �f (q;0;0)(!; u; v) is an estimator for the generalized spectral derivative

f (q;0;0)(!; 0; v) � 1

2�

1X
j=�1

�j(0; v)jjjqe�ij!: (4.3)

Suppose for the kernel k(�), there exists some q 2 (0;1) such that 0 < k(q) � limz!0
1�k(z)
jzjq < 1:

Then the plug-in bandwidth is de�ned as

p̂0 � ĉ0T
1

2q+1 ; (4.4)

where the tuning parameter estimator

ĉ0 �
"
2q(k(q))2R1
�1 k2(z)dz

R R �
�� j �f

(q;0;0)(!; u; v)j2d!dW (u)dW (v)R �
��[
R
�f(!; v;�v)dW (v)]2d!

# 1
2q+1

=

"
2q(k(q))2R1
�1 k2(z)dz

PT�1
j=1�T (T � jjj)�k2(j=�p)jjj2q

R
j�̂j(u; v)j2dW (u)dW (v)PT�1

j=1�T (T � jjj)�k2(j=�p)Re
R
�̂j(u;�u)�̂j(v;�v)dW (u)dW (v)

# 1
2q+1

:

The second equality here follows from Parseval�s identity.

The data-driven p̂0 in (4.4) still involves the choice of a preliminary bandwidth �p; which can be

either �xed or grow with the sample size T : If �p is �xed, p̂0 still grows at rate T
1

2q+1 under HA
in general, but ĉ0 does not converge to the optimal tuning constant that minimizes the IMSE of

f̂(!; u; v): However, in practice, ĉ0 will converge to some constant ~c at the parametric rate. Thus,

it is expected that p̂ will easily satisfy the condition of Theorem 3. This is analogous in spirit to a

parametric plug-in method. Following Hong (1999), we can show that when �p grows with T properly,

the data-driven bandwidth p̂0 in (4.4) minimizes an asymptotic IMSE of f̂(!; u; v): Note that p̂0

is real-valued. One can take its integer part, and the impact of integer-clipping is expected to be

negligible. The choice of �p is somewhat arbitrary, but we expect that the choice of �p is of secondary

importance and may have no signi�cant impact on M̂a(p̂0): This is con�rmed in our simulation below.
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5. Monte Carlo Evidence

We now investigate the �nite sample performance of the proposed tests.

5.1 Simulation Design

To examine the size performance of the tests M̂1 and M̂2 under H0, we consider the following data
generating process (DGP):

DGP S.1 [AR(1)-GARCH(1,1)-i.i.d.N(0,1)]:8><>:
Yt = �Yt�1 + ut;

ut = h
1=2
t "t;

"t � i.i.d.N(0; 1);

where we set � = 0:2; 0:6; 0:9 respectively to examine the impact of persistence in fYtg: For each �;
we consider a GARCH(1,1) speci�cation:

ht = 0:2 + �ht�1 + 
u
2
t�1;

with (�; 
) = f(0:6; 0:2); (0:79; 0:2); (0:8; 0:2)g respectively. When (�; 
) = (0:8; 0:2); fYtg is an inte-
grated GARCH process, which is strictly stationary but not weakly stationary.

We also considered the Chi-square approximations of M̂1 and M̂2; denoted Q1 and Q2 respectively

(see discussion in Section 3). We expect that the Chi-square approximation may perform better than

normal approximation in �nite samples with a moderate size of degrees of freedom because the former

may capture possible skewness of the �nite sample distribution of the quadratic form Q̂ in (3.10).

To examine the power of the tests, we consider the following DGPs:

DGP P.1 [AR(2)-GARCH(1,1)-i.i.d.N(0,1)]:8><>:
Yt = 0:2Yt�1 + 0:2Yt�2 + ut;

ut = h
1=2
t "t; f"tg � i.i.d.N(0; 1);

ht = 0:2 + 0:6ht�1 + 0:2u2t�1;

DGP P.2 [TAR(1)-GARCH(1,1)-i.i.d.N(0,1)]:8><>:
Yt = �0:5Yt�11(Yt�1 > 0) + 0:7Yt�11(Yt�1 � 0) + ut;
ut = h

1=2
t "t; f"tg � i.i.d.N(0; 1);

ht = 0:2 + 0:6ht�1 + 0:2u2t�1;
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DGP P.3 [AR(1)-TGARCH(1,1)-i.i.d.N(0,1)]:8><>:
Yt = 0:2Yt�1 + ut;

ut = h
1=2
t "t; f"tg � i.i.d.N(0; 1);

ht = 0:2 + 0:6ht�1 + 0:1u2t�11(ut�1 > 0) + 0:5u
2
t�11(ut�1 � 0):

DGP P.4 [AR(1)-GARCH(1,1)-i.i.d. EXP (1)]:8><>:
Yt = 0:2Yt�1 + ut;

ut = h
1=2
t "t; f"tg � i.i.d.fexp(1)� 1g;

ht = 0:2 + 0:6ht�1 + 0:2u2t�1:

DGP P.5 [AR(1)-GARCH(1,1)-m.d.s. Innovations]:8>>>>><>>>>>:
Yt = 0:2Yt�1 + ut;

ut = h
1=2
t "t;

"t =
exp(�t�t)�exp(0:5�2t )p
exp(2�2t )�exp(�2t )

; f�tg � i.i.d.N(0; 1);

�2t = 0:2 + 0:6�
2
t�1 + 0:2u

2
t�1:

We generate data with the sample sizes T = 250; 500 and 1000 respectively. For each data set, we

�rst generate 2T observations, and then discard the �rst T ones to reduce the impact of some initial

values. We then use MLE to estimate an AR(1)-GARCH(1,1)-i.i.d. N(0,1) model:8><>:
Yt = �Yt�1 + ut;

ut = h
1=2
t "t; f"tg � i.i.d.N(0; 1);

ht = �+ �ht�1 + 
u2t�1:

(5.1)

Under DGPs P.1 and P.2, model (5.1) su¤ers from dynamic misspeci�cation in conditional mean.

Under DGP P.3, which has a threshold e¤ect in variance, model (5.1) su¤ers from a neglected non-

linearity in variance. DGP P.4 has a non-normal innovation distribution; it allows us to investigate

misspeci�cation in the marginal distribution of f"tg: We have also considered f"tg � i.i.d.
q

3
5 t(5)

and mixed normal innovations (f"tg � 0:5N(3; 1)+0:5N(�3; 1)): The results were similar to those of
f"tg � i:i:d:EXP (1): Under DGP P.5, E("tjIt�1) = 0 and V ar("tjIt�1) = 1; but f"tg is not i.i.d. nor
N(0,1). In particular, there exists serial dependence in conditional skewness and conditional kurtosis

of futg: We consider 10% and 5% signi�cance levels. All results are obtained from 1000 iterations.

To compute M̂1; M̂2; Q̂1 and Q̂2 we use the N(0,1) CDF truncated on [�3; 3] for the weighting
function W (�); and use the Parzen kernel

k(z) =

8><>:
1� 6z2 + 6jzj3 if jzj � 1

2 ;

2(1� jzj)3 if 12 � jzj < 1;
0 otherwise,
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which has a bounded support and is computationally e¢ cient. We have also used the Bartlett, Daniell

and Quadratic Spectral kernels. The test statistics are similar to those based on the Parzen kernel in

most cases. For the choice of lag order p; we use a data-driven lag order p̂0 via the plug-in method

described in Hong (1999), with the Bartlett kernel �k(z) = (1� jzj)1(jzj � 1) used in the preliminary
generalized spectral derivative estimators. To certain extent, the data driven lag order p̂0 lets data

tell an appropriate lag order, but it still involves the choice of the preliminary bandwidth �p which is

somewhat arbitrary. To examine the impact of the choice of the preliminary bandwidth �p, we consider

�p = 10; 15; 20; 25; 30 respectively, which covers a su¢ ciently wide range of preliminary lag orders for

the sample sizes T considered here.

