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Abstract

In many of the extant in�uential models of intergenerational mobility, there is an unre-
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comes more persistent. Using an exact solution for distributional dynamics, we show that
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subsidy can promote social mobility resulting from incomplete depreciation.
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1. Introduction

It is an open question whether the son of a poor farmer will become a high paid

executive manager. The evidence during the last two decades point to the direction

that such intergenerational mobility is slow (Machin, 2004). Clark and Cummins

(2012) establish that there is considerable persistence in the wealth status of house-

holds in England from 1800 to 2012. They predict that it will take another 200

years to complete the process of social mobility.1 A considerable literature has fo-

cused on the role of credit market imperfection in perpetuating inequality and thus

it has direct and indirect implications for social mobility (e.g., Loury, 1981, Galor

and Zeira, 1993, Benabou, 1996, Mulligan, 1997, Bandyopadhyay and Tang, 2011

among others).

An unrealistic feature in many of these papers is the speci�cation of the schooling

technology showing the relationship between investment in education and the stock

of human capital. Human capital is assumed to fully depreciate after its use. Greater

investment is thus necessary to replace depreciated human capital. Consequently, it

overestimate the size of investment and the resulting social mobility. We establish

this point by adding incomplete depreciation of human capital to Benabou�s (2000,

2002) schooling technology. The role of longevity of human capital resulting from

incomplete depreciation of human capital has been ignored in the inequality and

social mobility literature. This is precisely where our paper contributes.

In our model, the credit market is imperfect as in Loury (1981), Banerjee and

1Although social mobility is a broader notion of change in social status, we use this term in a
narrower sense to indicate intergenerational mobility.
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Newman (1993), Galor and Zeira (1993) and Benabou (2000, 2002). Individuals dif-

fer in terms of initial human capital and receive a warm-glow utility from investing

in child�s education in the spirit of Galor and Zeira (1993). Agents cannot borrow

from the credit market to remedy the initial de�ciency of human capital. The only

way the poor can catch up with the rich is by investing in human capital through

schooling as in Loury (1981). Initial di¤erences in human capital and credit market

imperfection give rise to a cross-sectional inequality which transmits from one gen-

eration to another. Our model has the standard convergence property that in the

long-run poor catch up with the rich and inequality vanishes.2 However, how fast

this convergence occurs determines intergenerational mobility.

We show that incomplete depreciation slows down social mobility by in�uencing

saving propensity of agents. If depreciation is full, we get the well known Solow saving

rule with identical saving propensity of all agents. When depreciation is partial, all

agents invest less because of inheritance of some human capital from parents. Rich

cut back investment more than the poor. However, such a decline in investment

a¤ects poor more because poor have a higher marginal return to investment. It is

thus di¢ cult for the poor to bridge the initial inequality resulting in a slower social

mobility. Inequality becomes persistent when human capital depreciates slowly. On

the other hand, the long-run growth rate rises because the undepreciated human

capital boosts the prospective gross return to capital.

2If there is a cross sectional di¤erence in luck, the inequality in the long run will be driven by
di¤erence in luck (idiosyncratic shock) as in Becker and Tomes (1979). To focus only on social
mobility (which is property of transitional dynamics) we assume that everybody has the same luck
but only di¤er in terms of initial human capital.
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We derive a novel closed form expression for distributional dynamics showing

that the social mobility is history dependent. It depends on the inequality inherited

from the past. Higher inequality considerably slows down mobility under incomplete

depreciation of human capital. To the best of our knowledge, our closed form solution

for distributional dynamics in the presence of incomplete depreciation is new in

the literature. The extant papers often appeal to the Cobb-Douglas framework

for analytical tractability (e.g., Benabou 1996, 2000, 2002 and Bandyopadhyay and

Tang, 2011).

Our model simulation based on calibrated parameters suggests that a complete

depreciation of human capital vastly overestimates social mobility. The social mo-

bility measure comes close to Clark and Cummins (2012) if human capital depreci-

ates very slowly. In addition, we show that an education subsidy �nanced by non-

distortionary consumption tax can promote social mobility.

The paper is organized as follows. Section 2 presents the model with its prop-

erties. Section 3 provides the quantitative analysis and a simple extension of the

model with education subsidy. Section 4 concludes.

