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ABSTRACT

This paper proposes a unified approach to testing adequacy of nonlinear time series models. The
proposed test can be applied to various nonlinear time series models, including conditional probability
distribution models, Markov chain regime-switching models, conditional duration models, conditional
intensity models, continuous-time jump diffusion models, continuous-time regression models, and con-
ditional quantile and interval models. Our approach is built upon the fact that for many nonlinear
time series models, model adequacy usually implies that a suitably transformed process is an indepen-
dent and identically distributed (i.i.d.) sequence with some specified marginal distribution. Examples
include the probability integral transform of an autoregressive conditional distribution model, the in-
tegrated hazard function of a conditional duration or intensity model, the time-change transform of
a continuous-time regression model, and the binary transformation of an autoregressive conditional
quantile or interval model. These transforms are, respectively, i.i.d.U[0,1], i.7.d. EXP(1), i.i.d. N(0,1)
and 4.i.d. Bernoulli(«) for some known « € (0,1) when the time series models are correctly specified.
The transformed process may be called the generalized residuals of a time series model since they are
generalizations of Cox and Snell’s (1968) concept of generalized residuals to a time series context. The
proposed test checks the joint hypothesis of generalized residuals via a frequency domain approach
and has omnibus power against a wide range of model misspecifications. It has a convenient null
asymptotic N(0,1) distribution and is robust to dependent persistence in the underlying time series

process. A Monte Carlo simulation study illustrates the merits of the approach.
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1. Introduction

Nonlinear time series analysis has been advancing rather rapidly in the past thirty years (e.g., Fan
and Yao 2003, Gao 2007, Granger and Terdsvirta 1993, Tjostheim 1994, Tong 1990). A variety of
nonlinear time series models have been proposed and widely used in various branches of science and
social science. Unlike linear time series models, each nonlinear time series model has its own features
and existing specification tests for nonlinear time series models are often model-specific. There are few
unified tests in the literature that can be used to check various nonlinear time series models. In this
paper, we propose a unified approach to testing various nonlinear time series models, using the fact
that the adequacy of many nonlinear time series models often implies that a suitably transformed series
is an independent and identically distributed (i.i.d.) sequence with a specified marginal distribution.
For example, the probability integral transform of an autoregressive conditional distribution model,
the integrated hazard function of an autoregressive conditional duration or intensity model, and the
time-change transform of a continuous-time regression model (Park 2008), and the binary transform
of an autoregressive conditional quantile or interval model are an i.i.d. sequence with a specified
marginal distribution respectively when the underlying models are correctly specified. Thus, as a
generally applicable approach to testing the adequacy of nonlinear time series models, one can check
the joint hypothesis of the i.i.d. property and the specified marginal distribution of the transformed
process. The transformed series may be called the generalized residual of the nonlinear time series
models, since it is a generalization of Cox and Snell’s (1968) generalized residual to a time series
context. The transformation is essentially a filter that can capture all dynamic dependence of the
time series process so that its outputs — the generalized residuals — becomes an i.7.d. sequence with
some known distribution.

It is not a trivial task to test the joint hypothesis of the i.i.d. property and a specified marginal
distribution for the generalized residuals. In this paper, we propose a unified approach to testing
adequacy of various nonlinear time series models using the generalized spectral approach originally
proposed in Hong (1999). In the present context, autocorrelation-based tests (e.g., Box and Pierce
1971) are not appropriate for nonlinear time series models because it is well-known that a time series
can have zero autocorrelation but are not serially independent (e.g., an ARCH process). The idea of
generalized spectrum in Hong (1999) is to first transform a time series via the characteristic function
and then consider spectral analysis of the transformed series. It is an analytic tool for nonlinear time
series. As an alternative to higher order spectra (Brillinger and Rosenblatt 1967a, 1967b, Subba Rao
and Gabr 1984), the generalized spectrum does not require existence of any moment condition of the
underlying time series process. It can capture not only the serial dependence of the underlying time
series but also the shape of the marginal distribution. It is thus suitable for the aforementioned joint
testing problem for the generalized residuals.

Our approach is applicable to a variety of nonlinear time series models. It can test such popular



time series models as autoregressive conditional density models (e.g., Hansen 1994), Markov chain
regime switching models, autoregressive conditional duration models (Engle and Russell 1998), au-
toregressive conditional intensity model (Russell 1999), continuous time jump diffusion model (e.g.,
Barndorff-Nielsen and Shephard 2001), continuous time regression models (Park 2008), and autore-
gressive conditional quantile and interval models (e.g., Koenker and Xiao 2006). We allow but do
not restrict to test location-scale time series models that capture all serial dependence of the time
series process by the first two conditional moments. Our approach is applicable to time series models
with either continuous or discrete distributions. Another important feature of the proposed test is
its robustness to persistence in the original time series process, thanks to the fact that the general-
ized residuals are always i.i.d. under the null hypothesis. This is appealing for many applications
since, for example, most high-frequency economics and financial time series have highly persistent
dependence. It is well known that statistical inference procedures often do not perform well in finite
samples when the underlying time series process is highly persistent. The robustness of the size per-
formance of our procedure avoids the use of bootstrap methods which usually involve reestimation
of nonlinear time series models and are computationally costly. For example, the likelihood surface
of Markov chain regime-switching models is often found to be highly irregular and contains several
local maxima, and so it is hard to achieve a convergence for parameter estimation. On the other
hand, the proposed test does not have to formulate an alternative model and has a null asymptotic
N(0,1) distribution. Moreover, the sampling variation of parameter estimation uncertainty has no
impact on the asymptotic normal distribution of the proposed test statistic. Thus, there is no need
to calculate otherwise tedious delta expressions of a nonlinear time series model. These features lead
to a convenient inference procedure.

Section 2 introduces hypotheses of interest and provides motivation. The generalized spectral
density based test statistics are given in Section 3. Section 4 derives the asymptotic normal distri-
bution of the proposed tests and investigates their asymptotic power property. Section 5 examines
their finite sample performance via Monte Carlo experiments. Section 6 concludes. All mathematical
proofs are collected in the appendix. Throughout, we denote C for a generic bounded constant, A*
for the complex conjugate of A, Re A for the real part of A, and ||A|| for the Euclidean norm of A.
All limits are taken as the sample size T — oco. The GAUSS code to implement our tests is available

from the authors upon request.

2. Hypothesis of Interest and Literature

2.1 Hypothesis of Interest and Motivation

In time series analysis, one is often interested in modeling the dynamics of a time series process
{Y;}. Suppose a parametric nonlinear model, say M), is used to capture the dynamics of {Y;},
where 6 is an unknown finite-dimensional parameter vector to be estimated using observed data. We

are interested in proposing a generally applicable method to check the adequacy of the model M (#).



Residual-based testing has been a popular approach in time series analysis. In linear time series
analysis, for example, Box and Pierce (1971) proposed a portmanteau test based on the estimated
residuals of a linear ARMA model. In nonlinear time series modeling, the concept of residuals is not so
obvious, but we can make use of the concept of generalized residuals in spirit of Cox and Snell (1968).
For many nonlinear time series models, there exists some transformation or filter that can capture all
dependence structure of the underlying time series so that its outputs become an i.7.d. sequence with
some known distribution. Specifically, given observed data {Y},It_l}g;l, where Y; is a real-valued
dependent variable and I;_; may contain lagged dependent variables and lagged exogenous variables
X, we can define Z;(0g) = H(Y;, I;—1,60) given by a known measurable transformation H and an
unknown parameter §p € © C RP. The transformed series {Z;(fg)} can be called the generalized
residuals of the nonlinear time series models since they are the generalizations of Cox and Snell’s
(1968) concept of generalized residuals to a time series context. To illustrate this concept and the

scope of our approach, we consider a variety of nonlinear time series models below.

ExXxAMPLE 1 [GARCH AND NONNEGATIVE PROCESS]:

The GARCH model has been one of the popular nonlinear time series models:

1/1‘/ = Mt + \/E&a
He = /’L(It—h 9)7 (21)
ht - h(Itfhe)a

where p(I;—1,0) and h(I;—1,0) are parametric models for E(Y;|I;—1) and Var(Y;|I;—1) respectively,
and [;_1 is the information set available at time ¢ — 1 which is the o-field generated by the past
history of Y;, {Ys, s < t}. We allow for an infinite past history of information, i.e., we allow but do
not assume that Y; is Markov. Suppose further the standardized innovation {e;} is specified to follow

some conditional distribution g(e|l;—1,6). Then the conditional density model of Y; given I;_; is

1 Y Ky
I 1,0) = — L 1,0, —o0o<y<oo.
f(y| t—1 ) \/h>tg< \/E t—1 > 00 Yy oo
Define the dynamic probability integral transform
Y
Z(0) = f(ylli-1,0)dy. (2:2)

Then Z;(0y) is i.1.d.U[0, 1] at some parameter value 0y when f(y|I;—1,60) is correctly specified, i.e.,
when f(y|I;—1,60) coincides with the true conditional probability density of Y; given I;_1. See Rosen-
blatt (1952). This probability integral transform is called the generalized residual of the GARCH
model in (2.1). Note that Z;(6p) is always i.i.d. whereas the standardized innovation {e;} may not be
i.i.d. even when the model f(y|I;_1,0) is correctly specified. One example is Hansen’s (1994) autore-

gressive conditional density model, which allows parametric specifications for conditional dependence



beyond the mean and variance. Specifically, Hansen (1994) assumes

f(ylli-1,0) = folyla(li—1,0)],

where fo(y|-) is a generalized skewed t-distribution and «(I;—1,6) is a low-dimensional vector that
characterizes the first four time-varying conditional moments of Y; given I;_1.

Likewise, we can also consider a general framework of multiplicative error models for nonnegative
time series processes, which are common in practice. For example, one could model the volume of
shares over a 10-minute period, or the high price minus the low price over a time period or the ask
price minus the bid price, or the time between trades, or the number of trades in a period (Engle
2002). The models for nonnegative processes can be modeled as a multiplicative form similar to the
GARCH structure:

{ }/t = wtgtv (23)

Yy = P(li-1,0),
where 1), is a parametric model for E(Y;|I;—1), €; is a multiplicative error with E(g¢|I;—1) = 1 when 1),
is correctly specified for E(Y;|I;—1). One example of multiplicative error models is the autoregressive
conditional duration models proposed by Engle and Russell (1998) and Engle (2000), where Y; is the
arrival time intervals between consecutive events such as the occurrence of a trade or a bid-ask quote.

The dynamic probability integral transform is also applicable to many other time series mod-
els, including Markov chain regime switching models and continuous-time jump diffusion models, as
illustrated below.