5.2 Monte Carlo Evidence

Tables 1-3 report the empirical rejection rates of the four tests underH0 at the 10% and 5% signi�cance
levels, using the asymptotic theory. Under DGP S.1 with a small autoregressive coe¢ cient � = 0:2;

all tests M̂1; M̂2; Q̂1; and Q̂2 a bit underreject the null hypothesis H0; especially with low preliminary
lag orders �p: But size improves as preliminary lag order �p and sample size T increase. The tests M̂1

and Q̂1 have better sizes than the tests M̂2 and Q̂2 in most cases, and the tests M̂1 and M̂2 have

better sizes than their �2 approximations, Q̂1 and Q̂2 respectively. Interestingly, with � = 0:79 and

0:8; high persistence in conditional variance, the tests M̂1 and M̂2 have similar sizes to those under

� = 0:6: This is true even for an integrated GARCH(1,1) process (� = 0:8): This highlights the merits

of the tests in that they are robust to the persistence in variance of the time series fYtg:
Under DPG S.1 with the medium autoregressive coe¢ cient � = 0:6; all tests have reasonable sizes

with T = 250 and 500; regardless of persistence in the conditional variance. Overall, M̂1 and Q̂1 have

better sizes than M̂2 and Q̂2; and M̂1 and M̂2 have similar sizes to Q̂1 and Q̂2: Under DGP S.1 with a

large autoregressive coe¢ cient � = 0:9; M̂1 and M̂2 show some overrejection, especially with � = 0:6

and � = 0:8 at the 5% level. However, all tests have reasonable sizes with T = 1000: Now, the tests

Q̂1 and Q̂2 have better sizes than M̂1 and M̂2 respectively, especially with larger sample sizes, and

M̂2 has better sizes than M̂1:

We now compare the powers of the tests under DGP P.1-P.5, reported in Tables 4-6. Table 4

reports the empirical rejection rates of the tests at the 10% and 5% levels under DGPs P.1 and P.2

using the empirical critical values obtained under DGP S.1 with � = 0:2 and � = 0:6; which provide a

relatively fair ground to compare di¤erent tests. Under DGP P.1 (AR(2)), model (5.1) su¤ers from a

linear dynamic misspeci�cation in mean. All tests have similar powers at both signi�cance levels and

for all sample sizes. When T = 250; there is a slight tendency that power decreases as the preliminary

lag order �p increases. However, power becomes more robust to the level of �p with larger sample sizes

such as T = 500 and 1000. The tests have close to unit power for all tests with T = 1000: This

con�rms the merit of capturing dynamic misspeci�cation of our test. Under DGP P.2 (TAR), there

exists neglected nonlinearity in mean for model (5.1). All tests strongly reject the null hypothesis in
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all cases. With sample sizes T = 500 and 1000, all tests have essentially unit power.

Under DGP P.3 (TGARCH), model (5.1) su¤ers from neglected nonlinearity in conditional vari-

ance. The tests M̂1 and Q̂1 have similar powers to M̂2 and Q̂2 respectively, and M̂1 and M̂2 have

slightly better powers than Q̂1 and Q̂2; but not substantially better. With a smaller sample size

as T = 250; powers are not high, but they improve as sample size T increases and become quite

powerful when T = 1000: The powers of all tests decrease in �p: Under DGP P.4, we examine the

impact of misspeci�cation in the error distributions. Both M̂1 and Q̂1 have similar powers to M̂2 and

Q̂2; respectively. The powers decrease in �p substantially, especially with T = 250: This is consistent

with our theory, since only the �rst term (with j = 0) in Theorem 2 captures the misspeci�cation in

the marginal distribution, and including more lags will result in a power loss when there exists no

dynamic misspeci�cation. However, with T = 1000; all tests have essentially unit power or close to

it at both signi�cance levels. This con�rms that our test is powerful in capturing misspeci�cation in

the marginal error distribution.

Finally, under DGP P.5 (m.d.s. innovations), where there exists serial dependence in conditional

skewness and conditional kurtosis of f"tg; all tests are very powerful and have similar power in all
scenarios. Although there is some tendency that power decreases as �p increases with T = 250; powers

become more robust to the choice of �p with larger sample sizes (T = 500 and T = 1000):

In summary, we have observed the following stylized facts:

� With low persistence in mean, the empirical sizes are smaller than the signi�cance levels when
the preliminary lag order �p is small, but they improve as both the preliminary lag order �p

and the sample size T increases. With medium and high persistence in mean, all tests have

reasonable sizes.

� With high persistence in mean, the Chi-square approximated tests Q̂1 and Q̂2 perform better

than M̂1 and M̂2:

� The sizes of all tests are relatively robust to the persistence in the conditional variance as well
in the conditional mean.

� Our tests are powerful in detecting various model misspeci�cations, ranging from dynamic

misspeci�cation and neglected nonlinearity in mean and variance to marginal distribution mis-

speci�cation and higher order dependence.

6. Conclusion

Using a generalized spectral approach, we have proposed a class of generally applicable new tests

for nonlinear time series models based on the generalized residuals that are essentially a nonlinear

�lter transforming the original time series process into an i.i.d. sequence with a speci�ed marginal
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distribution. This approach provides a unifying framework for testing various nonlinear time series

models, including conditional probability distribution models, Markov-Chain regime switching mod-

els, conditional duration models, conditional intensity models, continuous-time jump di¤usion models,

continuous-time regression models, conditional quantile and interval models. The proposed test has

a convenient asymptotic N(0; 1) distribution which performs reasonably well in �nite samples and is

robust to dependent persistence in the original time series process. The test has relatively omnibus

power against a wide range of model misspeci�cations via checking serial dependence over all lags

and marginal distributions of the generalized residuals, as is illustrated by a simulation study.
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MATHEMATICAL APPENDIX

Throughout the appendix, we letM1 andM2 be defined in the same way as M̂1 and M̂2 in (3.12)—(3.13), with

the unobservable generalized residuals {Zt ≡ Zt(θ0)}Tt=1, where θ0 ≡ p lim θ̂, replacing the estimated generalized

residuals {Ẑt ≡ Z(Ît−1, θ̂)}Ti=1. Also, C ∈ (1,∞) denotes a generic bounded constant.

Proof of Theorem 1: To show asymptotic equivalence between M̂1 and M̂2, it suffices to show that the difference

of two centering factors of M̂1 and M̂2 is oP (1). The difference of two centering factors is
R
T−1

PT
t=1 |ϕ̂t(u)ϕ̂t(v)|

2

dW (u)dW (v), which is OP (1). Thus, V̂ −1/2
R
T−1

PT
t=1 |ϕ̂t(u)ϕ̂t(v)|

2 dW (u)dW (v) = oP (1) as p → ∞ given

V̂ = 2p[
RR

σ0(u, v|θ0)dW (u)dW (v)]2
R∞
−∞ j4(z)dz[1 + oP (1)] ∝ p.

To prove asymptotic normality of M̂1, it suffices to show Theorems A.1—A.2 below. Theorem A.1 implies that

the use of {Zt}Tt=1 rather than {Ẑt}Tt=1 has no impact on the limit distribution of M̂1.

Recall σ̂j(u, v) as defined in (3.9) is the sample generalized autocovariance function of {Ẑt}Tt=1. Let σ̃j(u, v)
be defined in the same way as σ̂j(u, v) with the unobservable generalized residuals {Zt ≡ Z(It−1, θ0)}Tt=1. That
is, define

σ̃j(u, v) =
1

T − |j|

TX
t=|j|+1

[eiuZt − ϕ̃(u)][eivZt−|j| − ϕ̃(v)]

=
1

T − |j|

TX
t=|j|+1

ψ̃t(u)ψ̃t−|j|(v), (A.1)

where ψ̃t(u) = eiuZt − ϕ̃(u) and ϕ̃(u) = T−1
PT

t=1 e
iuZt .

Theorem A.1: Under the conditions of Theorem 1, M̂1 −M1
p→ 0.

Theorem A.2: Under the conditions of Theorem 1, M1
d→ N(0, 1).