2. The model

2.1. Preference and technology

Consider a continuum heterogeneous households i 2 [0; 1] embedded in overlap-

ping generations. Each household i consists of an adult of generation t attached to

a child. A child only inherits human capital from her parents and does not make

any decision as her consumption is already included in that of her parents. Adult, at
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date t employs a unit raw labour into the production process which translates into

hit e¢ ciency units (human capital) for the production of �nal goods and services to

earn income (yit) using the following Cobb-Douglas production function:

yit = ah1��t h�it (1)

where a > 0 is simply an exogenous productivity parameter, � 2 (0; 1), ht represents

the aggregate stock of knowledge in the spirit of Arrow (1962) and Romer (1986)

which the adult faces as given although it is determined by the aggregate dynamics.3

The child at date t behaves as an adult at t+ 1.

Agents care about their own consumption (cit) and receive a "joy of giving" from

the human capital stock of their children (hit+1). In other words, the utility of the

adult at date t is given by:4

u (cit; hit+1) = ln cit + � lnhit+1 (2)

where 0 < � < 1 is the degree of parental altruism, hit+1 represents the human

capital of the o¤spring of agent i. At the end of the period, parents allocate income

between current consumption (cit) and spending on education (sit).

cit + sit = yit (1� �) (3)

3Such a technology basically means that there is private diminishing returns but social constant
returns to human capital.

4The choice of a logarithmic utility function and altruistic agents with a "joy of giving" motive
is merely for simplicity. Also see Glomm and Ravikumar (1992), Galor and Zeira (1993), Saint-Paul
and Verdier (1993) and Benabou (2000) for similar settings.
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where yit (1� �) is the ith individual disposable income and � is the �at rate tax.5

2.2. Schooling Technology

The human capital is the only reproducible input in our model. The school-

ing technology speci�es how the stock of human capital of parents (hit) and their

spending on schooling (sit) shapes the child�s human capital. In general:

hit+1 = f(hit; sit) (4)

where f1 > 0; f2 > 0; f11 < 0; f22 < 0; f12 > 0.

Speci�cally, we consider the following parametric form of (4) for the human capital

accumulation:

hit+1 = a2h
1��
it ((1� �)hit + sit)

� (5)

where � 2 (0; 1), � 2 (0; 1) and a2 > 0. The human capital production function is

in the spirit of Benabou (2002) except for inclusion of the depreciation parameter

�. If � = 1, the schooling technology reduces to a standard Cobb-Douglas form as

in the literature (e.g., Glomm and Ravikumar, 1992, de la Croix and Michel, 2002,

p.260, Benabou, 1996, 2000, 2002 among many others). The parameter � determines

the curvature of the marginal return to investment which we ascribe to a convex

human capital adjustment cost.6 If � reaches the upper bound of unity, there is

5A �at rate income tax � which is wastefully spent is introduced in this model to aid the
calibration.

6The marginal return to investment based on (5) is given by: @hit+1=@sit =
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zero adjustment cost and the investment technology reverts to a standard linear

depreciation rule. This notion of � as the degree of human capital adjustment cost

is borrowed from the standard capital adjustment cost technology used in Lucas

and Prescott, (1971), Basu (1987), Hercowitz and Sampson (1991) and Basu et al.

(2012). The parameter a2 is an exogenous investment speci�c technology component

to calibrate the long-run growth.

The depreciation cost parameter (�) in the human capital production function

is the main focus of this paper. The amount of human capital the child inherits

from the parents in the absence of any new investment is determined by 1� �. If an

adult undertakes no investment in her child�s education, unlike Benabou (2000), the

child still inherits some human capital in proportion to (1� �)hit in our model. For

example, a farmer�s child may imbibe some agricultural know-how even without any

formal training in farming. Viewed from this perspective, one may think of 1� � as

the degree of intergenerational spillover of knowledge as in Mankiw et al. (1992) and

Bandyopadhyay and Basu (2005).7

2.3. Initial distribution of human capital

At the beginning, each adult of the initial generation is endowed with human

capital hi0. The distribution of hi0 takes a known probability distribution,

a2�= (1� � + sit=hit)1��. Lower � makes the investment return schedule shift downward with a
steeper curvature. This steep decrease in marginal return to investment due to lower � is ascribed
to a higher adjustment cost of human capital.