EXAMPLE 2 [MARKOV CHAIN REGIME-SWITCHING MODEL]:

The Markov chain regime-switching model has been popularly used in time series econometrics
(e.g., Hamilton 1994, Ch.22). It posits that the conditional distribution of a time series depends on an
underlying latent state, which can take one of a finite number of values and evolves through time as a
Markov chain. This model allows for complex nonlinear dynamics and yet remains tractable. Testing
regime-switching models has been an interesting problem in time series and yet little effort has been
devoted to specification testing for this class of models. In fact, the generalized residual provides a
convenient way to test this class of models. Consider a time series Y}, the conditional distribution
of which depends on the latent state variable S, which occurs at time t and takes K discrete values
indexed by 7 € {1, -+, K}. Assume that the state dependent conditional distribution of Y; is given
as follows:

fWlSe =3, Li—1) = fo (y|St = j, 1t—1,00) for some 0y € O,

where fo(yl|-,-) is a known parametric density, I;_; denotes the information set available in period
t — 1, and the latent regime S; evolves through time as a first order Markov chain with transition

probabilities given by the K x K transition matrix P with element (i, j)



P(St:]|5t71:/5):p7,j, Z,]::[”K
Then when the Markov chain regime-switching model is correctly specified, we have

K Yy
Z(00) = > P(S = j|I;-1) fo(ySe = 4, L1, 00)dy ~ i.i.d.U0, 1].

i=1 e

EXAMPLE 3 [CONTINUOUS-TIME JUMP DIFFUSION MODELS]:

Continuous-time jump diffusion models have been popularly used in mathematical finance. Con-
sider a class of jump diffusion models (e.g., Barndorff-Nielsen and Shephard 2001, Duffie, Pan and
Singleton 2001):

dYy = p(Yy, 0)dt + o (Y3, 0)dWy + JdNy,

where p(Y:,0) is a drift model, o(Y%,0) is a diffusion model, W; is a Brownian motion and N; is a
Poisson process, which determines the random arrival of jump J, with the intensity A;(6). Given the
specifications of u(Yz, 0),0(Y:, 0) and A (0), the transition density model of Y; is then determined as
a parametric model f(y|Y;—a,#), where A is any given sampling frequency. When the jump diffusion

model is correctly specified, we have

Y:
Zi(00) = | flYi_a,00)dy ~ i.i.d.U0, 1].

—00

This result holds when the Brownian motion W; is replaced with the more general Levy process.

In addition to the probability integral transform, there are alternative transforms which can
be used to construct the generalized residuals. In duration or survival analysis, for example, the
integrated hazard function will follow an i.7.d. EXP(1) when an autoregressive conditional duration

or survival model is correctly specified.

EXAMPLE 4 [AUTOREGRESSIVE CONDITIONAL INTENSITY MODEL:

Define a counting process Ny = {N(t),t > 0} by N(t) = > 2, 1(T; < t) for all t > 0, where 1(-) is
the indicator function. The corresponding point process is the random arrival time {7;,7 = 0,1,2,--- }.
Then, the conditional intensity function (hazard function), which assesses the instantaneous risk of

demise (e.g., credit default) at time ¢, is given as follows:

. Pr(N(t+ At) — N(t) > 0|F)
= lim )
At—0 At

At F)

where F; = o(Ns,s € [0,t]) is the history generated by N;, and N(t) is assumed to be adapted
to the filtration F;. In time series survival analysis, a parametric model \o(¢|F, ) is often used to

approximate the hazard function \o(¢|F;). We can define the generalized residuals of the hazard model



A(t|F) by .
Zl(ﬁ) =1- / )\o(S’E,H)dS.
0

Then Z;(0p) ~ i.i.d. EXP(1) when the hazard model \o(t|F, 0) is correctly specified (Yashin and
Arjas (1988)).

We can also define generalized residuals {Z;(0)} for an instantaneous conditional mean model
in continuous time. The following time-change transform for the continuous-time regression model

(Park 2008) provides such an example.

EXAMPLE 5 [PARK’S (2008) TIME CHANGE IN CONTINUOUS-TIME]:

Consider a continuous time regression model (Park 2008)
dY; = p(Yy, 0)dt + dUy,

where {Y}} is a stochastic process, {F3} is a filtration to which {Y;} is adapted, 1(Y%, 0) is a parametric

model for the instantaneous conditional mean lims_,g+ F [% .’Ft} , and {U;} is a martingale

process with respect to the filtration {F;} so that dU; is a martingale difference sequence (m.d.s.)

with F(dU;|F;) = 0. Define a time change, a non-decreasing collection of stopping times, by
T, = inf t
t ;20{<U>s > }7
where (U), is the quadratic variation process of U;. Then we have

UTt :‘/;5 or Ut :V<U>

t’

where V; is the standard Brownian motion (see Park 2008). Thus, with an appropriate time change,
the martingale regression (instantaneous conditional mean) model can always be transformed into a
regression model with the error process given by the Brownian motion. It follows that with the time
change T;, we have

dYr, = p(Yr,,0)dT; + dUr, = p(Yr,,0)dT; 4 dVi,

and V; = V4(0) is a standard Brownian motion at # = 6y when the instantaneous conditional mean
model u(Yy, 0) is correctly specified. This imples that the error process in the time changed regression
model is the standard Brownian motion. We can thus define a generalized residual for the continuous-

time regression model as
Zy(0) = Vi(0) = Vi—a(0)

Tin
Ail/Z YTtA - YT(tfl)A - / :U’(Y;fv Q)dt , t=1,---,m,
Tit—1)A

where A is any given sampling frequency for the observed data. Then Z;(6y) is i.1.d.N(0, 1) for some



0 € © when the instantaneous conditional mean model (Y%, 0) is correctly specified. Therefore, the
method based on generalized residuals can serve as a specification test for continuous-time models.

The last example is the class of autoregressive conditional quantile and interval models.
EXAMPLE 6 [AUTOREGRESSIVE CONDITIONAL QUANTILE AND INTERVAL MODELS]:

An autoregressive conditional a-quantile model Q,(I;—1,6) obeys the following condition
PlY: < Qua(ly—1,0)|I—1] = a for some 6 = 6

when the quantile model is correctly specified. Examples are J.P. Morgan’s RiskMetrics and Engle
and Manganelli’s (2004) CAViaR models for Value at Risk in financial risk management. Also see
Koenker and Xiao’s (2006) quantile autoregression model.

We define the binary stochastic process
Zi(0) =1[Y; < Qa(li-1,0)].

Under correct model specification of Qq(lt—1,6), {Z:(60)} is an i.i.d. Bernoulli(a) sequence, and this
property can be used to test adequacy of autoregressive conditional quantile models.

This method also applies to autoregressive confidence interval models. 100(1 — «)% interval
forecast (e.g., Christoffersen (1998)) (Lq(ft—1,0),Uqs(lt—1,0)) is correctly specified iff

PlLa(Ii—1,0) <Y; < Ua(L—1,0)| 1] =1 — o a.s.

where Ly (I;—1,60) and U, (l;—1,0) are lower and upper bounds of the conditional interval model for

Y; given I; 1 at confidence level 1 — . Define
Z1(0) = 1[La(l1-1,0) <Yy < Ua(li-1,0)],
then under correct model specification of (Ly(It—1,0), Us(It-1,0)),
{Z1(00)} ~ i.i.d. Bernoulli(c) sequence.
All the aforementioned examples can be formulated as a unified hypothesis of interest
Ho : {Z:(00)} ~ i.i.d.Fy,(z) for some unknown 6y € O, (2.4)

where Fy(+) is a known probability distribution function, which can be a continuous, discrete, or mixed
continuous and discrete distribution, and parameter 6 is unknown. This provides a unified approach
to testing various nonlinear time series models, as illustrated above. There are other advantages of
testing Hy via the generalized residual Z;(6). For example, given the i.i.d. property of {Z;(6)} under

Hy, the size of the test is expected to be robust to dependence persistence of {Y;} in finite samples.



Intuitively, in some cases (i.e., location-scale time series models which capture all serial dependence via
the first two conditional moments), the i.i.d. property of {Z;(f)} characterizes correct specification
of the dynamic dependence structure of a time series model, and the specified parametric distribution
Fy(z) characterizes correct specification of the marginal error distribution of the time series model.
The goal of this paper is to propose a novel and generally applicable test to various nonlinear time
series models which can be characterized as Hy when they are correctly specified.

The difficulty of testing Hp in (2.4) is this joint hypothesis in a nonlinear time series setup. Often,
the Kolmogorov-Smirnov (KS) test is suggested to test Hy. However, the KS test only focuses on
the marginal distribution Fy(-) and does not check the serial dependence structure in {Z;(0)}. It has
no power if Z;(0) follows a marginal distribution Fy(-) but {Z;(6)} is serially dependent. Moreover,
the asymptotic critical values of the KS statistic will be affected by sampling variation of parameter

estimation.
2.2 Comparison with the Literature

There have been tests for some specific nonlinear time series models using the probability integral
transforms. For example, Bai (2003) proposes a generalized KS test using the probability integral
transform and Khmaladze’s (1981) martingale transform. The latter nicely removes the impact of
parameter estimation uncertainty, delivering an asymptotically distribution-free test. However, Bai’s
(2003) test checks UJ0,1] under the i.i.d. property of the generalized residuals, and it still has no
power if Z;(0) is U|0, 1] but not serially independent.

Thompson (2008) uses probability integral transforms to test continuous-time diffusion models.
He uses the Cramer-von Mises-type statistic based on the empirical distribution function of Z;(6) (to
test uniformity) and the periodogram (to test independence). This test checks the joint hypothesis
of i.i.d. U[0, 1] but it may lack power against nonlinear alternatives because periodogram will miss
dependence with zero autocorrelation. Furthermore, sampling variation of the parameter estimation
has impact on the asymptotic distribution which calls for use of a parametric bootstrap. Also in the
continuous time context, Hong and Li (2005) test both i.i.d. and U|0, 1] simultaneously by using
a smoothed bivariate nonparametric kernel density estimator of the probability integral transforms,
but they check individual lags rather than all lags jointly and nonparametric smoothing is required
at each individual lag.

Berkowitz (2001) considers a test for density forecast evaluation by extending the probability
integral transform to normality (i.e., using quantile transformation). That is, the probability integral
transform is further converted into i.i.d.N(0, 1) by inverting the CDF using the normal distribution.
Based on normality, Berkowitz (2001) considers a likelihood-ratio test. However, the LR test only
has power to detect nonnormality through the first two moments of the distribution, and need to
specify the likelihood of alternative. Specifically, he considers the combined statistic for the joint test

of independence and zero mean and unit variance, and only considers an AR(1) alternative. Also,



he does not consider the impact of parameter estimation by noting that in his context “the cost of
abstracting from parameter uncertainty may not be severe”.
Hong and T.Lee (2003) propose a test for the following class of location-scale nonlinear time series
models
Yi = p(li—1,0) + /h(li—1,0)e:. (2.5)

where the standardized innovation {e;} is an i.i.d. sequence. For this class of time series models,
the first two conditional moments capture all serial dependence of Y;. Hong and T.Lee (2003) check
adequacy of model (2.5) by testing whether the standardized innovations {e;} is an i.i.d. sequence.
This test does not apply to test Hgy here, because it only checks serial dependence and does not check
the marginal distribution Fy(z). In other words, Hong and T. Lee’s (2003) test, even when applied
to the generalized residuals {Zt}, will have no power when Z; is 7.i.d. but its marginal distribution
is not Fy(-). This can occur, e.g., when {Y;} is a GARCH(1,1) process with an i.i.d. ¢-distributed
innovation but it is specified as a GARCH(1,1) model with an i.i.d. N(0,1) innovation. In this case,
the probability integral transforms are an i.i.d. sequence but with a non-uniform distribution. As a
result, Hong and T.Lee’s (2003) test has no power despite the misspecification in the distribution of
;. Note that each generalized covariance function o;(u,v) Vj in our approach is different from one
in Hong and T. Lee (2003). Each 0;(u,v) contains the information about the marginal distribution
as well as serial dependence. Thus, our approach is fundamentally different from Hong and T. Lee
(2003).

On the other hand, there exist time series models in the form of (2.5) but the standardized
innovation {e;} is not i.5.d. An example is Hansen’s (1994) autoregressive conditional density model.
For this model, {g;} is a conditionally homoskedastic m.d.s. with E(g;|l;—1) = 0 and Var(e/|l;—1) =1
but its conditional higher order moments (e.g., skewness and kurtosis) are time-varying even when the
time series model is correctly specified. Hong and T.Lee’s (2003) test cannot be applied to test this
model, because the i.i.d. property of {;} is not a characteristic of the correct specification of these
models. Of course, Hong and T. Lee’s (2003) test can be applied to the generalized residuals {Z;} to
test serial dependence of {Z;}, but as pointed out above, it ignores testing the marginal distribution
Fy(2) of Hy.