Proof of Theorem A.1: To show that M̂1 −M1
p→ 0, it suffices to show that (i)

T−1X
j=1−T

aT (j)(T − |j|)
Z ¯̄̄

σ̂j(u, v)− σj(u, v|θ̂)
¯̄̄2
dW (u)dW (v)

=
T−1X

j=1−T
aT (j)(T − |j|)

Z
|σ̃j(u, v)− σj(u, v|θ0)|2 dW (u)dW (v) + oP (p

1/2), (A.2)

(ii) Â − Ã = OP (p/T
1/2), and (iii) p−1(V̂ − Ṽ )

p→ 0, where Ã1(p) and Ṽ1(p) are defined in the same way as

Â and V̂ in (3.12), with {Zt}Tt=1 replacing {Ẑt}Tt=1. For space, we focus on the proof of (A.2); the proofs for
Â− Ã = OP (p/T

1
2 ) and p−1(V̂ − Ṽ )

p→ 0 are straightforward (though tedious). We note that it is necessary to

obtain the convergence rate OP (p/T
1
2 ) for Â − Ã so as to ensure that replacing Â with Ã has asymptotically

negligible impact given p2/T → 0.

Recall σj(u, v|θ) =covθ(eiuZt , eivZt−j ) is the generalized autocovariance function of {Zt} when {Zt} is i.i.d.
Fθ(z). Thus, we have that for all θ ∈ Θ,

σj(u, v|θ) =
(

ϕ(u+ v|θ)− ϕ(u|θ)ϕ(v|θ) if j = 0

0 otherwise.

Writing σ̂j(u, v)− σj(u, v|θ) = [σ̂j(u, v)− σ̃j(u, v)] + [σ̃j(u, v)− σj(u, v|θ)] , we can decompose
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¯̄̄
σ̂j(u, v)− σj(u, v|θ̂)

¯̄̄2
=
¯̄̄
σ̃j(u, v)− σj(u, v|θ̂)

¯̄̄2
+ |σ̂j(u, v)− σ̃j(u, v)|2 + 2

h
σ̃j(u, v)− σj(u, v|θ̂)

i
[σ̂j(u, v)− σ̃j(u, v)] . (A.3)

It follows that

T−1X
j=1−T

aT (j)(T − |j|)
Z ¯̄̄

σ̂j(u, v)− σj(u, v|θ̂)
¯̄̄2
dW (u)dW (v)

=
T−1X

j=1−T
aT (j)(T − |j|)

Z ¯̄̄
σ̃j(u, v)− σj(u, v|θ̂)

¯̄̄2
dW (u)dW (v)

+
T−1X

j=1−T
aT (j)(T − |j|)

Z
|σ̂j(u, v)− σ̃j(u, v)|2 dW (u)dW (v)

+2
T−1X

j=1−T
aT (j)(T − |j|)

Z h
σ̃j(u, v)− σj(u, v|θ̂)

i
[σ̂j(u, v)− σ̃j(u, v)] dW (u).

We shall show the following propositions.

Proposition A.1: Under the conditions of Theorem 1,

T−1X
j=1−T

aT (j)(T − |j|)
Z ¯̄̄

σ̃j(u, v)− σj(u, v|θ̂)
¯̄̄2
dW (u)dW (v)

=
T−1X

j=1−T
aT (j)(T − |j|)

Z
|σ̃j(u, v)− σj(u, v|θ0)|2 dW (u)dW (v) +Op(1).

Proposition A.2: Under the conditions of Theorem 1,

T−1X
j=1−T

aT (j)(T − |j|)
Z
|σ̂j(u, v)− σ̃j(u, v)|2 dW (u)dW (v) = OP (1).

Proposition A.3: Under the conditions of Theorem 1,

T−1X
j=1−T

aT (j)(T − |j|)
Z h

σ̃j(u, v)− σj(u, v|θ̂)
i
[σ̂j(u, v)− σ̃j(u, v)] dW (u)dW (v) = oP (p

1/2).

Proof of Propostion A.1: Noting that σj(u, v|θ) = 0 for all j 6= 0 and all θ ∈ Θ, we have
T−1X

j=1−T
aT (j)(T − j)

Z ¯̄̄
σ̃j(u, v)− σj(u, v|θ̂)

¯̄̄2
dW (u)dW (v)

=
T−1X

j=1−T
aT (j)(T − |j|)

Z
|σ̃j(u, v)− σj(u, v|θ0)|2 dW (u)dW (v)

+aT (0)T

Z ¯̄̄
σ0(u, v|θ̂)− σ0(u, v|θ0)

¯̄̄2
dW (u)dW (v)

+2aT (0)T

Z
[σ̃0(u, v)− σ0(u, v|θ0)]

h
σ0(u, v|θ̂)− σ0(u, v|θ0)

i
dW (u)dW (v)
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=
T−1X

j=1−T
aT (j)(T − |j|)

Z
|σ̃j(u, v)− σj(u, v|θ0)|2 dW (u)dW (v) +OP (1),

Here, we have used the fact thatZ ¯̄̄
σ0(u, v|θ̂)− σ0(u, v|θ0)

¯̄̄2
dW (u)dW (v) = OP (T

−1) (A.4)

by the mean value theorem, Assumptions A.1, A.3 and A.4. We also have used the fact thatZ
[σ̃0(u, v)− σ0(u, v|θ0)]

h
σ0(u, v|θ̂)− σ0(u, v|θ0)

i
dW (u)dW (v) = OP (T

−1)

by the Cauchy-Swartz inequality, (A.4) and
R
|σ̃0(u, v)− σ0(u, v|θ0)|2 dW (u)dW (v) = OP (T

−1) under H0 by
Markov’s inequality. Note that we have σ0(u, v|θ0) = σ0(u, v) under H0.

Proof of Proposition A.2: Put δ̂t(u) = eiuẐt − eiuZt . Following the definitions of σ̂j(u, v) and σ̃j(u, v), we

decompose

(T − |j|)[σ̂j(u, v)− σ̃j(u, v)]

=
X
t=j+1

h
eiuẐt − ϕ̂(u)

i h
eiuẐt−j − ϕ̂(v)

i
− σ̃j(u, v)

=
TX

t=|j|+1

h³
eiuẐt − eiuZt

´
+
¡
eiuZt − ϕ̃(u)

¢
+ (ϕ̃(u)− ϕ̂(u))

i
×
h³
eivẐt−|j| − eivZt−|j|

´
+
¡
eivZt−|j| − ϕ̃(v)

¢
+ (ϕ̃(v)− ϕ̂(v))

i
− σ̃j(u, v)

=
TX

t=|j|+1
δ̂t(u)δ̂t−|j|(v) +

TX
t=|j|+1

δ̂t(u)
¡
eivZt−|j| − ϕ̃(v)

¢
+ (ϕ̃(v)− ϕ̂(v))

TX
t=|j|+1

δ̂t(u)

+
TX

t=|j|+1

¡
eiuZt − ϕ̃(u)

¢
δ̂t−|j|(v) + (ϕ̃(v)− ϕ̂(v))

X
t=|j|+1

¡
eiuZt − ϕ̃(u)

¢
+(ϕ̃(u)− ϕ̂(u))

TX
t=|j|+1

δ̂t−|j|(v) + (ϕ̃(u)− ϕ̂(u))
TX

t=|j|+1

¡
eivZt−|j| − ϕ̃(v)

¢
+(ϕ̃(u)− ϕ̂(u)) (ϕ̃(v)− ϕ̂(v))

=
8X

c=1

B̂cj(u, v) say, (A.5)

We now show the order of magnitude of each term in (A.5). Lemmas A.1-A.8 are derived under the conditions

of Theorem1.

Lemma A.1:
PT−1

j=1−T aT (j)(T − |j|)−1
R ¯̄̄

B̂1j(u, v)
¯̄̄2
dW (u)dW (v) = OP (p/T ).

Lemma A.2:
PT−1

j=1−T aT (j)(T − |j|)−1
R ¯̄̄

B̂2j(u, v)
¯̄̄2
dW (u)dW (v) = OP (1).

Lemma A.3:
PT−1

j=1−T aT (j)(T − |j|)−1
R ¯̄̄

B̂3j(u, v)
¯̄̄2
dW (u)dW (v) = OP (p/T ).