7These papers do not, however, explore the issue of intergenerational mobility even though they
have incomplete depreciation of human capital in their models.
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lnhi0 � N(�0; �
2
0) (6)

and it evolves over time along an equilibrium trajectory.8

2.4. Equilibrium

In equilibrium, all individuals behave optimally and the aggregate consistency

conditions hold.

Optimality: Given hit and ht; an adult of cohort t solves the following maximiza-

tion problem, obtained by substituting (3) and (5) into (2),

max
sit
ln (yit (1� �)� sit) + � ln ((1� �)hit + sit)

� (7)

Aggregate Consistency: (i) ct �
R
citdi, st �

R
sitdi, yt �

R
yitdi, ht �

R
hitdi

where the left hand side variable in each of them means the aggregate.9 (ii) The

aggregate budget constraint is thus given by:

ct + st = yt (1� �) (8)

The �rst order condition for investment equates the marginal utility cost of in-

8Similar lognormal distribution of human capital wealth is applied in Glomm and Ravikumar
(1992), Benabou (2000, 2002) and de la Croix and Michel, (2002, p.266), which provides a closed
form solution to the model.

9We use the operators
R
and E interchangeably in the text to denote aggregation across indi-

viduals.
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vestment and the corresponding marginal utility bene�t. In other words,

1

(1� �)yit � sit
=

��

(1� �)hit + sit
(9)

which leads to the following optimal investment functions,

sit = ((1� �) ��yit � (1� �)hit) = (1 + ��) (10)

An adult�s optimal investment decision constitutes both new investment plus a re-

placement of depreciated capital. Note that a lower rate of depreciation depresses

current investment across the board because it lowers the marginal bene�t of invest-

ment. To see this clearly, check from the �rst order condition that for a given hit

and ht, a lower � depresses the marginal bene�t of investment (the right hand side)

discouraging individual investment propensity.

2.4.1. Incomplete depreciation and investment propensity

Incomplete depreciation has a nontrivial e¤ect on individual saving propensities

in the model. If � = 1, saving (or investment) propensity is constant and the same

across agents:

s=y = (1� �)��= (1 + ��) (11)

If � 6= 1 (and � 6= 1), however, the saving propensity di¤ers across agents whereas

sit=yit is decreasing in hit=ht.
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sit=yit =
�
a��(1� �)� (1� �) (hit=ht)

1��� =a (1 + ��) (12)

Under incomplete depreciation, poor invest more than the rich because they have

a higher marginal return to investment (given � < 1). However, individual and

aggregate investment reach the highest if there is complete depreciation of capital.

Figure 1 plots the investment propensities of agents di¤ering in their capital stocks

to con�rm these results.10

Figure 1: Saving propensity, individual wealth and incomplete depreciation

2.4.2. Individual optimal human capital accumulation

Based on (1), (5) and (10), the ith adult�s optimal human capital accumulation

is given by:

10The model parameters are �xed at the calibrated levels discussed in Section 3.
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hit+1 = �hit
�
1� � + a1h

1��
t h��1it

��
(13)

where a1 � (1� �) a and � � a2 (��= (1 + ��))
�.

Thus, each o¤spring�s optimal law of motion of human capital is determined by

both the depreciation and adjustment cost of human capital and her parent�s income.

2.4.3. Incomplete depreciation and social mobility

To see the importance of depreciation of human capital for social mobility, log-

linearize (13) around the balanced growth rate in order to get:

lnehit+1 ' � lnehit (14)

where ehit � hit=ht and,

� � @ lnehit+1=@ lnehit = 1� (� (1� �) a1) = (1� � + a1) (15)

If the ith adult is slightly below the average at date t (hit < ht), equation (15)

says that her child will inherit this trait only to the extent of �. Thus the greater the

size of �, the slower the mobility. The inverse of � is the social mobility used in the

literature (e.g., Benabou, 2002). In the case of � = 1, � reduces to 1� (1� �) �. A

lower depreciation rate (0 < � < 1), however, raises � above this value which means

that social mobility is slower if � is lower.

The same point can be made more generally by computing the dynamics of the
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cross sectional variance of human capital based on (14) which yields

�2t+1 = �2�2t (16)

where �2t = var
�
lnehit� = var (lnhit).

Eq. (16) shows how the inequality transmits from one generation to another.