In this paper, we will propose a new generally applicable test for Hy that avoid the drawback of the
aforementioned tests for various nonlinear time series models. We test the i.i.d. property and Fpy(-)
jointly using a generalized spectral approach. The test statistic has an asymptotic N(0,1) distribution
under Hp and parameter estimation has no impact on the limit distribution, thus resulting in a
convenient procedure. Also, we test many lags simultaneously, and our approach naturally provides

a downward weighting, which may enhance power when a large number of lag orders are considered.

3. Approach and Test Statistics

To describe our approach, we first introduce the generalized spectrum proposed in Hong (1999).



For notational simplicity, we put Z; = Z;(6p), where 8y = plim(f) and 0 is a parameter estimator for
the parametric model M () of time series process {Y;}. Suppose {Z;} is a strictly stationary time

series process. Then, following Hong (1999), the generalized spectral density of {Z;} is defined by
flw,u,v) = — oj(u,v)e i =/—1,—00 < u,v < 0, (3.1)

where 0;(u,v) is a generalized autocovariance function

oi(u,v) = cov(e™?t M Zi-lil)  — oo < u,v < oo. (3.2)

Intuitively, the generalized spectrum f(w,u,v) is the spectrum of the transformed time series
{e™?t}. As the power spectral density, which is the Fourier transform of the autocovariance function
of {Z;}, is a basic analytic tool for linear time series, the generalized spectral density f(w,u,v) is
a basic analytic tool for nonlinear time series and an alternative to higher order spectra (Brillinger
and Rosenblatt 1967a, 1967b, Subba Rao and Gabr 1984). The exponential function transformation

enables f(w,u,v) to capture both linear and nonlinear dependence. Observe that

Iy int7|j\ )
)

0j(u,v) = cov(e™ e = ¢;(u,v) = p(u)p(v),

where ¢;(u,v) = EeltZt+wZi—ij| is the joint characteristic function of the pair of random variables
(Zt, Z4—j)), and @(u) = Ee™?t is the marginal characteristic function of Z;. The function o(u,v) = 0
for all u,v if and only if Z; and Z;_; are independent. Thus, f (w,u,v) can capture any pairwise
serial dependence, including the serial dependence patterns for which {Z;} is serially uncorrelated
but not serially independent (e.g., an ARCH process). This can be also seen by taking a Taylor series

expansion of f(w,u,v) with respect to (u,v) at the origin (0,0) :
= = (i)™ ()" 0 mi)
flwuw) =YY s fOml(,0,0), (3.3)
where the derivative function

, »
FOmD@.0,0) = 5 3 eov(Z]Zy_py)e .

j=—00

Note that the partial derivative f(%11)(w,0,0) is the conventional power spectral density of {Z;}.
The Taylor series expansion in (3.3) requires that all moments of Z; exist. The generalized spectrum
in (3.1) does not have such a requirement. It is well defined even when the moment of Z; does
not exist. Moreover, since the generalized autocovariance function o ;(u,v) is defined in terms of the
characteristic function, f(w,u,v) can also be used to capture the marginal and pairwise distributional

properties of the time series process {Z;}. Thus, it provides a natural approach to testing the joint

10



hypothesis Hy. Our idea here is to compare the shapes of the generalized spectral density function
under Hy and under the alternative to Hy respectively. When Hg holds, the generalized autocovariance

function o;(u,v) becomes the following:

oj(u,v) = oj(u,v|6p)
— COV,90 (eiuZt’ eint,j)
_ ) weg(utv) =g (u)ipg, (v) ifJ: =0 (3.4)
0 ifj#0
where Covg,(+,-) is the covariance operator under Hy and
Pou(u) = Eup(%) = [ aFuy (2 (33

is the marginal characteristic function of the distribution Fy,(z). It follows that under Hy, f(w,u,v)
becomes “a flat spectrum”:
1
foo(w,u,v) = ﬂao(u, v|6o), (3.6)

which is a constant function of frequency w € [—m,x]. This may be called the restricted generalized

spectral density implied by Hy. It can be consistently estimated by
1 )
folw,u,v) = Q—Jo(u,v\ﬁ), w € [—m, 7], (3.7)
T

where 6 is a consistent estimator for 6y under Hy.
Under the alternative to Hy, the generalized spectral density f(w,u,v) can be consistently esti-

mated by a smoothed kernel estimator

T-1
flwum) = oo 32 RGP~ 1/ T)o5 0 v)e (39)
j=1-T
where
1 T
&j(uﬂ)):m Z Pi(w)@y_;(v), (3.9)
ARSpEE

op(u) = eiule o(u), ¢(u) = T71 Z?:l eiuzt, Z; = Z;(0) is the estimated generalized residual of
the time series model M(#), k(-) is a kernel function that assigns weights to various lag orders,
and p = p(T) is a bandwidth. The estimator f (w,u,v) may be called an unrestricted generalized
spectral density estimator. Under Hy, this unrestricted estimator will converge to the same limit as
the restricted estimator f(w,u,v). If they converge to different limit functions, the null hypothesis
Hy is rejected.

To obtain a global measure of the discrepancy between two function-valued estimators f (w,u,v)
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and f;(w,u,v), we use the quadratic form

@ = fff I

T-1
= ;//T ‘30(16,11) - Cfo(u,v|9)‘2 dW (u)dW (v) + 2 ; E(j/p)(T — j)/ |6j(u,v)|2 AW (u)dW (v)

T-1

J

’ dwdW (u)dW (v)

w,u,v) — fpw,u,v)

ar(G)(T — 3//10]1“} (11, 0|60)[2 AW (w)dW (v) + Op (1) under Ho, (3.10)
=T

where
LSRG/ itj=0 | g ifj=0
)= { K(ilp) A0 { B (i/p) it £0,
and Gj(u,v) be defined in the same way as 6;(u,v) with the unobservable generalized residuals
{Zy = Z(I4—1,00)}L_;. The last equality in (3.10) holds only under Hy because o (u,v|fy) = 0 for all
j # 0 under Hy, and replacing 6 with 6 results in an effect of Op(1).

Intuitively, the term associated with j = 0 in (3.10) checks whether {Z;} has a marginal dis-
tribution Fy,(z), and the terms associated with all nonzero lags in (3.10) check whether {Z;} is
serially independent. Thus, the generalized spectral approach can be used to test the joint hypothesis
Hp. It has the advantage over the KS-type test in the sense that the latter only tests the marginal
distribution specification and does not test the serial dependence of {Z;}.

Our spectral kernel estimation approach provides a flexible weighting for various lags via the
kernel function. For many commonly used kernels, k(-) is downward weighting (see, e.g., Priestley
1981, p.442). Thus, the term with j = 0, which focuses on the marginal distribution, receives a largest
weight ar(0) = %, while other terms with j # 0 receives a downward weighting scheme k2(j/p) as j
increases. Downward weighting is expected to be more powerful than uniform weighting against many
alternatives of practical importance as the state today is more affected by the recent events than the
remote past events. When a large p is employed to capture serial dependence at higher order lags,
downward weighting will alleviate the loss of a large number of degrees of freedom, thus enhancing
good power of the proposed test.

The proposed test statistic is an appropriately centered and scaled version of the quadratic form

Q: s 4
N Q —
My = , 3.11
= (3.11)
where
T 2T—1
A= / 71 Z P (w) Py (0) 2 — ‘go(u,v@)r] AW (u)dW (v) + 2 {/ oo(u, —ul@)dW (u ] ZaT
t=1
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U oo (u, v|0)[2dW (w)dW (v ]22 Tzl a2

j=1-T
The factors A and V are approximately the mean and variance of the quadratic form Q under

Hy. Since the centering factor A is a bit tedious to compute, we also define the following simplified

and asymptotically equivalent test statistic:
T—1

) — Uu,—u@qu ’ ) ar(g
w2 [ ool ~uld) <>]§jﬁ1T o 512

\/[ffyao (u, v]0)[2dW (w)dW (v } zzj 11 L

Both M and M, are asymptotically N (0,1) under Hy as T — oo (see Theorem 1 below). Since

these tests are the centered and scaled versions of the quadratic form Q, the asymptotic normality
implies that a properly scaled version of the Q statistic is asymptotically Chi-squared distributed

with a large numbers of degrees of freedom. For example, under Hy, we have that when T" — oo,

Q 2 (3.13)
where the degrees of freedom

A oolu, —u 2
i= 22 i op(ay) = AU 7ol OV )" ”k )do] i+ orlt)

v [//aouv\ﬁodw )dW (v fk4

Note that ¢ goes to infinity at a rate p as p — oco. For a very large ¢, the asymptotic normality and the

XZ approximation will deliver the same conclusion. When ¢ is not large, there may be some difference
in finite samples; we expect that the Chi-square approximation may perform better than normal
approximation in finite sample with a moderate size of § because the Chi-square approximation may
capture possible skewness of the finite sample distribution of Q We will investigate their finite sample
performance via a simulation study.

We summarize the procedures to implement the tests My and M, :

e Step 1: Obtain a V/T-consistent estimator 0 for the model of interest.

S

e Step 2: Given a proper transformation, obtain and save the generalized residual Z; = Z1(0).
e Step 3: Compute the test statistic M; in (3.11) or My in (3.12).

e Step 4: Compare M; or M, with an upper-tailed N(0,1) critical value (e.g., 1.65 at the 5%

level), and reject Hy at a given level if M or My is larger than the critical value.
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4. Asymptotic Theory

4.1 Asymptotic Distribution

We now investigate the asymptotic properties of the test statistics M and Mo under the null and
alternative hypotheses. To derive the asymptotic distribution of M; and M, under Hy, we impose

the following regularity conditions.

Assumption A.1: (i) With probability one, Z;(-) = Z(I;,-) is twice continuously differentiable
with respect to 6 € © such that supycg EH%Z,:(@)HQ < C and supyee E||%;9,Zt(9)|| < Cj (ii)
SUPgeo % lo(u]0)|| < C, where @(u|f) = FEp(e?*?t) and Ey(-) is the expectation operator under Fy(-);

(iii) for each 6 € ©, the process {Z;(0), %Zt(ﬁ)}’ is a strictly stationary a-mixing process with the

a-mixing coefficient satisfying > 72 a(j) ™ < C for some v > 1.
Assumption A.2: For a non-Markovian process {Y;}, the information set I; = {Y;,Y;_1,---} is
infinite dimensional. Let I; = {Yi,Yioq,---, Y0, jo} be the observed information set available at period

t that may contain some assumed initial values .Jo. Then supgce Zthl Z(1;,0) — Z(I,0)| = Op(1).
Assumption A.3: /T(0 — ) = Op(1), where 0y = plim() € int(0), and 6 is the same as in H.
Assumption A.4: k: R — [—1,1] is symmetric continuous on all except a finite number of points
in the real line. Furthermore, k(0) = 1 and |k(2)| < C|z|~° for b > 3/2 as |z| — oc.

Assumption A.5: W : R — RT is a positive, nondecreasing, and right continuous weight function

that weighs sets around zero equally, with [u*dW (u) < C.

Assumption A.1(i) imposes regularity conditions on the generalized residual Z;(0) of the model
M(0) for time series {Y;}. Assumption A.1(ii) imposes a condition on the marginal distribution
function Fy(-). Suppose Fy(-) is an absolutely continuous distribution with probability density function
fo(2) = Fj(z). Then Assumption A.1(ii) holds if sup Eg||%ln fo(Zy)|] < C. Assumption A.1(iii)
imposes some temporal dependence conditions on the related processes.