Lemma A.4:
PT−1

j=1−T aT (j)(T − |j|)−1
R ¯̄̄

B̂4j(u, v)
¯̄̄2
dW (u)dW (v) = OP (p/T ).

Lemma A.5:
PT−1

j=1−T aT (j)(T − |j|)−1
R ¯̄̄

B̂5j(u, v)
¯̄̄2
dW (u)dW (v) = OP (p

3/T 2).

Lemma A.6:
PT−1

j=1−T aT (j)(T − |j|)−1
R ¯̄̄

B̂6j(u, v)
¯̄̄2
dW (u)dW (v) = OP (p/T ).
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Lemma A.7:
PT−1

j=1−T aT (j)(T − |j|)−1
R ¯̄̄

B̂7j(u, v)
¯̄̄2
dW (u)dW (v) = OP (p

3/T 2).

Lemma A.8:
PT−1

j=1−T aT (j)(T − |j|)−1
R ¯̄̄

B̂8j(u, v)
¯̄̄2
dW (u)dW (v) = OP (p/T ).

Proof of Lemma A.1: For B̂1j(u, v), by the inequality that |eiz1 − eiz2 | ≤ |z1 − z2| for any real z1 and z2, we

have ¯̄̄̄
¯̄ TX
t=|j|+1

(eiuẐt − eiuZt)(eivẐt−|j| − eivZt−|j|)

¯̄̄̄
¯̄ ≤ TX

t=|j|+1
|uv|

¯̄̄
Ẑt − Zt

¯̄̄ ¯̄̄
Ẑt−|j| − Zt−|j|

¯̄̄

≤ |uv|
TX
t=1

(Ẑt − Zt)
2.

Note that
TX
t=1

(Ẑt − Zt)
2 ≤ 2

X
t=1

h
Z(Ît−1, θ̂)− Z(It−1, θ̂)

i2
+ 2

X
t=1

h
Z(It−1, θ̂)− Z(It−1, θ0)

i2
= OP (1) +OP (1) = OP (1)

where the first term is OP (1) by Assumption A.2, and the second term is OP (1) by the mean value theorem,

Assumptions A.1 and A.3. It follows that

T−1X
j=1−T

aT (j)(T − |j|)−1
Z ¯̄̄

B̂1j(u, v)
¯̄̄2
dW (u)dW (v) ≤

TX
t=1

(Ẑt − Zt)
2

∙Z
u2dW (u)

¸2 T−1X
j=1−T

aT (j)(T − |j|)−1

= OP (p/T ), (A.6)

where, as shown in Hong (1999, (A15), p.1213), we have made use of the fact that

T−1X
j=1−T

aT (j)(T − |j|)−1 = OP (p/T ). (A.7)

Proof of Lemma A.2: Using the inequality that |eiz − 1− iz| ≤ |z|2 for any real z, we have¯̄̄
eiuẐt − eiuZt − iu(Ẑt − Zt)e

iuZt
¯̄̄
≤ u2(Ẑt − Zt)

2. (A.8)

By the second order Taylor series expansion, we have¯̄̄̄
eiuẐt − eiuZt − iu

∂

∂θ
Zt(θ0)e

iuZt(θ̂ − θ0)

¯̄̄̄
≤ u2[Ẑt − Zt(θ0)]

2 + |u||Zt − Zt(θ̂)|

+|u|||θ̂ − θ0||2 sup
θ∈Θ

°°°° ∂2

∂θ∂θ0
Zt(θ)

°°°° . (A.9)

Thus, given the fact that |ϕ̃(v)| ≤ C, we obtain

(T − |j|)|B̂2j(u, v)| ≤ |u|||θ̂ − θ0||

¯̄̄̄
¯̄ TX
t=|j|+1

ϕ̃(v)
∂

∂θ
Zt(θ0)e

iuZt

¯̄̄̄
¯̄+ u2

TX
t=1

[Ẑt − Zt(θ0)]
2

+|u|
TX
t=1

[Ẑt − Zt(θ0)]
2 + |u|||θ̂ − θ0||2

TX
t=1

sup
θ∈Θ

°°°° ∂2

∂θ∂θ0
Zt(θ)

°°°° . (A.10)
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It follows from (A.10) and Assumptions A.1-A.5 that

T−1X
j=1−T

aT (j)(T − |j|)−1
Z ¯̄̄

B̂2j(u, v)
¯̄̄2
dW (u)dW (v)

≤ 8||θ̂ − θ0||2
T−1X

j=1−T
aT (j)(T − |j|)−1

Z ¯̄̄̄
¯̄ TX
t=|j|+1

eiuZt−|j|
∂

∂θ
Zt(θ0)e

iuZt

¯̄̄̄
¯̄
2

u2dW (u)dW (v)

+8

"
TX
t=1

³
Ẑt − Zt(θ0)

´2#2 T−1X
j=1−T

aT (j)(T − |j|)−1
Z

u4dW (u)dW (v)

+8

"
TX
t=1

³
Ẑt − Zt(θ̂)

´2#2 T−1X
j=1−T

aT (j)(T − |j|)−1
Z

u2dW (u)dW (v)

+8||θ̂ − θ0||4
"

TX
t=1

sup
θ∈Θ

°°°° ∂2

∂θ∂θ0
Zt(θ)

°°°°
#2 T−1X

j=1−T
aT (j)(T − |j|)−1

Z
u2dW (u)dW (v)

= OP (1), (A.11)

where the last three terms areOP (p/T ) given Assumptions A.1-A.5, and the first term isOP (1) following analogous

reasoning to Hong and Lee (2003, Lemma A.5), based on the mixing property of {Zt(θ), ∂
∂θZt(θ)}0.

Proof of Lemma A.3: By the inequality that |eiz1 − eiz2 | ≤ |z1 − z2| for any real z1 and z2, we have

|ϕ̂(v)− ϕ̃(v)| =
¯̄̄̄
¯T−1

TX
t=1

(eivẐt − eivZt)

¯̄̄̄
¯ ≤ |v|T−1

TX
t=1

¯̄̄
Ẑt − Zt

¯̄̄
,

and
¯̄̄P

t=|j|+1 δ̂t−j(u)
¯̄̄
≤ |u|

P
t=1 |Ẑt − Zt|. On the other hand,

T−1/2
TX
t=1

¯̄̄
Ẑt − Zt

¯̄̄
≤ T−1/2

TX
t=1

¯̄̄
Z(Ît−1, θ̂)− Z(It−1, θ̂)

¯̄̄
+ T−1/2

TX
t=1

¯̄̄
Z(It−1, θ̂)− Z(It−1, θ0)

¯̄̄
= OP (T

−1/2) +OP (1) = OP (1)

where the first term is OP (T
−1/2) by Assumption A.2, and the second term is OP (1) by the mean value theorem,

Assumptions A.1 and A.3. It follows that

T−1X
j=1−T

aT (j)(T − |j|)−1
Z ¯̄̄

B̂3j(u, v)
¯̄̄2
dW (u)dW (v) ≤

"
T−1/2

TX
t=1

¯̄̄
Ẑt − Zt

¯̄̄#4 ∙Z
u2dW (u)

¸2 T−1X
j=1

aT (j)(T − j)−1

= OP (p/T ). (A.12)

28



Proof of Lemma A.4: By the similar reasoning to the proof of Lemma A.2, using (A.10), we have

T−1X
j=1−T

aT (j)(T − |j|)−1
Z ¯̄̄

B̂4j(u, v)
¯̄̄2
dW (u)dW (v)

≤ 8||θ̂ − θ0||2
T−1X

j=1−T
aT (j)(T − |j|)−1

Z ¯̄̄̄
¯̄ TX
t=|j|+1

eiuZt
∂

∂θ
Zt−|j|(θ0)e

iuZt−|j|

¯̄̄̄
¯̄
2

u2dW (u)dW (v)

+8

⎡⎣ TX
t=|j|+1

³
Ẑt−|j| − Zt−|j|(θ0)

´2⎤⎦2 T−1X
j=1−T

aT (j)(T − |j|)−1
Z

u4dW (u)dW (v)

+8

⎡⎣ TX
t=|j|+1

³
Ẑt−|j| − Zt−|j|(θ̂)

´2⎤⎦2 T−1X
j=1−T

aT (j)(T − |j|)−1
Z

u2dW (u)dW (v)

+8||θ̂ − θ0||4
⎡⎣ TX
t=|j|+1

sup
θ∈Θ

°°°° ∂2

∂θ∂θ0
Zt−|j|(θ)

°°°°
⎤⎦2 T−1X

j=1−T
aT (j)(T − |j|)−1

Z
u2dW (u)dW (v)

= OP (p/T ), (A.13)

where we have used the fact that E
¯̄̄PT

t=|j|+1 e
iuZt ∂

∂θZt−|j|(θ)e
iuZt−|j|

¯̄̄2
≤ C(T− |j|) because eiuZt is independent

of ∂
∂θZt−|j|(θ)e

iuZt−|j| for j > 0 under the i.i.d. property of {Zt}Tt=1 under H0.