Although inequality asymptotically approaches zero,11 its short run dynamics, the

prime measure of social mobility is determined by �. The greater the size of �, the

slower the social mobility which also translates into a more persistent inequality. It is

straightforward to verify that a lower depreciation rate increases this persistence by

slowing down this social mobility.12 A higher adjustment cost (lower �) aggravates

the process of mobility further by lowering �. The following proposition summarizes

our key result.

Proposition 1. A lower depreciation rate (�) makes the social mobility slower and
the inequality process more persistent.

2.5. Social mobility and distributional dynamics: A closed form solution

In the preceding section, the analysis of the relationship between social mobility

and the depreciation rate is established in the neighborhood of the balanced growth

11This is intuitive as there are no factors in our model such as an uninsured idiosyncratic shock
that lead to a nondegenerate income distribution.
12The dynamics of income inequality (�2y;t) is also identical and can also be derived from (1) and

(16):

�2y;t+1 = �
2�2y;t
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rate. Thus the results are true locally. We now show that this result also holds glob-

ally. Our model allows for a closed form expression for the distributional dynamics

in terms of cross sectional variance of human capital (�2t ). In addition, we also derive

the short run dynamics of the growth rate of human capital, t.

Proposition 2. Given the initial cross sectional inequality characterized by (6) and
(13), the dynamics of inequality and growth are given by the following laws of motion
respectively,

�2t+1 = �2 ln
�2 exp

�
��2�2t

�
+ a21 exp (b1�

2
t ) + 2�a1 exp (b2�

2
t )

(�+ a1 exp (0:5!�2t ))
2 (17)

and

t+1 = ln�+ 0:5 (1=� � 1)
�
�2t � �2t+1

�
+ � ln

�
�+ a1 exp

�
0:5!�2t

��
(18)

where

t+1 � lnht+1 � lnht

� � 1� �

! � (�� 1) (2=� + �� 2)

b1 � ! + (1=� + �� 1)2

b2 � 0:5! + (1=� + �� 1) =�

Proof. See Appendix A.
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If � = 1, one con�rms that �2t+1 = �2�2t as in (16). The fact that (13) is loglinear

when � = 1, the loglinearization and the actual solution converge.13

The dynamics of inequality is governed by the time path of f�2:t gt=1t=0 which is

determined by its own history. It is not in�uenced by growth. On the other hand,

the growth rate depends on the current and past inequality. The causality thus runs

from inequality to growth in this setting. It is evident by the fact that �2t+1 is a

function of �2t alone while t+1 depends on �
2
t+1 and �

2
t . A higher contemporaneous

inequality depresses growth because @t+1=@�
2
t+1 < 0. This inverse relationship is

not surprising in a model with imperfect credit market. Since poor have a higher

marginal return to investment than the rich and they cannot borrow from the rich

due to credit market imperfection, Pareto e¢ ciency cannot be achieved. Therefore,

in such an economy higher inequality corresponds to a greater ine¢ ciency and thus

translates into lower growth.

2.5.1. History dependent social mobility

The social mobility based on the exact solution is given by the inverse of the

gradient of (17):

�2t � @�2t+1=@�
2
t = f

�
�2t
�

(19)

when �2t = 0 in the steady state, then

13Note also that when � = 1 and � = 1 (no adjustment cost and 100% depreciation, respectively),
we get the well known Solow saving rule: htt+1 = yit(1� �)a2�:= (1 + �).
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�2t = �2 = (1� (� (1� �) a1) = (1� � + a1))
2 (20)

which reduces to the loglinearized measure (15). Appendix B presents the derivation

of (19).

The exact solution for social mobility (19) reveals a path dependent property

which is not seen in the loglinearized version (15). It depends on the current state of

inequality, �2t which is history dependent (see (17)). Figure 2 plots �t against �
2
t for

alternative values of the depreciation parameter �. Social mobility is less in a more

unequal society. Lower depreciation slows down mobility for all inequality states as

seen by the comparison (when � = 0:1 and � = 0:03). It is noteworthy that for full

depreciation (� = 1) this mobility loses its history dependence property.