As pointed out earlier, we allow a non-Markovian process (e.g., GARCH models) for {¥;} and
so the information set I; contains all its past history dating back to the infinite past. Since I;
is infinite-dimensional, one may have to use a truncation version of I;, that is, one has to use I, =
{V,Yeie1, -, Y1, jo}, where Jj denotes some assumed initial values. For example, consider an AR(1)-
GARCH(1,1)-4.i.d.N(0,1) model, which is a special case of (2.1) with u, = a9 + @1Y;—1 and hy =
Bo + Bihi—1 + By(Yie1 — pty_1)?. Then Jo = (Y_1, Yy, hg)' are some assumed initial value for Y_y, Yy,
and hg respectively. Assumption A.2 states that the truncation of the possibly infeasible information
set I; has asymptotically negligible impact. Also see Bai (2003) for related discussion.

Assumption A.3 requires a v/T-consistent estimator 6 under Hy. We do not require any asymp-
totically most efficient estimator or a specified estimator. This is convenient for practitioners because
for some nonlinear time series models, it is difficult to obtain asymptotically most efficient estimators.
Assumption A.4 is the regularity condition on the kernel function. The continuity of k() at 0 and

k (0) = 1 ensures that the bias of the generalized spectral estimator f (w, u, v) vanishes to zero asymp-
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totically as 7' — oo. The condition on the tail behavior of k () ensures that higher order lags have
asymptotically negligible impact on the statistical properties of f (w,u,v). Assumption A.4 covers
most commonly used kernels (e.g., Priestley 1981, p.442). For kernels with bounded support, such as
the Bartlett and Parzen kernels, b = co. For kernels with unbounded support, b is some finite positive
real number. For example, b = 2 for the Daniell and Quadratic-Spectral kernels. Finally, Assumption
A5 imposes mild conditions on the weighting function W (-). Any CDF with finite fourth moments
satisfies Assumption A.5. In empirical characteristic function literature, it has been noted that any
suitable positive, integrable and symmetric function will be sufficient for weight function (see, e.g.,
Huskova and Meintanis (2008)).
We now derive the asymptotic distribution of Ml and Mg under Hp.

Theorem 1: Suppose Assumptions A.1-A.5 hold, and p = cT for X € (0, %) and ¢ € (0,00). Then
under Ho, My — My 2 0, My LA N(0,1), and M> LA N(0,1) as T' — oo.

An important feature of M, and M is their robustness to persistence in the original time series
{Y;}. This occurs because the generalized residual series {Z;} is always i.i.d. under Hy no matter
how persistent serial dependence of {Y;} is. The robustness of the size performance avoids the use
of bootstrap methods which may involve reestimating nonlinear time series models and are compu-
tationally costly. Moreover, some time series models such as Examples 6 and 7 in Section 2 do not
fully specify the conditional distributions of Y;. As a result, the usual parametric bootstrap cannot be
used. Indeed, the robust inference based on asymptotic normality approximation is rather convenient
in practice.

Intuitively, since a +/T-consistent estimator 6 converges to 0y under Hy faster than the non-
parametric estimator f (w,u,v) converges to f(w,u,v), the asymptotic distribution of M (p) is solely
determined by the nonparametric estimator f (w,u,v). Consequently, the sampling variation of pa-
rameter estimator 6 has no impact on the asymptotic normal distribution. In other words, the
asymptotic distribution of M, remains unchanged when 0 is replaced by its probability limit 8g. This
holds no matter whether the asymptotically most efficient estimator or a specific estimator is used.
This asymptotic nuisance parameter free property leads to a convenient procedure. Our simulation
study shows that the sampling error of 0 has little impact on the distribution of M; and M,. This is
particularly appealing for testing some nonlinear time series models because, for example, it has been
well-known that efficient estimators of jump diffusion models and Markov chain regime-switching
models are difficult to obtain.

Both M; and M, are asymptotically equivalent but M, is a bit more convenient to compute. We

will examine their finite sample performance via simulation.

4.2 Asymptotic Power

We now investigate the asymptotic power property of the proposed tests under the alternatives

to Ho.
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Theorem 2: Suppose Assumptions A.1-A.5 hold, and p = ¢TI for A € (0,1) and c € (0,00). Then

under the alternative to Hy, we have as T — oo, for i = 1,2,
VP [T e e [ 2
T k*(z)dz| M; = | f(w, u,v) — fo, (w, u,v)|” dwdW (u)dW (v)

— ;/'UO(U’U)UO(U’U|90)|2dW(“)dW<”)+22/|0j(U,v)|2dW(u)dW(U),

When {Z;()} is not i.i.d. or Zi(6) does not have the marginal distribution Fy(z), M; will
have asymptotic power one (i.e., Pr(M; > C) — 1 as T — oo for any given constant C) provided
that the weighting function W (-)is positive, monotonically nondecreasing and continuous with un-
bounded support on R. Specifically, when the marginal distribution of Z; is not Fy(z), the first
term 3 [ |oo(u,v) — oo(u, v|0o)[2dW (u)dW (v) is positive. When {Z;} is not pairwise independent,
the second term 2372, [ |0 (u,v)[* dW (u)dW (v) is positive. Thus, we expect that M; has rela-
tively omnibus power against a wide variety of misspecification either in lag structure and parametric

marginal distribution Fy(z). This is confirmed in our simulation below.

4.8 Data-Driven Bandwidth

A practical issue in implementing our tests is the choice of lag order or bandwidth p. An advantage
of our generalized spectral approach is that it can provide a data-driven method to choose p, which
let data themselves determine a proper p for My and M. To justify the use of a data-driven lag
order, p say, we impose a Lipschitz continuity condition on the kernel k(-). This condition rules out
the truncated kernel k(z) = 1(|z| < 1), where 1(-) is the indicator function, but it still includes most

commonly used kernels.
Assumption A.6: For any x,y € R, |k(x) — k(y)| < Clz — y| for some constant C € (0, 00).

Theorem 3: Suppose Assumptions A.1-A.6 hold, and p is a data-driven bandwidth such that p/p =
1+ Op(pf(gﬁfl)) for some B > (2b — %)/(2() — 1), where b is as in Assumption A.4, and p is a
nonstochastic bandwidth with p = ¢TI for \ € (O,%) and ¢ € (0,00). Then under Hy, Mz(ﬁ) -
Mi(p) 25 0 and Ni(p) 5 N(0,1), i = 1,2.

Theorem 3 implies that, as long as p converges to p sufficiently fast, the use of p rather than p
has no impact on the limit distribution of M;. Theorem 3 allows for a wide range of admissible rates
for p. One plausible choice of p is the nonparametric plug-in method similar to that considered in
Hong (1999). It is an estimation based optimal bandwidth (e.g, Hirdle and Mammen (1993), Hjellvik
and Tjgstheim (1995), Li (1999), Chen, Hérdle and Li (2003)) in that it minimizes an asymptotic
integrated mean square error (IMSE) criterion for the estimator f(w,u,v) (see, Hong (1999) Theorem
1). Nonparametric plug-in methods are not uncommon in the literature (e.g., Newey and West 1994,

Silverman 1986). It considers some “pilot” generalized spectral derivative estimators based on a
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preliminary bandwidth p :

~
i

¥=
)

(1~ |31/T)2 k(5 /D)6 (u, v)e ™, (4.1)
-T

flw,u,v) =

b

(1= 141/T) 2 k(3 /p)&j (u, v)|j| e, (4.2)
-T

7000 (0, u,0) =

>l‘
Il
i

J
where the kernel k : R — [—1, 1] need not be the same as the kernel k(-) used in (3.8). For example,

k(-) can be the Bartlett kernel while k(-) is the Daniell kernel. Note that f(w,u,v) is an estimator for

f(w,u,v) and f@00)(w, u,v) is an estimator for the generalized spectral derivative

[e.o]

£ (w0 Z (0, 0)]]%e 74, (4.3)

Suppose for the kernel k(-), there exists some g € (0,00) such that 0 < k(@ = lim, g %lff) < 0.

Then the plug-in bandwidth is defined as

fo = &T 7T, (4.4)
where the tuning parameter estimator
T g @) [T F@00) (w0, u,0) PdewdW (w)dW (v) ] T
O @ TS Fw, v, —0)dW (0)2d
| 2a(k9) Z]T*E_T@— DR /B)312 ] 185, 0) AW ()W () ] 750
|2 B2 (2)d2 ST (T — 5])R2(5/P) Re [ 65(u, —u)6 (v, —v)dW (u)dW (v) '

The second equality here follows from Parseval’s identity.

The data-driven pg in (4.4) still involves the choice of a preliminary bandwidth p, which can be
either fixed or grow with the sample size T. If p is fixed, pg still grows at rate Tﬁ under Hy
in general, but ¢y does not converge to the optimal tuning constant that minimizes the IMSE of
f (w,u,v). However, in practice, ¢y will converge to some constant ¢ at the parametric rate. Thus,
it is expected that p will easily satisfy the condition of Theorem 3. This is analogous in spirit to a
parametric plug-in method. Following Hong (1999), we can show that when p grows with T' properly,
the data-driven bandwidth pg in (4.4) minimizes an asymptotic IMSE of f(w,u,v). Note that pg
is real-valued. Ome can take its integer part, and the impact of integer-clipping is expected to be
negligible. The choice of p is somewhat arbitrary, but we expect that the choice of p is of secondary

importance and may have no significant impact on M, (Po)- This is confirmed in our simulation below.
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5. Monte Carlo Evidence

We now investigate the finite sample performance of the proposed tests.
5.1 Simulation Design

To examine the size performance of the tests M, and M, under Hy, we consider the following data

generating process (DGP):
DGP S.1 [AR(1)-GARCH(1,1)-4.i.d.N(0,1)]:

Y =aY; 1+,
1/2
Ut = ht Et,

et~ i.i.d.N(0,1),

where we set a = 0.2,0.6,0.9 respectively to examine the impact of persistence in {Y;}. For each «,

we consider a GARCH(1,1) specification:
hy = 0.2+ Bhe_1 +yui 4,

with (8,7) = {(0.6,0.2), (0.79,0.2), (0.8,0.2) } respectively. When (5,v) = (0.8,0.2), {Y;} is an inte-
grated GARCH process, which is strictly stationary but not weakly stationary.

We also considered the Chi-square approximations of M; and Ma, denoted Q1 and Qs respectively
(see discussion in Section 3). We expect that the Chi-square approximation may perform better than
normal approximation in finite samples with a moderate size of degrees of freedom because the former

may capture possible skewness of the finite sample distribution of the quadratic form Q in (3.10).
To examine the power of the tests, we consider the following DGPs:
DGP P.1 [AR(2)-GARCH(1,1)-4.1.d.N(0,1)]:

Yy =0.2Y; 1 + 0.2Y; 2 + uy,

w = h'%e, {e} ~i.i.d.N(0,1),
hy = 0.2+ 0.6h; 1 + 0.2u2 |,

DGP P.2 [TAR(1)-GARCH(1,1)-i.i.d.N(0,1)]:

Y; = _0-5}/t—11(1/t—1 > 0) + 0-7Yt—11(1/t—1 < 0) + Uy,
w = h'%e, {e} ~ii.d.N(0,1),
ht = 0.2 4+ 0.6h;—1 + 0.2u2_4,
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DGP P.3 [AR(1)-TGARCH(1,1)-i.i.d.N(0,1)]:

Y; = 0.2Y; 1 + wy,
u = h'%ey, {es} ~ii.d.N(0,1),
hy = 0.2+ 0.6h;—1 + 0.1u2_;1(us—1 > 0) + 0.5u7 ;1 (us—q < 0).