Proof of Lemma A.5: Since ϕ̃(v) = T−1
PT

t=1 e
iuZt , we have¯̄̄̄

¯̄[ϕ̂(v)− ϕ̃(v)]
TX

t=j+1

£
eiuZt − ϕ̃(u)

¤¯̄̄̄¯̄ ≤ |ϕ̂(v)− ϕ̃(v)|
¯̄̄̄
¯
jX

t=1

£
eiuZt − ϕ̃(u)

¤¯̄̄̄¯
≤ |ϕ̂(v)− ϕ̃(v)|

¯̄̄̄
¯
jX

t=1

£
eiuZt − ϕ̃(u)

¤¯̄̄̄¯ ≤ 2 |ϕ̂(v)− ϕ̃(v)| · j.

It follows that
T−1X

j=1−T
aT (j)(T − |j|)−1

Z ¯̄̄
B̂5j(u, v)

¯̄̄2
dW (u)dW (v) =

T−1X
j=1−T

aT (j)j
2(T − |j|)−1 |ϕ̂(v)− ϕ̃(v)|2

= OP (p
3/T 2), (A.14)

by using the fact that p−1
PT−1

j=1 z2k2(z)→
R∞
0

z2k2(z)dz given Assumption A.4.

Proof of Lemma A.6: By the similar reasoning to Lemma A.2, we have¯̄̄̄
¯̄ 1T

TX
t=|j|+1

[ϕ̂(u)− ϕ̃(u)]
³
eivẐt−|j| − eivZt−|j|

´¯̄̄̄¯̄ ≤ |ϕ̂(u)− ϕ̃(u)| |ϕ̂(v)− ϕ̃(v)| = |uv|OP (T
−1).

It follows that

T−1X
j=1−T

aT (j)(T − |j|)−1
Z ¯̄̄

B̂6j(u, v)
¯̄̄2
dW (u)dW (v) ≤

Ã
T−1/2

TX
t=1

¯̄̄
Ẑt − Zt

¯̄̄!2 ∙Z
u2dW (u)

¸2 T−1X
j=1

aT (j)(T − j)−1

= OP (p/T ). (A.15)
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Proof of Lemma A.7: By the similar reasoning as Lemma A.5, we have¯̄̄̄
¯̄[ϕ̂(u)− ϕ̃(u)]

TX
t=|j|+1

¡
eivZt−|j| − ϕ̃(v)

¢¯̄̄̄¯̄ ≤ |ϕ̂(u)− ϕ̃(u)|
¯̄̄̄
¯
jX

t=1

[eivZt−|j| − ϕ̃(u)]

¯̄̄̄
¯ ≤ 2 |ϕ̂(u)− ϕ̃(u)| · j.

It follows that
T−1X

j=1−T
aT (j)(T − |j|)−1

Z ¯̄̄
B̂7j(u, v)

¯̄̄2
dW (u)dW (v) = OP (p

3/T 2). (A.16)

Proof of Lemma A.8: By the similar reasoning to Lemma A.2, we have¯̄̄̄
¯̄ 1T

TX
t=|j|+1

[ϕ̂(u)− ϕ̃(u)] [ϕ̂(v)− ϕ̃(v)]

¯̄̄̄
¯̄ = |[ϕ̂(u)− ϕ̃(u)] [ϕ̂(v)− ϕ̃(v)]| = |uv|OP (T

−1).

It follows that

T−1X
j=1−T

aT (j)(T − |j|)−1
Z ¯̄̄

B̂8j(u, v)
¯̄̄2
dW (u)dW (v) ≤

Ã
T−1

TX
t=1

¯̄̄
Ẑt − Zt

¯̄̄!2 ∙Z
u2dW (u)

¸2 T−1X
j=1

aT (j)(T − |j|)

= OP (p/T ). (A.17)

Collecting (A.5)-(A.17), we obtain the desired result.

Proof of Proposition A.3:

T−1X
j=1−T

aT (j)(T − |j|)
Z h

σ̃j(u, v)− σj(u, v|θ̂)
i
[σ̂j(u, v)− σ̃j(u, v)] dW (u)dW (v)

= aT (0)T

Z h
σ̃0(u, v)− σ0(u, v|θ̂)

i
[σ̂0(u, v)− σ̃0(u, v)] dW (u)dW (v)

+2
T−1X
j=1

aT (j)(T − j)

Z
σ̃j(u, v) [σ̂j(u, v)− σ̃j(u, v)] dW (u)dW (v)

= OP (1) + oP (p
1/2).

Here, the first term isOP (1) by the Cauchy-Scwartz inequality,
R ¯̄̄

σ̃0(u, v)− σ0(u, v|θ̂)
¯̄̄2
dW (u)dW (v) = OP (T

−1)

and
R
|σ̂0(u, v)− σ̃0(u, v)|2 dW (u)dW (v) = OP (T

−1). The second term is oP (p1/2) by following analogous rea-

soning of Hong and Lee (2003, Prop. A.2, p.1111).

Proof of Theorem A.2: Following the proof of Hong and Lee (2003, Theorem A.2), we have⎡⎣ T−1X
j=1−T

aT (j)(T − |j|)
Z
|σ̃j(u, v)− σj(u, v)|2 dW (u)dW (v)− Â

⎤⎦ /pV̂
d−→ N(0, 1),

where Â and V̂ are given in (3.12).

Proof of Theorem 2: The proof of Theorem 2 consists of the proofs of Theorems A.3 and A.4 below.

Theorem A.3: Under the conditions of Theorem 2, (p
1
2 /T )[M̂1 −M1]

p→ 0.
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Theorem A.4: Under the conditions of Theorem 2,

(p
1
2 /T )M(p)

p→
ZZ π

−π
|f(ω, u, v)− f0(ω, u, v)|2 dωdW (u)dW (v)

=
1

2

Z
|σ0(u, v)− σ0(u, v|θ0)|2dW (u)dW (v) + 2

∞X
j=1

Z
|σj(u, v)|2dW (u)dW (v).

Proof of Theorem A.3: It suffices to show thatZ T−1X
j=1

aT (j)(T − |j|)
¯̄̄
σ̂j(u, v)− σj(u, v|θ̂)

¯̄̄2
dW (u)dW (v)

p→ 0, (A.18)

T−1(Â− Ã)
p→ 0, and p−1(V̂ − Ṽ )

p→ 0, where Ã and Ṽ are defined in the same way as Â and V̂ in (3.12), with

{Zt}Tt=1 replacing {Ẑt}Tt=1. Since the proofs for T−1(Â− Ã)
p→ 0, and p−1(V̂ − Ṽ )

p→ 0 are straightforward, we

focus on the proof of (A.18). Decompose

σ̂j(u, v)− σj(u, v|θ̂) = σj(u, v)− σj(u, v|θ0) + [σ̂j(u, v)− σj(u, v)]− [σj(u, v|θ̂)− σj(u, v|θ0)]

We have¯̄̄
σ̂j(u, v)− σj(u, v|θ̂)

¯̄̄2
= |σj(u, v)− σj(u, v|θ0)|2 +

¯̄̄
[σ̂j(u, v)− σj(u, v)]− [σj(u, v|θ̂)− σj(u, v|θ0)]

¯̄̄2
+2 [σj(u, v)− σj(u, v|θ0)]

n
[σ̂j(u, v)− σj(u, v)]− [σj(u, v|θ̂)− σj(u, v|θ0)]

o
. (A.19)

By the Cauchy-Schwarz inequality, it suffices to show that

T−1X
j=1

aT (j)(T − |j|)
Z ¯̄̄
[σ̂j(u, v)− σj(u, v)]− [σj(u, v|θ̂)− σj(u, v|θ0)]

¯̄̄2
dW (u)dW (v) = oP (1).