Figure 2: Social mobility versus inequality
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2.5.2. Depreciation and distributional dynamics

Figure 3 �nally illustrates the distributional dynamics for our exact solution (17)

by comparing two economies, one with full depreciation (� = 1) and the other with

incomplete depreciation (� = 0:03) as �xed in our calibrated economy later on. An

incomplete depreciation slows down convergence by about seven generations. All

these results basically reinforce our key result that the rate of depreciation of human

capital could be an important determinant of social mobility and the underlying

distributional dynamics.

Figure 3: Incomplete depreciation and the convergence of inequality dynamics.

2.5.3. Why does a lower depreciation rate slow down social mobility?

Social mobility in this model is fueled through investment in human capital. Due

to diminishing returns, poor households have a higher marginal return to investment
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than rich. This is shown below where the marginal return to investment (@yit+1=@sit)

is decreasing in the relative human capital (hit=ht):

@yit+1=@sit = �t (hit=ht)
��1 �1� � + a1 (hit=ht)

��1����1 (21)

Appendix C provides the derivation of (21). Figure 4 plots (21) for a given �t.

Figure 4: Incomplete Depreciation and Individual Saving rate

When credit market is missing, agents�investment opportunities are limited to

the human capital in hand. Capital-poor agents with higher marginal return to

investment try to equalize the di¤erences in wealth by investing more in human

capital. A lower rate of depreciation of human capital depresses adult�s optimal

investment in the child because the adult has already passed some human capital

to her child (see eq. (10)). When investment is cut back, the resulting loss of

output su¤ered by the poor is greater because poor have a higher marginal return to
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investment as seen in Figure 4. This makes it more di¢ cult for the poor to exploit

their productivity advantage through investment. This di¢ culty in catching up is

re�ected in a slower social mobility.

2.6. Incomplete depreciation, and long-run growth

The long-run growth rate is determined by setting �2 = 0 in (18):

 = ln�+ � ln (1� � + a1) (22)

A lower � unambiguously promotes growth. The intuition behind this result is that a

lower depreciation boosts the steady state gross marginal product of human capital

(1� � + a1).

To sum up: a lower depreciation cost dampens investment propensity of all agents

slowing down social mobility although long-run growth rate is higher. In the next sec-

tion, we undertake a quantitative analysis of the model to illustrate that incomplete

depreciation has nontrivial e¤ect on the magnitude of social mobility.

3. Calibrating social mobility

In this section, we establish using a calibrated version of our model that full

depreciation of human capital considerably overestimates social mobility. We �rst �x

some of the model parameters at the conventional levels. There are seven parameters,

namely �, a, a2, �, �, � and � . Assuming a psychological discount factor of 0:96, we
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set � = 0:9630 � 0:3, in a period of 30 years (de la Croix and Michel, 2002, p.255).14

The income tax rate is set at � = 0:3 re�ecting an average 30% income tax. The

TFP parameter is normalized at a = 1. The investment speci�c technology scale

parameter a2 is �xed at 2:52 to target a long-run annual average growth rate of

about 2 percent. Regarding �, we take Glomm�s (1997) estimate of 0.8 as a baseline.

The baseline value of � is taken from Mankiw et al. (1992). Table 1 summarizes the

baseline parameter values.

Table 1: Baseline parameter values

Preference and technology parameters: � = 0:3, a = 1, a2 = 2:52

Production parameters: � = 0:3, � = 0:8, � = 0:03

policy parameter: � = 0:3

Given that the central focus of the paper is on the schooling technology (5) with

special emphasis on the depreciation parameter �, we compute the social mobility for

a range of � and � values. Table 2 reports the results of such a sensitivity analysis.

Starting from the baseline values � = 0:03 and � = 0:8, a higher depreciation rate

raises social mobility. For a full depreciation economy (� = 1), � reaches the lowest

value, the maximum mobility. When � = 1, the investment technology (5) reduces

to a standard linear form without any adjustment cost and the mobility is maximum

for a given �. Clark and Cummins (2012) get � estimates in the range (0:7 and 0:8).

Table 2 reports that our model estimates of � fall in the range of Clark and Cummins

14A psychological discount factor of 0:96 matches a 4:17 percent rate of time preference � in an
in�nite lived agent model. That is, � = 1= (1 + �) = 1=(1 + :0417) = 0:96.
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for � between 0.03 and 0.15 and � between 0.8 and 0.9. Similar picture emerges when

we alter � and � values in a �ner grid which is reported in the three dimensional graph

in Figure 5. Note that a full depreciation economy vastly overestimates mobility

even though we take the highest estimate of mobility from Clark and Cummins.