DGP P.4 [AR(1)-GARCH(1,1)-i.i.d. EXP(1)]:

Y = 0.2Y; 1 + wy,
w = h'%,, {e} ~iid{exp(l) — 1},
hy = 0.2 +0.6h—1 + 0.2u?_1.

DGP P.5 [AR(1)-GARCH(1,1)-m.d.s. Innovations|:

}/;f - 0-2}/;5—1 + U,
Ut = hz/25t,

_exp(M\&;)—exp(0.502) i
g = o) o) {&} ~ i.4.d.N(0,1),

M =0.2+0.6)2; +0.2u? |.

We generate data with the sample sizes T' = 250, 500 and 1000 respectively. For each data set, we
first generate 27" observations, and then discard the first T ones to reduce the impact of some initial

values. We then use MLE to estimate an AR(1)-GARCH(1,1)-i.i.d. N(0,1) model:

Y =aY, 1+,
w = h'%er, {et} ~i.i.d.N(0,1), (5.1)
hi = ¢+ Bhy—1 + yui_;.

Under DGPs P.1 and P.2, model (5.1) suffers from dynamic misspecification in conditional mean.
Under DGP P.3, which has a threshold effect in variance, model (5.1) suffers from a neglected non-
linearity in variance. DGP P.4 has a non-normal innovation distribution; it allows us to investigate
misspecification in the marginal distribution of {e;}. We have also considered {e;} ~ i.i.d. \/%15(5)
and mixed normal innovations ({&;} ~ 0.5N(3,1)40.5N(—3,1)). The results were similar to those of
{et} ~1.4.d. EXP(1). Under DGP P.5, E(&¢|l;—1) = 0 and Var(e¢|l;—1) = 1, but {&;} is not 4.i.d. nor
N(0,1). In particular, there exists serial dependence in conditional skewness and conditional kurtosis
of {u;}. We consider 10% and 5% significance levels. All results are obtained from 1000 iterations.
To compute M, My, Q1 and Qs we use the N(0,1) CDF truncated on [—3, 3] for the weighting

function W (-), and use the Parzen kernel

1—622+6|23 if 2| < 3,
R ={ 20— <<t

0 otherwise,
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which has a bounded support and is computationally efficient. We have also used the Bartlett, Daniell
and Quadratic Spectral kernels. The test statistics are similar to those based on the Parzen kernel in
most cases. For the choice of lag order p, we use a data-driven lag order py via the plug-in method
described in Hong (1999), with the Bartlett kernel k(z) = (1 — |2])1(|z| < 1) used in the preliminary
generalized spectral derivative estimators. To certain extent, the data driven lag order pg lets data
tell an appropriate lag order, but it still involves the choice of the preliminary bandwidth p which is
somewhat arbitrary. To examine the impact of the choice of the preliminary bandwidth p, we consider
p = 10, 15, 20, 25, 30 respectively, which covers a sufficiently wide range of preliminary lag orders for

the sample sizes T" considered here.
5.2 Monte Carlo Evidence

Tables 1-3 report the empirical rejection rates of the four tests under Hy at the 10% and 5% significance
levels, using the asymptotic theory. Under DGP S.1 with a small autoregressive coefficient o = 0.2,
all tests Ml, Mg, Ql, and Qg a bit underreject the null hypothesis Hy, especially with low preliminary
lag orders p. But size improves as preliminary lag order p and sample size T" increase. The tests N
and Ql have better sizes than the tests My and Qg in most cases, and the tests M and M; have
better sizes than their x? approximations, Ql and QQ respectively. Interestingly, with f = 0.79 and
0.8, high persistence in conditional variance, the tests M; and My have similar sizes to those under
B = 0.6. This is true even for an integrated GARCH(1,1) process (/5 = 0.8). This highlights the merits
of the tests in that they are robust to the persistence in variance of the time series {Y;}.

Under DPG S.1 with the medium autoregressive coefficient o = 0.6, all tests have reasonable sizes
with T" = 250 and 500, regardless of persistence in the conditional variance. Overall, M and Ql have
better sizes than M2 and Qg, and Ml and Mg have similar sizes to Ql and QQ. Under DGP S.1 with a
large autoregressive coefficient o = 0.9, M, and M, show some overrejection, especially with § = 0.6
and 8 = 0.8 at the 5% level. However, all tests have reasonable sizes with 7" = 1000. Now, the tests
Ql and Qs have better sizes than N, and M, respectively, especially with larger sample sizes, and
Mg has better sizes than Ml.

We now compare the powers of the tests under DGP P.1-P.5, reported in Tables 4-6. Table 4
reports the empirical rejection rates of the tests at the 10% and 5% levels under DGPs P.1 and P.2
using the empirical critical values obtained under DGP S.1 with a = 0.2 and 8 = 0.6, which provide a
relatively fair ground to compare different tests. Under DGP P.1 (AR(2)), model (5.1) suffers from a
linear dynamic misspecification in mean. All tests have similar powers at both significance levels and
for all sample sizes. When T' = 250, there is a slight tendency that power decreases as the preliminary
lag order p increases. However, power becomes more robust to the level of p with larger sample sizes
such as T = 500 and 1000. The tests have close to unit power for all tests with 7' = 1000. This
confirms the merit of capturing dynamic misspecification of our test. Under DGP P.2 (TAR), there

exists neglected nonlinearity in mean for model (5.1). All tests strongly reject the null hypothesis in
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all cases. With sample sizes T' = 500 and 1000, all tests have essentially unit power.

Under DGP P.3 (TGARCH), model (5.1) suffers from neglected nonlinearity in conditional vari-
ance. The tests Ml and Ql have similar powers to Mg and Qg respectively, and Ml and Mg have
slightly better powers than Q1 and Q,, but not substantially better. With a smaller sample size
as T = 250, powers are not high, but they improve as sample size T increases and become quite
powerful when T = 1000. The powers of all tests decrease in p. Under DGP P.4, we examine the
impact of misspecification in the error distributions. Both M; and Ql have similar powers to My and
Qg, respectively. The powers decrease in p substantially, especially with T" = 250. This is consistent
with our theory, since only the first term (with 7 = 0) in Theorem 2 captures the misspecification in
the marginal distribution, and including more lags will result in a power loss when there exists no
dynamic misspecification. However, with 7" = 1000, all tests have essentially unit power or close to
it at both significance levels. This confirms that our test is powerful in capturing misspecification in
the marginal error distribution.

Finally, under DGP P.5 (m.d.s. innovations), where there exists serial dependence in conditional
skewness and conditional kurtosis of {g;}, all tests are very powerful and have similar power in all
scenarios. Although there is some tendency that power decreases as p increases with T' = 250, powers

become more robust to the choice of p with larger sample sizes (7" = 500 and 7" = 1000).

In summary, we have observed the following stylized facts:

e With low persistence in mean, the empirical sizes are smaller than the significance levels when
the preliminary lag order p is small, but they improve as both the preliminary lag order p
and the sample size T' increases. With medium and high persistence in mean, all tests have

reasonable sizes.

e With high persistence in mean, the Chi-square approximated tests Ql and Qz perform better
than Ml and Mg.

e The sizes of all tests are relatively robust to the persistence in the conditional variance as well

in the conditional mean.

e Our tests are powerful in detecting various model misspecifications, ranging from dynamic
misspecification and neglected nonlinearity in mean and variance to marginal distribution mis-

specification and higher order dependence.

6. Conclusion

Using a generalized spectral approach, we have proposed a class of generally applicable new tests
for nonlinear time series models based on the generalized residuals that are essentially a nonlinear

filter transforming the original time series process into an 4.i.d. sequence with a specified marginal
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distribution. This approach provides a unifying framework for testing various nonlinear time series
models, including conditional probability distribution models, Markov-Chain regime switching mod-
els, conditional duration models, conditional intensity models, continuous-time jump diffusion models,
continuous-time regression models, conditional quantile and interval models. The proposed test has
a convenient asymptotic N (0, 1) distribution which performs reasonably well in finite samples and is
robust to dependent persistence in the original time series process. The test has relatively omnibus
power against a wide range of model misspecifications via checking serial dependence over all lags

and marginal distributions of the generalized residuals, as is illustrated by a simulation study.
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MATHEMATICAL APPENDIX

Throughout the appendix, we let M; and M, be defined in the same way as M; and M, in (3.12)-(3.13), with
the unobservable generalized residuals {Z; = Z,(09)}L_,, where 0y = plim 0, replacing the estimated generalized

residuals {Z;, = Z(I,_1,0)}L_,. Also, C € (1,00) denotes a generic bounded constant.

Proof of Theorem 1: To show asymptotic equivalence between M, and MQ, it suffices to show that the difference
of two centering factors of M; and My is 0p(1). The difference of two centering factors is [ 7! Z;‘F:l 5, (1)@, (v)]?
dW (u)dW (v), which is Op(1). Thus, V~1/2 Jrt Zthl P, (1), (v)]* dW (u)dW (v) = op(1) as p — oo given
V = 2p[[[ oo (u, v]00)dW (w)dW (v)]? [ j*(2)dz[1 + op(1)] o p.

To prove asymptotic normality of M, it suffices to show Theorems A.1-A.2 below. Theorem A.1 implies that
the use of {Z;}X_, rather than {Z;}7_, has no impact on the limit distribution of M.

Recall &;(u,v) as defined in (3.9) is the sample generalized autocovariance function of {Z;}7_,. Let &;(u,v)

be defined in the same way as 6;(u,v) with the unobservable generalized residuals {Z; = Z(I;_1,00)},;. That
is, define
1
R TP DA Ol Cll=0)
ARSTTEE
1 oo
= T _ | | Z wt(u>wt—|j\(v>7 (A 1)
ARSI
where 9, (u) = e™Z — p(u) and @(u) = T~ ! Z et

Theorem A.1: Under the conditions of Theorem 1, My — M, 0.
Theorem A.2: Under the conditions of Theorem 1, M, 4 N(0,1).

Proof of Theorem A.1: To show that M; — M; 2 0, it suffices to show that (i)

TZ ar(H)(T - |jl) /’aj u,v) — o;(u v|g) W (w)dW (v)

_ Z ar(G)(T — |j)) / 165, 0) — 05 (1, 0]60) [2 W (w)dW () + 0p (p2), (A2)

(i) A — A = Op(p/T"?), and (iii) p~"(V — V) 2 0, where A;(p) and Vi(p) are defined in the same way as
A and V in (3.12), with {Z,;}7_, replacing {Z,}~_,. For space, we focus on the proof of (A.2); the proofs for
A—A=0p(p/T?) and p~1(V — V) L 0 are straightforward (though tedious). We note that it is necessary to
obtain the convergence rate Op (p/T%) for A — A so as to ensure that replacing A with A has asymptotically
negligible impact given p?/T — 0.

Recall o;(u,v|0) =covg(e™?t,eivZt-i) is the generalized autocovariance function of {Z;} when {Z;} is i.i.d.
Fy(z). Thus, we have that for all § € ©,

o (u, v]0) = o(u+v]0) — p(ul@)p(v]d) if j=0
j7 0

otherwise.

Writing 6;(u,v) — 0j(u,v|0) = [6;(u,v) — 7;(u,v)] + [6(u,v) — 0;(u,v]0)], we can decompose
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‘5j(u,v)—-aj0h14é)r

= [ (u.) — 5 010)|” + 165 0.0) — 750, 0) P +2 [55 01, 0) — o, 018)] 30 ) — 85, 0)]

It follows that

T-1

ar(5)(T — |7]) /’0] U, v) (u 0\9)‘ AW (u)dW (v)

j:l -7

’ﬂ

= ar(5)(T — 7)) /’0] U, V) (u 0\9)’ dW (u)dW (v)
+ 50 @G 17D [ 1650,0) = 35w ) AW (@)W (0)

2 3 arGIT = 13l) [ [500) = 03(0,000)] 550, 0) = 5. 0)] W ().