We decompose

T−1X
j=1

aT (j)(T − |j|)
Z ¯̄̄
[σ̂j(u, v)− σj(u, v)]− [σj(u, v|θ̂)− σj(u, v|θ0)]

¯̄̄2
dW (u)dW (v)

≤ 2
T−1X
j=1

aT (j)(T − |j|)
Z
|σ̂j(u, v)− σj(u, v)|2 dW (u)dW (v)

+2
T−1X
j=1

aT (j)(T − |j|)
Z ¯̄̄

σj(u, v|θ̂)− σj(u, v|θ0)
¯̄̄2
dW (u)dW (v).

For the first term, we have

T−1X
j=1

aT (j)(T − |j|)
Z
|σ̂j(u, v)− σj(u, v)|2 dW (u)dW (v) = O(T−1),

following the proof similar to Hong and Lee (2003, Theorem A.3). For the second term, we have

T−1X
j=1

aT (j)(T − |j|)
Z ¯̄̄

σj(u, v|θ̂)− σj(u, v|θ0)
¯̄̄2
dW (u)dW (v)

=
T−1X
j=1

aT (j)(T − |j|)
Z °°°° ∂

∂θ
ϕ(u|θ)

°°°°2 ||θ̂ − θ0||2dW (u)dW (v) = O(T−1),
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by the mean-value theorem. This completes the proof for Theorem A.3.

Proof of Theorem A.4: The proof is very similar to Hong (1999, Proof of Theorem 5), for the case (m, l) =

(0, 0).

32



TABLE 1. Empirical Size of Tests

DGP S.1: Yt= 0.2Y t−1+ut, εt = h
1/2
t εt

A: ht= 0.2 + 0.6ht−1+0.2u2t−1 B: ht= 0.2 + 0.8ht−1+0.2u2t−1 C: ht= 0.2 + 0.79ht−1+0.2u2t−1
M̂1 Q1 M̂2 Q2 M̂1 Q1 M̂2 Q2 M̂1 Q1 M̂2 Q2

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

T = 250

10 6.9 4.6 6.5 4.0 5.7 4.0 5.5 3.1 8.0 5.2 7.7 4.3 6.7 4.3 6.6 3.3 8.1 5.1 7.4 4.0 6.9 4.0 6.6 3.4
15 7.9 5.1 7.7 4.6 7.0 4.6 6.8 4.1 8.7 5.5 8.4 4.8 7.5 5.0 7.3 4.1 8.8 5.7 8.2 4.8 7.5 4.9 7.3 4.2
20 8.3 5.8 7.9 5.4 7.6 5.4 6.9 5.1 9.0 5.9 8.5 5.6 7.7 5.6 7.3 4.4 8.9 6.0 8.3 5.6 7.8 5.7 7.3 4.6
25 9.1 6.1 8.7 5.4 8.0 5.4 7.7 5.0 9.7 6.1 9.2 5.6 8.2 5.6 8.0 5.2 9.6 6.2 9.1 5.8 8.5 5.8 8.0 4.8
30 9.3 6.7 9.1 5.9 8.6 6.2 8.1 5.6 9.5 7.0 9.2 6.2 8.4 6.3 8.2 5.6 9.5 6.7 9.2 6.1 8.6 6.1 8.1 5.5

T = 500

10 7.6 5.6 7.3 5.0 6.4 5.0 6.1 4.1 7.5 5.6 7.3 4.8 6.9 4.8 6.5 4.3 7.5 5.5 7.3 5.0 6.8 5.2 6.5 4.5
15 8.3 5.7 7.9 5.0 7.1 5.3 6.9 4.9 7.8 6.0 7.6 5.3 6.9 5.3 6.7 4.8 7.7 6.1 7.4 5.3 7.0 5.4 6.9 4.9
20 8.8 6.1 8.5 5.7 7.9 5.7 7.7 4.7 8.3 6.0 8.1 5.3 7.7 5.6 7.5 5.0 8.5 6.2 8.3 5.6 7.7 5.7 7.6 5.1
25 8.8 6.2 8.7 5.9 8.4 6.0 7.7 5.6 8.7 6.4 8.6 5.8 8.0 5.8 7.9 5.4 8.9 6.6 8.4 5.8 8.0 5.9 7.9 5.4
30 9.3 6.3 9.0 5.8 8.2 5.8 8.1 5.3 9.5 6.4 9.1 6.0 8.6 6.0 8.3 5.3 9.4 6.6 9.2 6.0 8.5 6.0 8.3 5.5

T = 1000

10 6.3 4.4 5.8 4.5 5.2 3.5 4.7 2.9 6.7 4.1 6.3 3.5 5.6 3.5 5.4 3.2 6.6 4.0 6.1 3.5 5.7 3.5 5.4 3.2
15 6.6 4.4 6.1 3.7 5.7 3.7 5.5 3.0 6.9 4.3 6.8 4.0 6.4 4.0 6.1 3.4 7.1 4.4 6.7 3.9 6.3 3.9 6.1 3.4
20 6.8 4.5 6.6 4.0 6.1 4.0 5.7 3.6 7.5 4.5 7.1 4.3 6.4 4.3 6.0 3.6 7.5 4.4 7.2 4.3 6.4 4.3 5.9 3.8
25 7.5 4.9 7.3 4.6 6.6 4.7 6.3 3.6 7.9 5.2 7.4 4.4 7.0 4.4 6.6 4.0 7.9 5.2 7.6 4.3 7.2 4.5 6.5 4.0
30 7.0 4.9 7.4 4.8 6.9 4.8 6.5 4.4 8.4 5.3 7.9 5.0 7.4 5.0 7.2 4.4 8.3 5.5 8.1 4.9 7.4 5.0 7.0 4.3

Notes : (i) 1000 iterations;
(ii) M̂1, M̂2, generalized spectral tests, Q1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M̂1 and M̂2; p = 10, 15, 20, 25, 30.

(iv) A: Yt= 0.2Y t−1+ut, ut = h
1/2
t εt, ht= 0.2 + 0.6ht−1+0.2u2t−1; B: ht= 0.2 + 0.8ht−1+0.2u

2
t−1;

C: ht= 0.2 + 0.79ht−1+0.2u2t−1, εt ∼ i.i.d. N(0, 1).



TABLE 2. Empirical Sizes of Tests (cont.)

DGP S.1: Yt= 0.6Y t−1+ut, ut = h
1/2
t εt

A: ht= 0.2 + 0.6ht−1+0.2u2t−1 B: ht= 0.2 + 0.8ht−1+0.2u2t−1 C: ht= 0.2 + 0.79ht−1+0.2u2t−1
M̂1 Q1 M̂2 Q2 M̂1 Q1 M̂2 Q2 M̂1 Q1 M̂2 Q2

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

T = 250

10 10.7 6.8 10.2 5.2 8.7 5.2 8.1 4.1 10.1 6.4 9.6 4.9 8.9 5.0 8.4 4.4 10.6 6.3 9.9 5.0 8.8 5.0 8.5 4.5
15 10.8 7.1 10.6 5.8 9.3 5.9 8.7 4.9 10.2 7.4 10.1 6.5 9.1 6.5 9.0 4.8 10.2 7.3 9.8 6.4 9.0 6.4 8.8 4.8
20 10.5 7.2 10.1 6.0 9.1 6.1 8.7 5.7 10.4 7.4 10.1 6.5 9.2 6.7 9.1 5.4 10.3 7.4 10.0 6.2 9.2 6.4 8.8 5.4
25 10.9 6.9 10.4 6.2 9.8 6.3 9.3 5.8 11.1 7.3 10.5 6.2 9.4 6.3 9.3 5.7 10.8 7.2 10.0 6.1 9.5 6.1 9.2 5.7
30 11.5 7.2 10.9 6.3 10.0 6.4 9.9 5.9 11.3 7.4 11.0 6.0 10.1 6.0 9.7 5.7 11.4 7.2 11.2 6.0 10.0 6.3 9.7 5.7