The bottom-line of this sensitivity analysis is that incomplete depreciation of human

capital (0 < � < 1) is crucial in reproducing the observed degree of social mobility.

Table 2: E¤ects of depreciation cost on social mobility for di¤erent values of �

Depreciation cost (�) � = 0:8 � = :9 � = 1

0:03 0.7653 0.7359 0.7066

0:05 0.7680 0.7391 0.7101

0:10 0.7550 0.7244 0.6938

0:13 0.7503 0.7191 0.6879

0:15 0.7471 0.7155 0.6839

1 0.4400 0.3700 0.3000

3.1. Case for an education subsidy

Our model demonstrates that the social mobility is less in economies with lower

depreciation of human capital. A proportional education subsidy can help the inter-

generational mobility in such a scenario through boosting investment in schooling.

Think of a �at rate education subsidy  which lowers the cost of schooling sit pro-
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Figure 5: Estimate of � at di¤erent values of � and �
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portionally for all agents �nanced by a consumption � ct .
15 The budget constraint (3)

changes to:

cit (1 + �
c
t) + sit(1�  ) = yit (23)

Assume that the government balances the budget by setting an average tax rate

� ct such that

� ctct =  st (24)

Each agent takes  and � ct as parametrically given. The optimal investment function

15We replace the income tax by consumption tax following Benabou (2002) who used a non-
distortionary consumption tax to �nance education subsidy.
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now changes to:16

sit = (yit�� � (1� �)hit) = (1 + (1�  ) ��) (25)

Considering (5), we have the optimal human capital accumulation under education

subsidy:

hit+1 = �hit
�
(1� �) (1�  ) + ah1��t h��1it

��
(26)

where � � a2 (��= (1 + (1�  ) ��))�.

Using the same loglinearization procedure as earlier, the intergenerational mobil-

ity (around the steady state) is given by the inverse of �s:

�s = 1�
�a (1� �)

(1� �) (1�  ) + a
(27)

It is straightforward to verify that @�s=@ < 0. A higher education subsidy thus

promotes social mobility. The e¤ect of subsidy on mobility works via the undepre-

ciated capital stock in our model. Thus, an education subsidy,  can be applied to

mitigate the slowdown of social mobility caused by lower depreciation.

4. Conclusion

This paper analyzes the e¤ect of incomplete depreciation of human capital on

social mobility and long-run growth. Agents are heterogenous in terms of the initial

16Due to the log utility functional form, the consumption tax rate � ct does not appear in the
optimal decision rule.
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stock of human capital. Credit market imperfection prevents the poor to equalize this

initial di¤erence through borrowing from the rich. The acquisition of human capital

through schooling is a principal vehicle of social mobility. Using a novel closed form

analytical solution of distributional dynamics with incomplete depreciation, we show

that when human capital depreciates slowly, the process of intergenerational mobility

considerably slows down and inequality becomes a more persistent process. This

happens because low depreciation reduces the marginal bene�t of investment for all

agents. This process is further aggravated if there is a convex capital adjustment cost.

Poor with lower initial human capital and higher marginal return to investment �nd

it di¢ cult to equalize the di¤erence in human capital from the rich. Our calibration

exercise shows that social mobility can be vastly overestimated if human capital

depreciates fully as it is assumed in several in�uential papers in the growth and

mobility literature. We also show that a proportional education subsidy �nanced by

consumption tax can promote social mobility. The implication of our study is that a

society with low depreciation of human capital actually transfers old know-how from

one generation to another inhibiting innovation that could be bene�cial for social

mobility. A future extension of this paper would be to endogenize depreciation via

innovation which gives rise to "creative destruction" of knowledge.
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Appendix

A. Proof of Proposition 2

In this section we derive (17) from (13). We can also rewrite (13) as

(hit+1)
& = �&

�
h&it�+ �th

{+&
it

�
(A.1)

where & � 1=�, { � �� 1, � � 1� � and �t � a1h
1��
t .