We shall show the following propositions.

Proposition A.1: Under the conditions of Theorem 1,

Z — 17D /’U] U, V) (u, v]6) dW(u)dW(U)

ﬂ\l
,_.I

- 14D / 165 (1, 0) — 05 (1 0]60) [2 AW (w)dW (1) + O (1),

Jj=1=-T

Proposition A.2: Under the conditions of Theorem 1,

T-1

> arl)T = ll) [ 16500 0) = 5,(0,0)* AW ()W (v) = Op(1).

j=1-T
Proposition A.3: Under the conditions of Theorem 1,
T—1
j=1-T

Proof of Propostion A.1: Noting that o;(u,v|f) =0 for all j # 0 and all § € O, we have

T-1

> )T =) [ o500) = o5, 0l6)]| W W)

j=1-T

= S ar(G)T i) [ 1500) = ool aw () )

j=1-T

tar O)T/)o—o(u,mé) —ao(u,v|90)‘2dW(u)dW(v)

—|—2aT(O)T/ [Go(u,v) — oo(u,v|d)] [ao(u,v|@) —oo(u, v|0o) | dW (u)dW (v)
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T-1

S ar()(T -

j=1-T

3D 165 0) = 3 v100) 2 W ()W () + Op(),
Here, we have used the fact that
/ oo (u, vlf) - Uo(u,v|90)’2 AW (u)dW (v) = Op(T) (A4)
by the mean value theorem, Assumptions A.1, A.3 and A.4. We also have used the fact that
[ 30(u:0) ~ 0u(u,0160)] [o0(u,016) — o, vif)]| AW @)W () = O (1)

by the Cauchy-Swartz inequality, (A.4) and [ |5¢(u,v) — oo(u, v|00)|> dW (u)dW (v) = Op(T~') under Hy by

Markov’s inequality. Note that we have o¢(u,v|0g) = o¢(u,v) under Hy. B

Proof of Proposition A.2: Put §;(u) = eiut _ ¢iuZ: Following the definitions of 6j(u,v) and &;(u,v), we

decompose
(T = 13Do;(u,v) = &;(u, v)]
= 0 [ = pw)] [ — ()] = 65(u.0)

t=j+1
Y (e ) (e — ) + (3) — ()]
=141
x [(e“’zt*m - e"”zf*m) (P = p()) + (B (o) - $(0))] - 5(u,v)
= Z 3¢ (u)d— 15 (v Z 0r(u) (7=t — (v)) + () = ¢(v)) > bi(u)
t=|j]+1 t=|j]+1 t=|j|+1
+ > (€M = 3(w) by (v) + () = @(v) D (™ — p(u))
t=|j|+1 t=[jl+1
+ (@) = p(w) D b () + (@) = pw) Y (VP = p(v)
t=|j]+1 t=|j|+1
+ (@) — (u)) (B(v) — (v))
= ZBCj(u,v) say, (A.5)

We now show the order of magnitude of each term in (A.5). Lemmas A.1-A.8 are derived under the conditions

of Theoreml.

Lemma AL Y77 ar ()T — ) [ By (uv)| dW(@)aW (v) = Op(p/T)
Lemma A.2: Y75 ar ()T — i) [ | By (w,v)] aw(waw ) = 0,0,
Lemma A.3: Y75 1 ar()(T — )~ f | By, )| dW (@) (v) = Op(p/T)
Lemma A4 Y77 ar ()T — ) [ [Byy(uv)| dW(@)aW (v) = Op(p/T)
Lemma A.5: 577 ar()(T = )70 [ | Bsj(u,)| aw (waw ) = 0p(p/72)
Lemma A.6: X275 ar()(T — |7) " J | Boy(u, )| aw (w)aw(w) = 0p(p/T)




Lemma A.7: ©721 p ar ()T — 1)~ J |Br; o) dW ()i () = 0p(p/72).
Lemma A.8: Y750 ar(G)(T ~ |5)* f [ By ()| W (u)aw (v) = 0p(o/1).

Proof of Lemma A.1: For By;(u,v), by the inequality that |¢?*t — ¢/*2| < |2; — 2| for any real z; and 22, we

have
T R X T
S (e et — b < S el |% - 2] 2y - iy
t=|j]+1 t=|j]+1
T
< lwl) (Z— 7))
t=1
Note that

i(z}—zt)? < 22[2(1}_1, — Z(I,_1, } +2Z[ (I,_1,0 Z(It_l,eo)}2
o — 0p(1) + 0p(1) = Op()

where the first term is Op(1) by Assumption A.2, and the second term is Op(1) by the mean value theorem,
Assumptions A.1 and A.3. It follows that

T-1

> arG@ 1) [ Byt v @ae) < S (- 7y / qumuﬂ Z ~ I

i — Oniw/T) _ (A6)

where, as shown in Hong (1999, (A15), p.1213), we have made use of the fact that

T-1

> ar()(T — i) = Op(p/T). M (A7)
j=1-T
Proof of Lemma A.2: Using the inequality that |e?* — 1 —iz| < |2|? for any real z, we have

emZt _ gl _ z'u(Zt - Zt)ei“Zt < u?(Zt - Zt)Q. (A.8)

By the second order Taylor series expansion, we have

L 9 . X .
el _ gt _ zu%Zt(H 0 (0 —0)| < wP[Zy — Zu(00)) + |ul|Z: — Z:(0)]
2 0
Hullo = 60l sup |7 20| (A9
Thus, given the fact that |p(v)| < C, we obtain
R T P , r
(T = 1iD)|Baj(u,0)| < Julll0 = Goll| D P(v) 5520(00)e™ 7| + u? > 12— Zi(00))
t=[j+1 =1
s 0
Hul Y12~ Zoo)? + ull 60 Zsup o gz o

t=1
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It follows from (A.10) and Assumptions A.1-A.5 that

10
4T 1 ar(7)(T = 131)” /‘ng u u)‘ AW (u)dW (v)

2
T-1

T
o . o )
816 — 6ol|* Z ar(§)(T = |51)~ / Z GZ“Z‘*‘”%Zt(Go)EWZt w?dW (u)dW (v)
j=1-T t=|j|+1
2

IN

> )T -1 [ utawwaw ()

j=1-T

+8 (> (2 - 2 90))2

t=1

5|3 (2 - 20

t=1

T

T-1

>)2] ar()(T i) [ wtaw @aw (o)

Jj=1-T

T-1

+10 — o] lZwP’age H 3wt - ) [ aware

= 0p(1), (A.11)

where the last three terms are Op(p/T) given Assumptions A.1-A.5, and the first term is Op (1) following analogous
reasoning to Hong and Lee (2003, Lemma A.5), based on the mixing property of {Z;(6), 2 552¢(0)). 1

Proof of Lemma A.3: By the inequality that |e?*t — 2| < |21 — 23| for any real z; and zo, we have

—1 § th o th

and ’thle_l 3t,j(u)) <luld>,4 |Z, — Zy|. On the other hand,

T
T71/2

|p(v) = =

< |o|T" 12\@ z|,

Zt—Zt

IN

WZ\Z fi1,0) = 2(T1,0)| + T WZ\Z (Ii-1,0) = Z(I,—1,60)
t=1

— Op(T™V2) 4+ 0p(1) = 0p(1)

where the first term is Op(T~1/2) by Assumption A.2, and the second term is Op(1) by the mean value theorem,
Assumptions A.1 and A.3. It follows that

fz_l ar(G)(T — 1)) /‘st u U)‘ AW (u)dW (v) < T1/2i‘Z}—Zt) UquW(u)rTilaT(ﬁ(T—j)l
J — Op(p/7). M (A-12)
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Proof of Lemma A.4: By the similar reasoning to the proof of Lemma A.2; using (A.10), we have

T-1
ar()(@ i) [ [Bytw )] avaw ()
j=1-T
N T-1 2
< Sl -olP Y arGir -l [ S e g, e | W ()
j=1-T t=|j|+1
[T ) o T-1
> (ztu—zw(eo))] > arG)T 1) [ utawwaw )
=51+ j=1-T
[T A 2 >
> (zt_u—zt_me))] > )T =) [ W @)
[ t=131+1 j=1-T
R T 2 T-1
+8||9—eo|4[ > sl oz mm”] > arG)T -3 [
t=(j1+17 j=1-T
= O0r(/T), (8.13)

. ) 2 .
where we have used the fact that £ ‘Z?:\j\ﬂ el %Zt,m (0)e?vZe-13l ‘ < O(T—|j|) because €%t is independent
of %Zt,m(ﬁ)emzt*m for 7 > 0 under the 4.i.d. property of {Z;}I | under H,. B

Proof of Lemma A.5: Since p(v) =T~} Zf:l et we have

T J
) —p@)] Y [ —p@)]| < |p(v) = @)D [em* @(u>}|
t=j+1 t=1
< 1p() = p)] > [ = p(u)]| < 2]@(v) — p(v)] - 4
t=1
It follows that
T—1 T—1
> ar)T -0~ [ Bt warw) = 3 arGr -1~ ew - pof
j=1-T j=1—
= Op(p 3/T2), (A.14)

by using the fact that p~! ZJ 1 ' 22k2(2) — Jo° #%k*(2)dz given Assumption A.4. W

Proof of Lemma A.6: By the similar reasoning to Lemma A.2, we have

%t_zﬂ:ﬂ [@(u) — @(u)] (eivzt—lj\ — ewam) < |@(u) — p(w)] @) — (v)| = Juv|Op(T™1).
It follows that
3 T - Bt avware < (T_%Z\Z—Zto Ulﬂdmu)} S ar)r )
J = Op(p/T).1 (A.15)
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Proof of Lemma A.7: By the similar reasoning as Lemma A.5, we have

T J
0 = 0] D (¢ = 50)| < [0 = plal S5 — ]| < 21000 ~ pla]
=l +1 t=1
It follows that -
> arGT =) [ oyt W @aw(e) = 0p/1%). W (A.16)
j=1-T

Proof of Lemma A.8: By the similar reasoning to Lemma A.2, we have

T
% D [pw) = ew)] @) — )] = [[@(u) — @(w)] [$(v) = )] = [uv|Op(T™).
t=[j+1
It follows that
T-1 T 2 2T—1
ar(H)(T — |7])~ Bgj(u,v)| dW(u)dW(v) < Tt Zy — Zy u?dW (u a -5
5 oo f e (g pmal) [fotmv] gy
= Op(p/T). 1 (A.17)

Collecting (A.5)-(A.17), we obtain the desired result. Bl

Proof of Proposition A.3:

T-1

G 13D [ [7at00) = oo, 8] 1900) 5 0] W (0 0)

ar(0)T / [a—o(u,v) - a0<u,u|é)} 60 (1, v) — o (u, v)] AW (w)dW (v)

T—1
123 ar ()T j) / 651, 0) [65(u, v) — &5, 0)] AW (w)dW (v)
j=1
= Op(l) + Op(pl/Q).