T = 500

10 8.5 6.8 8.1 6.3 7.9 6.3 7.8 4.9 8.4 6.5 8.2 5.8 8.0 5.9 7.6 5.1 8.4 6.6 8.3 5.8 7.4 5.4 7.6 5.1
15 8.7 7.0 8.6 6.5 8.1 6.5 8.0 6.4 9.0 7.0 8.6 6.7 8.2 6.7 8.1 5.8 8.9 7.0 8.7 6.5 8.1 6.2 8.0 6.1
20 9.6 6.8 9.4 6.6 8.5 6.6 8.0 6.4 10.2 7.0 10.0 6.5 8.8 6.7 8.4 5.9 10.0 7.0 9.7 6.5 8.3 6.6 8.3 6.2
25 10.2 7.0 9.6 6.7 9.3 6.7 8.9 6.1 10.8 7.3 10.6 6.3 9.9 6.6 9.3 5.5 10.8 7.2 10.2 6.5 9.3 6.7 9.3 5.8
30 10.8 7.3 10.3 6.5 9.6 6.5 9.3 6.1 11.5 7.6 10.9 6.6 10.2 6.7 10.0 5.8 11.2 7.8 10.7 6.9 9.7 6.6 9.8 5.9

T = 1000

10 6.6 5.0 6.1 4.1 5.7 4.1 5.4 3.6 7.9 5.0 7.3 4.1 5.9 4.1 5.7 3.4 7.7 5.0 6.8 4.4 6.1 4.4 5.7 3.4
15 7.7 5.0 6.9 4.2 6.7 4.2 6.3 3.5 8.0 4.8 7.6 4.1 6.9 4.1 6.7 3.3 7.8 4.8 4.5 4.1 6.9 4.3 6.7 3.3
20 7.4 5.3 7.3 4.7 6.8 4.7 6.4 3.9 8.2 5.5 7.6 4.4 7.2 4.4 6.6 3.8 8.3 5.3 7.6 4.5 7.2 4.6 6.8 3.8
25 7.9 5.6 7.7 4.8 7.0 5.0 7.0 4.2 8.2 5.5 7.9 4.7 7.1 4.9 6.8 4.1 8.2 5.5 7.8 4.9 7.3 4.9 7.0 4.1
30 8.3 6.1 8.0 5.2 7.5 5.2 7.1 4.5 8.6 5.7 8.2 5.3 7.5 5.3 7.0 4.4 8.6 5.8 8.3 5.4 7.5 5.5 7.1 4.3

Notes : (i) 1000 iterations;
(ii) M̂1, M̂2, generalized spectral tests, Q1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M̂1 and M̂2; p = 10, 15, 20, 25, 30.

(iv) A: Yt= 0.6Y t−1+ut, ut = h
1/2
t εt, ht= 0.2 + 0.6ht−1+0.2u2t−1; B: ht= 0.2 + 0.8ht−1+0.2u

2
t−1;

C: ht= 0.2 + 0.79ht−1+0.2u2t−1, εt ∼ i.i.d. N(0, 1).



TABLE 3. Empirical Sizes of Tests (cont.)

DGP S.1: Yt= 0.9Y t−1+ut, ut = h
1/2
t εt

A: ht= 0.2 + 0.6ht−1+0.2u2t−1 B: ht= 0.2 + 0.8ht−1+0.2u2t−1 C: ht= 0.2 + 0.79ht−1+0.2u2t−1
M̂1 Q1 M̂2 Q2 M̂1 Q1 M̂2 Q2 M̂1 Q1 M̂2 Q2

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

T = 250

10 13.1 8.7 12.4 8.0 10.9 8.1 10.6 7.1 12.6 8.8 12.2 7.9 10.9 7.9 10.5 6.8 11.5 8.6 11.3 7.3 10.5 7.3 10.3 6.6
15 13.5 9.0 13.0 7.8 12.2 7.9 11.7 7.2 13.1 9.6 13.0 8.2 12.3 8.3 11.7 7.5 11.8 9.1 11.2 8.0 10.8 8.1 10.5 6.6
20 13.4 9.5 13.1 8.2 12.4 8.3 11.9 7.7 13.4 9.7 12.8 8.5 12.0 8.6 11.8 7.6 11.8 8.7 11.3 7.7 10.5 7.7 10.3 6.9
25 13.4 9.9 13.3 8.4 12.5 8.5 12.2 7.8 13.0 9.6 12.6 8.7 12.3 8.7 11.8 7.6 12.3 8.5 11.7 7.6 10.6 7.6 10.0 7.0
30 14.1 9.7 13.1 8.6 12.2 8.7 11.8 7.8 13.0 9.5 12.8 8.5 12.8 8.5 12.3 7.7 12.5 8.2 12.2 8.0 11.1 8.0 10.7 6.9

T = 500

10 12.1 9.1 11.7 8.4 10.9 8.4 10.4 7.1 12.9 8.8 12.3 8.2 11.3 8.2 10.8 7.0 10.5 8.0 10.2 7.0 9.3 7.1 9.0 5.8
15 12.1 9.6 11.8 8.5 11.0 8.5 10.8 7.8 12.4 9.2 11.9 8.4 10.9 8.4 10.2 7.5 10.9 8.3 10.3 7.6 10.0 7.6 9.7 6.8
20 12.3 9.2 12.0 8.7 11.4 8.7 10.6 7.9 12.8 9.0 12.4 8.0 11.3 8.0 10.8 7.4 11.6 8.4 11.4 7.6 10.7 7.7 10.2 6.8
25 13.0 9.3 12.7 8.4 11.7 8.4 10.9 7.5 13.1 8.8 12.8 8.0 11.9 8.1 11.6 7.2 11.9 8.8 11.7 7.7 11.4 7.9 11.0 6.9
30 13.2 9.3 13.0 8.2 11.9 8.2 11.5 7.5 13.9 9.0 13.2 8.2 11.8 8.2 11.3 7.2 12.4 9.1 12.2 8.0 11.3 8.1 10.9 7.2

T = 1000

10 8.5 5.8 10.6 7.1 8.9 6.5 8.9 6.5 11.0 7.7 10.4 6.7 9.4 6.7 9.0 5.8 9.5 6.1 8.9 5.0 7.8 5.0 7.3 3.0
15 9.0 5.2 10.8 7.6 9.1 6.4 9.1 6.4 10.7 7.4 10.2 6.5 9.5 6.5 9.0 5.5 9.3 5.6 9.2 5.2 7.8 5.3 7.6 4.1
20 9.4 5.4 10.7 7.6 9.9 6.7 9.9 6.7 10.8 6.8 10.5 5.9 9.9 6.1 9.4 5.7 9.3 5.9 8.4 5.1 8.1 5.2 7.8 4.3
25 9.4 5.7 10.9 7.9 9.7 7.0 9.7 7.0 10.7 7.6 10.6 6.3 10.0 6.3 9.4 5.6 8.7 6.2 8.4 5.3 7.9 5.5 7.8 4.8
30 9.7 6.5 10.5 7.8 9.8 7.5 9.8 7.5 10.6 7.7 10.5 6.6 9.9 6.7 9.4 6.0 9.1 6.4 8.6 5.7 8.1 5.9 8.1 5.0

Notes : (i) 1000 iterations;
(ii) M̂1, M̂2, generalized spectral tests, Q1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M̂1 and M̂2; p = 10, 15, 20, 25, 30.

(iv) A: Yt= 0.9Y t−1+ut, ut = h
1/2
t εt, ht= 0.2 + 0.6ht−1+0.2u2t−1; B: ht= 0.2 + 0.8ht−1+0.2u

2
t−1;

C: ht= 0.2 + 0.79ht−1+0.2u2t−1, εt ∼ i.i.d. N(0, 1).