Recall that �rst hit is assumed to have lognormal distribution:

lnhit � N(�t; �
2
t ) (A.2)

And, from a normal-lognormal relationship, we have:

E [hit] � ht = e�t+0:5�
2
t (A.3)

var [hit] =
�
e�

2
t � 1

�
e2�t+�

2
t (A.4)

If hitis lognormal, then hzit is also lognormal for any constant z. Thus:

E [h
z
it] = hzt e

0:5�2t z(z�1) (A.5)

var [hzit] = h2zt e
�2t z(z�1)

�
ez

2�2t � 1
�

(A.6)

We now simply apply (A.5) and (A.6) to derive the following important relations

that we use later on:
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E
�
h&it+1

�
= h&t+1e

0:5&(&�1)�2t+1 (A.7)

E [h
&
it] = h&te

0:5&(&�1)�2t (A.8)

E
�
h&+{it

�
= h&+{t e0:5(&+{)(&+{�1)�

2
t (A.9)

E
�
h2&+{it

�
= h2&+{t e0:5(2&+{)(2&+{�1)�

2
t (A.10)

var
�
h&it+1

�
= h2&t+1e

&(&�1)�2t+1
�
e&

2�2t+1 � 1
�

(A.11)

var [h&it] = h2&t e
&(&�1)�2t

�
e&

2�2t � 1
�

(A.12)

var
�
h&+{it

�
= h

2(&+{)
t e(&+{)(&+{�1)�

2
t

�
e(&+{)

2�2t � 1
�

(A.13)

Then, aggregate (A.1) from both sides to derive the aggregate human capital:

E
�
h&it+1

�
= �& E

�
h&it�+ �th

&+{
it

�
= �&

�
�E [h

&
it] + �t E

�
h&+{it

�	
(A.14)

Plugging (A.7), (A.8) and (A.9) into (A.14):

h&t+1e
0:5&(&�1)�2t+1 = �&

n
�h&te

0:5&(&�1)�2t + �th
&+{
t e0:5(&+{)(&+{�1)�

2
t

o
= �&h&t

n
�e0:5&(&�1)�

2
t + a1e

0:5(&(&�1)+&{+{(&+{�1))�2t
o

Thus, the aggregate human capital accumulation function is given by:

h&t+1e
0:5&(&�1)�2t+1 = �&h&te

0:5&(&�1)�2t
n
�+ a1e

0:5{(2&+{�1)�2t
o

(A.15)

The growth rate (18) is derived by taking the log from both sides of (A.15).
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To derive the distributional dynamics, take the variance from both sides of (A.1):

var [(hit+1)
& ] = �2& var

�
h&it�+ �th

&+{
it

�
= �2&

�
�2 var [h&it] + �2t var

�
h&+{it

�
+ 2��t cov

�
h&it; h

&+{
it

��
(A.16)

Using (A.8), (A.9), and (A.10), the covariance term is computed as follows:

cov
�
h&it; h

&+{
it

�
= E

�
h&ith

&+{
it

�
� E [h&it] E

�
h&+{it

�
= E

�
h2&+�it

�
� E [h&it] E

�
h&+{it

�
= h2&+{t e0:5(2&+{)(2&+{�1)�

2
t � h&te

0:5&(&�1)�2th&+{t e0:5(&+{)(&+{�1)�
2
t

= h2&+{t e0:5(&(&�1)+(&+{)(&+{�1))�
2
t

�
e&(&+{)�

2
t � 1

�
(A.17)

Then, plugging (A.11), (A.12), (A.13) and (A.17) into (A.16) yields:

h2&t+1e
&(&�1)�2t+1

�
e&

2�2t+1 � 1
�

= �2&

266664
�2h2&t e

&(&�1)�2t
�
e&

2�2t � 1
�

+�2t

n
h
2(&+{)
t e(&+{)(&+{�1)�

2
t

�
e(&+{)

2�2t � 1
�o

+2��t

n
h2&+{t e0:5(&(&�1)+(&+{)(&+{�1))�

2
t

�
e&(&+{)�

2
t � 1

�o
377775

or,
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h2&t+1e
&(&�1)�2t+1

�
e&

2�2t+1 � 1
�

= �2&h2&t e
&(&�1)�2t

266664
�2
�
e&

2�2t � 1
�

+�2t

n
h2{t e

{(2&+{�1)�2t
�
e(&+{)