L
Here, the first term is Op (1) by the Cauchy-Scwartz inequality, [ ‘50(u, v) — oo(u,v|0)| dW (u)dW (v) = Op(T1)
and [ |60(u,v) — do(u, 0)[2dW (w)dW (v) = Op(T~1). The second term is op(p'/2) by following analogous rea-
soning of Hong and Lee (2003, Prop. A.2, p.1111). B

Proof of Theorem A.2: Following the proof of Hong and Lee (2003, Theorem A.2), we have

T-1

> aT(j)(T—Ijl)/|5’j(u,v)—ffj(u,v)IQcﬂ/V(U)dVV(v)—f1 IV -4 N, 1),
=1

-T

J
where A and V are given in (3.12). B
Proof of Theorem 2: The proof of Theorem 2 consists of the proofs of Theorems A.3 and A.4 below.

Theorem A.3: Under the conditions of Theorem 2, (pz /T)[M; — My] 2 0.

30



Theorem A.4: Under the conditions of Theorem 2,
/M) 2 [ 100 - foleo, o) o () (o)
1 2 N 2
= 5 [ lon(u,) = ro(u o) PAW W () + 2 [ 1o, o)W ()W ).
j=1
Proof of Theorem A.3: It suffices to show that
/ Z ar(7)(T ~ [31) |6 (,) — o5, o10)|| dW ()W (v) 2 0. (A.15)

“HA—-A) L0, and p~1(V = V) 2 0, where A and V are defined in the same way as A and V in (3.12), with
{Z\T_| replacing {Z;}T_,. Since the proofs for T-1(A — A) £ 0, and p~1(V — V) 2 0 are straightforward, we
focus on the proof of (A.18). Decompose

65 (u,v) — o (u,v|0) = oj(u,v) — 0j(u,v|00) + [65(w,v) — 0j(u,v)] — [0 (u,v|0) — 0j(u,v|0)]
We have

a-j (u7 U) —0j (u7 ’U|é)

= org(u) = o7y, 0100) |95 0) — 73, 0)] — [y 1) — 75, 00|

2[5 (u,0) — 5, 0100)] {6 (,0) — 73 (,0)] = [0y 010) = oy 0lO0)) ] (A19)
By the Cauchy-Schwarz inequality, it suffices to show that
T-1 ) )
>~ arGIE = 17D [ [18560,0) = o50.0)) = (0 018) = 5, ol60)]|| AW (@)W () = 00,
j=1
We decompose
T-1 R 9
>~ arGIE = 17D [ [18560.) = 050.0)] = 0 018) = 3, ol60)]|| AW (@)W (o)
=1
T-1
< 2 ar()(T - i) /|ag ) = o7, 0) 2 AW ()W (0)
Jj=1
T-1 )
+QZaT — 14D /‘O'j u,v|0) — o(u,v|00)| dW (w)dW (v).
j=1

For the first term, we have
T—1
> arG)T = 17D [ 165(0,) = o5, ) W (@)W () = O ),
j=1
following the proof similar to Hong and Lee (2003, Theorem A.3). For the second term, we have

7iz_laT(j)(T - |J|) / ‘aj(u,v\é) - Uj(U,U|00))QdW(u>dW(U)

- EaT<j><T— i) [ | gpetule

110 — 6o |>dW (w)dW (v) = O(T 1),
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by the mean-value theorem. This completes the proof for Theorem A.3. W

Proof of Theorem A.4: The proof is very similar to Hong (1999, Proof of Theorem 5), for the case (m,l) =
(0,0). 1
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TABLE 1. Empirical Size of Tests

DGP S.1: Y= 0.2Y;_14uy, e: = h2/28t

A: hy= 0.2 + 0.6h;_1+0.2u? 4

B: hy= 0.2 + 0.8h;—1+0.2u?

C: hy= 0.2 4 0.79h;_1+0.2u2_|

My Q1 My Q2 My Q1 My Q2 My Q1 My Q2

p 10% 5% | 10% 5% | 10% 5% | 10% 5% || 10% 5% | 10% 5% | 10% 5% | 10% 5% || 10% 5% | 10% 5% | 10% 5% | 10% 5%
T = 250

10 69 46| 65 40| 57 40| 55 3.1 80 5.2 77 43 6.7 43| 6.6 3.3 8.1 5.1 74 401 69 40| 6.6 34

15 7.9 5.1 77 46| 7.0 46| 6.8 4.1 87 55| 84 48 7.5 50| 7.3 4.1 8.8 57 82 48 | 7.5 49| 73 4.2

20 83 58| 79 54| 76 54| 69 5.1 90 59| 85 56| 77 56| 73 44 89 60| 83 5H6 | 78 5HT7| 7.3 4.6

25 91 61| 87 54| 80 54| 7.7 5.0 97 6.1 92 56| 82 56| 80 5.2 96 621 91 58| 85 58] 80 4.8

30 93 671 91 59| 86 62| 81 5.6 95 701 92 62| 84 63| 82 56 95 671 92 61| 86 61| 81 55
T =500

10 76 56| 73 50| 64 50| 6.1 4.1 75 56| 73 48| 69 48| 65 4.3 75 551 73 50| 68 52| 6.5 4.5

15 83 571 79 50| 71 53| 69 4.9 78 60| 76 53| 69 53| 67 48 77 61| 74 53| 70 54| 69 4.9

20 88 6.1 8.5 5.7 1 7.9 5.7 | 7.7 4.7 83 6.0 &1 5.3 77 56| 75 5.0 85 6.2 8.3 56 | 7.7 57| 76 5.1

25 88 62| 87 59| &84 60| 7.7 56 87 64| 86 58| 80 58| 79 54 89 66| 84 58| 80 59| 79 54

30 93 63| 9.0 58 | 8.2 58 | 8.1 5.3 9.5 6.4 | 9.1 60| 86 6.0 83 5.3 94 661 92 60| 85 60| 83 b5
T = 1000

10 6.3 44| 58 4.5 52 35| 47 29 6.7 4.1 6.3 3.5 56 3.5 54 3.2 6.6 401 6.1 3.5 5.7 3.5 54 3.2

15 6.6 44| 6.1 3.7 57 37| 55 3.0 69 43| 68 40| 64 40| 6.1 3.4 7.1 44 67 39| 63 39| 6.1 3.4

20 6.8 4.5 6.6 40| 6.1 4.0 | 5.7 3.6 75 4.5 7.1 43| 6.4 43| 6.0 3.6 75 44 72 43| 64 43| 59 3.8

25 75 491 73 46| 6.6 47| 6.3 3.6 79 5.2 74 44| 70 44) 66 4.0 7.9 5.2 76 43| 7.2 45 6.5 4.0

30 70 49| 74 48] 69 48| 65 44 84 5.3 79 5.0 74 50| 7.2 44 8.3 5.5 8.1 49| 74 50| 70 4.3

Notes : (i) 1000 iterations;

(il) My, M 9, generalized spectral tests, ()1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M; and Mas; p = 10, 15, 20, 25, 30.
(iv) A: Yi= 0.2Y_1+up, ug = h'%e, hy= 0.2 + 0.6hy_1+0.2u2_; B: hy= 0.2+ 0.8h_1+0.2u2_;;

C: hy= 0.2+ 0.79h; 140.2u2 |, & ~ i.i.d. N(0, 1).



TABLE 2. Empirical Sizes of Tests (cont.)

DGP S.1: Y;:Z ().6Yt_1+ut, Uy = I’L%/Qé“t

A: hy= 0.2 + 0.6h;_1+0.2u?

B: hy= 0.2 + 0.8h;_1+0.2u?

C: hy= 0.2+ 0.79h;_1+0.2u?

My Q1 My Q2 My Q1 My Q2 My Q1 My Q2

p 10% 5% | 10% 5% | 10% 5% | 10% 5% || 10% 5% | 10% 5% | 10% 5% | 10% 5% || 10% 5% | 10% 5% | 10% 5% | 10% 5%
T =250

10 || 10.7 6.8 102 52| 87 52| 8.1 4.1 10.1 64| 96 49| 89 50| 84 44 ] 106 6.3 99 50 [ 88 50| 85 4.5

15| 10.8 7.1 | 10.6 58| 9.3 591 &7 49| 102 74| 101 6.5 9.1 65| 90 48| 102 73] 98 64| 90 64| 88 4.8

20| 105 7.2 101 6.0 9.1 6.1 87 57| 104 74| 10.1 6.5 | 9.2 6.7 | 9.1 54 || 103 74 (100 6.2 92 64| 88 54

2511109 691|104 62| 98 63| 93 58| 11.1 731|105 62| 94 63| 93 57 108 7.2 100 6.1 95 6.1 9.2 5.7

30| 115 72109 63100 64| 99 59| 113 741|110 601|101 60| 9.7 57| 114 72| 112 6.0 100 6.3 | 9.7 5.7
T =500

10 85 68 81 63| 79 63| 7.8 4.9 84 65| 82 58| 80 59| 76 5.1 84 66| 83 58| 74 54| 76 5.1

15 87 70| 86 65| 81 65| 80 64 90 70| 86 67| 82 6.7 81 58 89 70| &7 65| 81 6.2 80 6.1

20 96 68 94 66| 85 66| 80 64| 102 770|100 65| 88 6.7 84 59| 100 70| 97 65| 83 66| 83 6.2

251102 70| 96 6.7 93 67| 89 6.1 108 73106 63| 99 66| 93 55| 108 721|102 65| 93 6.7 93 5.8

30 || 10.8 731103 65| 96 65| 93 6.1 11.5 761|109 6.6 | 102 6.7 100 58| 11.2 7.8 (107 69| 97 6.6 | 9.8 59
T = 1000

10 6.6 50| 6.1 4.1 5.7 4.1 54 3.6 79 5.0 73 4.1 59 4.1 5.7 34 77 50| 68 44| 6.1 4.4 | 5.7 3.4

15 77 50] 6.9 4.2 6.7 421 63 3.5 80 4.8 76 4.1 6.9 4.1 6.7 3.3 7.8 48 | 45 4.1 69 43| 6.7 3.3

20 74 53| 73 47| 68 47| 64 3.9 82 bH5 76 44| 72 44) 66 3.8 8.3 53| 7.6 4.5 72 46| 6.8 3.8

25 7.9 56 | 7.7 48| 7.0 5.0 7.0 4.2 8.2 5.5 79 47| 7.1 49 | 6.8 4.1 8.2 5.5 78 49| 73 49| 70 4.1

30 83 6.1 | 80 5H2 | 75 52| 71 45 86 57| 82 53| 75 53| 70 44 86 58| &3 5H4 | 75 5bH5| 71 43

Notes : (i) 1000 iterations;

(ii) M7, Mo, generalized spectral tests, ()1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M7 and Ma; p = 10, 15, 20, 25, 30.

(iv) A: Yi= 0.6Y_1+up, ug = h/*e, hy= 0.2 + 0.6hs_1+0.2u2_; B: hy= 0.2 + 0.8hy_1+0.2u2_;;

C: hy= 0.2 +0.79h;_1+0.2u? |, & ~ i.i.d. N(0, 1).



TABLE 3. Empirical Sizes of Tests (cont.)

DGP S.1: Y;:Z ().9Yt_1+ut, Ut = I’L%/Qé“t

A: hy= 0.2 + 0.6h;_1+0.2u?

B: hy= 0.2 + 0.8h;_1+0.2u?

C: hy= 0.2+ 0.79h;_1+0.2u?