TABLE 4. Empirical Powers of Tests

DGP P.1: Yt= 0.2Y t−1+0.2Y t−2+ut DGP P.2: Yt= −0.5Y t−11(Y t−1> 0) + 0.7Y t−11(Y t−1≤ 0) + ut
M̂1 Q1 M̂2 Q2 M̂1 Q1 M̂2 Q2

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

T = 250

10 61.4 50.8 61.9 49.8 61.4 50.8 62.2 49.9 98.9 97.2 98.6 96.6 98.9 97.1 98.6 96.8
15 61.3 51.2 60.0 49.9 61.3 51.2 60.3 49.8 97.8 94.4 97.2 92.0 97.8 94.2 97.4 92.1
20 60.9 47.6 58.9 48.3 60.9 47.6 59.0 48.6 96.0 89.4 94.9 88.5 96.0 89.3 95.1 89.1
25 58.9 47.9 58.0 45.7 59.0 47.9 58.0 46.0 93.9 86.5 93.2 84.0 93.8 86.4 93.2 84.3
30 58.7 46.6 57.3 44.1 58.6 46.6 57.3 44.3 92.4 82.3 91.4 80.1 92.1 82.0 91.8 80.6

T = 500

10 89.9 81.4 89.4 80.0 89.9 81.4 89.4 80.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
15 89.5 81.9 89.5 81.6 89.5 81.9 89.4 81.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 89.6 81.4 89.2 81.1 89.6 81.4 89.3 81.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 89.2 80.2 89.1 79.7 89.2 80.2 89.1 79.7 100.0 100.0 100.0 99.8 100.0 100.0 100.0 99.8
30 88.4 79.2 87.8 79.8 88.4 79.1 87.9 79.6 100.0 99.9 100.0 99.8 100.0 100.0 100.0 99.8

T = 1000

10 99.7 99.2 99.6 99.2 99.7 99.2 99.6 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
15 99.6 99.3 99.6 99.2 99.6 99.3 99.6 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.4 99.2 99.4 99.2 99.4 99.2 99.4 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 99.4 99.1 99.4 98.9 99.4 99.1 99.4 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 99.4 99.0 99.4 98.8 99.4 99.0 99.4 98.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes : (i) 1000 iterations;
(ii) M̂1, M̂2, generalized spectral tests, Q1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M̂1 and M̂2; p = 10, 15, 20, 25, 30.

(iv) DGP P.1: Yt= 0.2Y t−1+0.2Y t−2+ut, ut = h
1/2
t εt, ht= 0.2 + 0.6ht−1+0.2u2t−1;

DGP P.2: Yt= −0.5Y t−11(Y t−1> 0) + 0.7Y t−11(Y t−1≤ 0) + ut, ut = h
1/2
t εt, ht= 0.2 + 0.6ht−1+0.2u2t−1;

DGP P.3: Yt= 0.2Y t−1 + ut, ut = h
1/2
t εt, ht= 0.2 + 0.6ht−1+0.1u2t−11(ut−1> 0) + 0.5u

2
t−11(ut−1≤ 0),

εt ∼ i.i.d. N(0, 1).



TABLE 5. Empirical Powers of Tests (Cont.)

DGP P.3: DGP P.4:
ht= 0.2 + 0.6ht−1+0.1u2t−11(ut−1> 0) + 0.5u

2
t−11(ut−1≤ 0) ht= 0.2 + 0.6ht−1+0.2u2t−1, {εt} ∼ i.i.d. exp (1)

M̂1 Q1 M̂2 Q2 M̂1 Q1 M̂2 Q2
p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

T = 250

10 26.6 17.4 26.6 16.8 26.4 17.1 26.8 17.0 65.1 48.4 61.8 43.6 64.5 48.2 63.1 44.9
15 25.7 14.9 24.3 14.3 25.8 14.8 24.4 14.0 50.9 33.4 46.7 30.8 50.1 32.7 47.3 30.9
20 23.7 12.0 22.4 12.7 23.6 12.0 22.4 12.8 40.2 22.9 37.9 21.9 39.8 22.4 38.5 23.0
25 21.3 13.2 21.2 12.1 21.2 13.2 21.2 12.5 33.3 19.9 32.1 16.5 33.1 19.3 32.3 17.1
30 21.7 12.6 20.2 12.1 21.6 12.5 20.1 12.1 29.8 15.9 27.0 14.0 29.2 15.4 27.4 14.0

T = 500

10 47.6 27.3 44.0 25.7 47.4 27.3 44.1 26.0 98.7 93.1 97.8 91.4 98.5 93.0 98.0 91.9
15 42.6 25.8 41.7 25.1 42.5 25.8 41.5 25.1 94.9 84.8 93.6 82.8 94.9 84.6 93.7 83.5
20 40.6 24.0 40.2 22.8 40.9 24.0 40.4 22.8 89.7 75.9 88.2 73.1 89.5 75.5 88.7 74.4
25 38.4 21.8 37.8 21.1 38.3 21.8 38.0 21.1 84.5 66.9 83.1 63.3 84.4 66.3 83.4 64.5
30 37.1 20.4 36.0 21.2 37.1 20.4 36.1 21.2 79.0 59.0 75.9 58.6 78.6 58.3 76.6 59.2

T = 1000

10 80.7 68.5 78.4 67.0 80.7 68.2 78.6 67.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
15 78.4 66.2 76.3 65.3 78.3 65.8 76.2 65.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 74.8 63.1 73.4 62.1 74.6 63.1 73.4 62.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 73.7 61.1 71.6 57.0 73.7 61.1 71.9 57.1 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0
30 72.2 59.1 70.9 53.5 72.1 58.8 71.0 53.5 100.0 99.6 100.0 99.5 100.0 99.6 100.0 99.6

Notes : (i) 1000 iterations;
(ii) M̂1, M̂2, generalized spectral tests, Q1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M̂1 and M̂2; p = 10, 15, 20, 25, 30.

(iv) DGP P.3: Yt= 0.2Y t−1 + ut,ut= h
1/2
t εt, ht= 0.2 + 0.6ht−1+0.1u2t−11(ut−1> 0) + 0.5u

2
t−11(ut−1≤ 0),

{εt} ∼ i.i.d. N(0, 1); DGP P.4: Yt= 0.2Y t−1+ut, ut = h
1/2
t εt, ht= 0.2 + 0.6ht−1+0.2u2t−1, {εt} ∼ i.i.d. exp (1).



TABLE 6. Empirical Powers of Tests (Cont.)

DGP P.5:

M̂1(p) Q1 M̂2 Q2
p 10% 5% 10% 5% 10% 5% 10% 5%

T = 250

10 88.1 79.7 86.5 76.0 87.8 79.2 87.5 77.0
15 79.6 69.5 76.3 65.1 80.9 72.0 76.7 66.5
20 71.1 56.5 68.2 54.9 70.8 56.3 68.6 56.3
25 64.0 51.0 62.7 46.2 63.1 50.4 62.6 47.6
30 58.7 44.4 55.6 41.0 57.9 43.4 56.0 42.3

T = 500

10 99.7 99.5 99.6 99.3 99.6 98.2 99.6 99.3
15 99.5 98.0 99.3 98.0 98.9 96.9 99.3 97.9
20 98.9 96.6 98.3 96.5 97.7 95.8 98.3 96.5
25 98.0 95.8 97.7 94.9 97.1 94.2 97.7 94.9
30 96.7 93.7 96.1 92.9 96.3 92.0 96.2 93.1

T = 1000

10 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
15 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
20 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
25 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
30 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4

Notes : (i) 1000 iterations;
(ii) M̂1, M̂2, generalized spectral tests, Q1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M̂1 and M̂2; p = 10, 15, 20, 25, 30.

(iv) DGP P.5: Yt= 0.2Y t−1+ut, ut = h
1/2
t εt, εt=

exp (λtξt)− exp (0.5λ
2
t )√

exp (2λ2t )− exp (λ
2
t )
, {ξt} ∼ i.i.d.N(0, 1), λ2t= 0.2 + 0.6λ

2
t−1+0.2u

2
t−1.