2�2t � 1
�o

+2��t

n
h{t e

0:5({(2&+{�1))�2t
�
e&(&+{)�

2
t � 1

�o
377775

Finally, substituting (A.15) into the above, we get :

�2&h2&t e
&(&�1)�2t

n
�+ a1e

0:5{(2&+{�1)�2t
o2 �

e&
2�2t+1 � 1

�

= h2&t e
&(&�1)�2t�2&

266664
�2
�
e&

2�2t � 1
�

+�2t

n
h2{t e

{(2&+{�1)�2t
�
e(&+{)

2�2t � 1
�o

+2��t

n
h{t e

0:5({(2&+{�1))�2t
�
e&(&+{)�

2
t � 1

�o
377775

or,

n
�+ a1e

0:5{(2&+{�1)�2t
o2 �

e&
2�2t+1 � 1

�

=

266664
�2
�
e&

2�2t � 1
�

+(a1)
2
n
e{(2&+{�1)�

2
t

�
e(&+{)

2�2t � 1
�o

+2�a1

n
e0:5({(2&+{�1))�

2
t

�
e&(&+{)�

2
t � 1

�o
377775 (A.18)

since �t � a1h
1��
t and { � �� 1.
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Considering,

�
�+ a1e

0:5{(2&+{�1)�2t
�2
= �2 + 2�a1e

0:5{(2&+{�1)�2t + (a1)
2e({(2&+{�1))�

2
t

further simplifying (A.18) gives

e&
2�2t+1 =

�2e&
2�2t + (a1)

2
�
e{(2&+{�1)�

2
t e(&+{)

2�2t

�
+ 2�a1

�
e0:5{(2&+{�1)�

2
t e&(&+{)�

2
t

�
�
�+ a1e0:5{(2&+{�1)�

2
t

�2
Alternatively,

e�
�2�2t+1 =

�2e�
�2�2t + a1

2
�
e[(��1)(2=�+��2)+(1=�+��1)

2]�2t
�
+ 2�a1

�
e[0:5(��1)(2=�+��2)+(1=�+��1)=�]�

2
t

�
�
�+ a1e0:5(��1)(2=�+��2)�

2
t

�2
after substituting & � 1=�, { � �� 1. Or,

e�
�2�2t+1 =

�2e�
�2�2t + a1

2
�
e(!+�

2)�2t
�
+ 2�a1

�
e(0:5!+�=�)�

2
t

�
�
�+ a1e0:5!�

2
t

�2 (A.19)

where

! � (�� 1) (2=� + �� 2) < 0, � � 1=� + �� 1 > 0

as given by (17).

B. Social mobility: exact solution

The social mobility (�t) is time varying and is derived by simply taking the �rst

derivative of (17):
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�2t � @�2t+1=@�
2
t

=

�
�2��2 exp(��2�2t ) + a21b2 exp(b2�

2
t ) + 2�a1b3 exp(b3�

2
t )

�2 exp(��2�2t ) + a21 exp(b2�
2
t ) + 2�a1 exp(b3�

2
t )

� a1! exp(0:5!�
2
t )

�+ a1 exp(0:5!�2t )

�
�2

(B.20)

If �2t = 0, (B.20) reduces to (15). Also, if � = 1, then �t = � = 1� (1� �) �, which

is constant.

C. Derivation of the marginal return of investment

The marginal return to individual investment (21) is computed as follows:

@yit+1=@sit = (@yit+1=@hit+1) (@hit+1=@sit) (C.21)

From (1) and (5):

@yit+1=@sit = ��aa2 (hit+1=ht+1)
��1 ((1� � + sit=hit)

��1 (C.22)

Plugging (1), (5), (10) and (18) into the above, one obtains:

@yit+1=@sit = ��aa2 (a2hit=ht+1)
��1 (1� � + sit=hit)

���1

= ��a���1=�a
1=�
2 (hit=ht+1)

��1 �1� � + a1 (hit=ht)
��1����1

= ��a���1=�a
1=�
2

�
hit=

�
ht exp

�
t+1

�����1 �
1� � + a1 (hit=ht)

��1����1
= �t (hit=ht)

��1 �1� � + a1 (hit=ht)
��1����1
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since ht+1 = ht exp
�
t+1

�
and,

�t � ��a���1=�a
1=�
2 exp

�
(1� �) t+1

�
(C.23)
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