My Q1 My Q2 My Q1 My Q2 My Q1 My Q2

p 10% 5% | 10% 5% | 10% 5% | 10% 5% || 10% 5% | 10% 5% | 10% 5% | 10% 5% || 10% 5% | 10% 5% | 10% 5% | 10% 5%
T =250

10 || 13.1 87 (124 801|109 81| 106 7.1 126 88 (122 791|109 79| 105 6.8 11.5 &6 | 11.3 7.3 | 105 7.3 | 10.3 6.6

15| 135 90| 130 78122 79117 72| 13.1 9.6 | 13.0 82| 123 83| 11.7 7.5 11.8 9.1 | 11.2 80| 10.8 &1 | 105 6.6

20| 134 95131 821|124 831|119 77| 134 97| 128 85| 120 86| 11.8 76| 11.8 87| 11.3 7.7 1105 7.7] 103 6.9

25| 134 99| 133 84| 125 851|122 78| 13.0 96| 126 87| 123 87| 11.8 76| 12.3 85| 11.7 76| 106 7.6 | 10.0 7.0

30 || 141 97131 86| 122 &7 11.8 78| 13.0 95| 128 85| 128 85| 123 7.7 1256 82122 80| 11.1 8.0 10.7 6.9
T =500

10| 121 9.1 | 11.7 84| 109 84| 104 7.1 129 88 123 82| 11.3 82108 7.0 | 10.5 80102 7.0 9.3 7.1 9.0 5.8

15| 121 96| 11.8 85| 11.0 85108 7.8 124 92| 119 84| 109 84| 102 7.5 109 83103 76| 100 76| 9.7 6.8

20 || 123 9.2 | 120 87| 114 87106 79| 128 9.0 | 124 80| 113 80| 108 74| 11.6 84| 114 76| 107 7.7]| 102 6.8

251 13.0 93| 127 84| 117 84109 75| 131 88 |128 80| 119 81 |11.6 7.2 | 119 88| 117 7.7 ]|114 79| 11.0 6.9

30 || 13.2 931|130 821|119 82 (115 75| 139 90| 132 82| 118 82| 11.3 72| 124 9.1 (122 80| 11.3 &1 ]| 109 7.2
T = 1000

10 85 5H81106 71| 89 65| 89 65| 11.0 771|104 6.7 94 6.7 9.0 5.8 95 611 89 50| 78 50| 7.3 3.0

15 9.0 521108 76| 9.1 6.4 1] 9.1 6.4 | 10.7 74 ] 102 6.5 | 9.5 6.5 9.0 5.5 9.3 56 | 9.2 5.2 7.8 53| 76 4.1

20 94 541107 7611 99 67 99 67| 108 6.8]10.5 59| 99 6.1 | 94 5.7 93 59| 84 51| &1 52| 7.8 4.3

25 94 571109 791 97 70| 97 70| 107 7.6 | 106 6.3 ] 100 63| 94 5.6 87 6.2 84 53| 7.9 5.5 7.8 4.8

30 97 651105 781 98 75| 98 75| 106 7.7]10.5 6.6 1| 99 6.7 94 6.0 91 64| 86 57| &1 59| &1 5.0

Notes : (i) 1000 iterations;

(ii) M7, Mo, generalized spectral tests, ()1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M7 and Ma; p = 10, 15, 20, 25, 30.

(iv) A: Yi= 0.9V 1_1+up, ug = h'%e, hy= 0.2 + 0.6h4_1+0.2u2_; B: hy= 0.2 + 0.8hy_1+0.2u2_;;

C: hy= 0.2 4+ 0.79h;_140.2u?_;, & ~ i.i.d. N(0, 1).



TABLE 4. Empirical Powers of Tests

DGP P.1: Yi: ().2Yt,1—|—0.2Yt,2+ut

| DGP P.2: V;= —0.5Y, 11(Y, ;> 0)+ 0.7V, 1(Y, ;<0) +u,

My Q1 My Q2 My Q1 My Q2

p 10% 5% | 10% 5% | 10% 5% | 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
T = 250

10 61.4 50.8 | 61.9 498 | 61.4 50.8| 62.2 499 98.9 97.2 98.6 96.6 98.9 97.1 98.6 96.8

15 61.3 51.2 ] 60.0 499 | 61.3 51.2 | 60.3 49.8 97.8 94.4 97.2 92.0 97.8 94.2 97.4 92.1

20 60.9 476 | 58.9 483 | 60.9 47.6 | 59.0 48.6 96.0 89.4 94.9 88.5 96.0 89.3 95.1 89.1

25 58.9 47.9 | 58.0 45.7 | 59.0 47.9 | 58.0 46.0 93.9 86.5 93.2 84.0 93.8 86.4 93.2 84.3

30 58.7 46.6 | 57.3 44.1 | 58.6 46.6 | 57.3 44.3 92.4 82.3 91.4 80.1 92.1 82.0 91.8 80.6
T =500

10 899 &81.4|89.4 80.0| 8.9 814 ]| 89.4 8&0.1 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0

15 89.5 K819 | 89.5 81.6 | 89.5 81.9| 8.4 8&1.6 100.0 100.0 | 100.0 100.0 | 100.0 100.0 { 100.0 100.0

20 89.6 81.4 | 89.2 81.1| 89.6 81.4 | &89.3 &1.1 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0

25 89.2 R80.2 | 89.1 79.7 | 89.2 80.2| 8.1 79.7 100.0 100.0 | 100.0 99.8 | 100.0 100.0 | 100.0 99.8

30 88.4 792 | 87.8 79.8 | 884 79.1 | 8.9 79.6 100.0 99.9 | 100.0 99.8 | 100.0 100.0 | 100.0 99.8
T = 1000

10 99.7 99.2 [ 99.6 99.2 | 99.7 99.2 1 99.6 99.2 100.0 100.0 | 100.0 100.0 | 100.0 100.0 { 100.0 100.0

15 99.6 9931996 99.2 1 99.6 99.3 | 99.6 99.2 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0

20 994 992 (994 99.2 ] 994 99.2 | 994 99.2 100.0 100.0 | 100.0 100.0 | 100.0 100.0 { 100.0 100.0

25 994 99.1 (994 9891|994 99.1 1] 994 989 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0

30 994 99.0 | 99.4 988 | 99.4 99.0 | 994 98.8 100.0 100.0 | 100.0 100.0 | 100.0 100.0 { 100.0 100.0

Notes : (i) 1000 iterations;

(ii) My, Mo, generalized spectral tests, ()1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M; and Mas; p = 10, 15, 20, 25, 30.

(iv) DGP P.1: Y= 0.2Y,_14+0.2Y;_otus, u; = hi' ey, hy= 0.2 + 0.6hy_1+0.2u2_1;
DGP P.2: Y%: _0-5Yt—11(yt71> O) + O‘7Yt711(yt71§ 0) + Uy, Ut = hg/Qé’t, ht: 0.2+ O.Ght_l‘i‘O.Q'LL%il;
DGP P.3: Yi= 0.2V 1 +us, ur = by er, hy= 0.2 + 0.6h;_1+0.1u2_1(u, ;> 0) + 0.5u2 ,1(u, ,<0),

e ~ ii.d. N(0, 1).



TABLE 5. Empirical Powers of Tests (Cont.)

DGP P.3: DGP P.4:
hi= 0.2+ 0.6h;_1+0.1u7 ;1(u, ;> 0) 4 0.5u> ;1(u, ;<0) hy= 0.2 + 0.6h;_14+0.2u?_,,{e,} ~ i.i.d.exp (1)
M,y Q1 Mo Q2 M Q1 Mo Q2

p 10% 5% | 10% 5% | 10% 5% | 10% 5% 10% 5% | 10% 5% | 10% 5% | 10% 5%
T = 250

10 266 174|266 16.8]264 17.1268 17.0 65.1 484 | 61.8 436 | 645 482 | 63.1  44.9

15 257 14.9 | 243 143 | 258 148 | 244 140 509 334 | 467 308 | 50.1 327 | 473 30.9

20 237 120 | 224 127|236 120 | 224 128 402 229 | 379 219 | 398 224 | 385 230

25 21.3 13.2 | 21.2 121|212 132|212 125 333 199 | 321 165 | 331 193 | 323 171

30 21.7 12.6 | 20.2 121 | 21.6 125 | 201 121 298 159 | 27.0 140 | 202 154 | 274 140
T =500

10 476 27.3 [ 44.0 257 [ 474 273|441 260 987 931 | 978 914 [ 985 930 | 980 919

15 426 25.8 | 41.7 25.1 | 425 258 | 415 25.1 949 848 | 93.6 828 | 949 846 | 93.7 835

20 40.6  24.0 | 40.2 22.8 | 40.9 24.0 | 404 228 89.7 759 | 882 73.1 | 895 755 | 887 T4d

25 384 21.8|37.8 211|383 218|380 211 845 669 | 831 633 | 844 663 | 834 645

30 371 204|360 21.2|37.1 204|361 212 790 590 | 759 586 | 786 583 | 76.6  59.2
T = 1000

10 80.7 685|784 67.0]80.7 682|786 673 100.0  100.0 | 100.0  100.0 | 100.0  100.0 [ 100.0 100.0

15 784 66.2 | 76.3 653 | 78.3 658 | 76.2 65.5 100.0  100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0

20 748 631 | 734 621 | 746 63.1 | 734 622 100.0  100.0 | 100.0  100.0 | 100.0 100.0 | 100.0 100.0

25 73.7 61.1 | 71.6 57.0 | 73.7 61.1 | 719 57.1 100.0  100.0 | 100.0  99.8 | 100.0 100.0 | 100.0 100.0

30 722 59.1 | 709 53.5| 721 588 | 71.0 535 100.0  99.6 | 100.0  99.5 | 100.0  99.6 | 100.0  99.6

Notes : (i) 1000 iterations;
(ii) My, Mo, generalized spectral tests, ()1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M7 and Ms; p = 10, 15, 20, 25, 30.

(iv) DGP P.3: Yi= 0.2Y;_1 + ugup= hy' %y, hy= 0.2 + 0.6hy_1+0.1u?_1(u,_,> 0) + 0.5u>_,1(u, ,< 0),
{e1} ~ i.i.d. N(0, 1); DGP P.4: Yi= 0.2Y_1+uy, up = hy'%er, hy= 0.2+ 0.6hy_14+0.2u2_,, {&;} ~ i.i.d.exp (1).



TABLE 6. Empirical Powers of Tests (Cont.)

DGP P.5:
M (p) Q1 Mo Q2
P 10% 5% | 10% 5% | 10% 5% | 10% 5%
T = 250

10 88.1 79.7|86.5 76.0| 878 79.2| 875 77.0
15 79.6 69.5 | 76.3 65.1 | 80.9 72.0| 76.7 66.5
20 71.1 56.5 | 68.2 549 | 70.8 56.3 | 68.6 56.3
25 64.0 ©51.0 | 62.7 46.2 | 63.1 504 | 62.6 47.6
30 58.7 444 | 55.6 41.0 | 57.9 43.4 | 56.0 42.3
T = 500
10 99.7 9951 99.6 993|996 982 99.6 99.3
15 99.5 98.0]99.3 980|989 969|993 97.9
20 98.9 96.6 | 98.3 96.5 | 97.7 958 | 98.3 96.5
25 98.0 95.8 | 97.7 949 | 971 94.2 | 97.7 949
30 96.7 93.7 ] 96.1 929|963 920 96.2 93.1
T = 1000
10 99.4 9941994 994|994 994|994 99.4
15 99.4 9941994 994|994 994|994 99.4
20 99.4 9941994 994|994 994|994 99.4
25 99.4 994 (994 994|994 994|994 994
30 99.4 9941994 994|994 994|994 99.4

Notes : (i) 1000 iterations;
(ii) My, Mo, generalized spectral tests, ()1 and Q2 are their Chi-square approximation, respectively;
(iii) The Parzen kernel is used for both M; and My; p = 10, 15, 20, 25, 30.

2
(iv) DGP P5: Y;= 0.2Y g +u, up = by’ at:ej’eg;f;g;jz ff;)) 6} ~ i d N (0,1), \2= 0.2 + 0.6)2_, +0.2u2_,.




