
Simple and Trustworthy Cluster-Robust GMM Inference

Jungbin Hwang∗

Department of Economics,

University of Connecticut†

September 9, 2016

Abstract

This paper develops a new asymptotic theory for two-step GMM estimation and inference

in the presence of clustered dependence. While conventional asymptotic theory completely

ignores the variability in the cluster-robust GMM weighting matrix, the new asymptotic theory

takes it into account, leading to more accurate approximations. The key difference between

these two types of asymptotics is whether the number of clusters G is regarded as small

(fixed) or growing when the sample size increases. Under the new small-G asymptotics, the

centered two-step GMM estimator and the two continuously-updating estimators have the

same asymptotic mixed normal distribution. In addition, the J-statistic, the trinity of two-

step GMM statistics (QLR, LM and Wald), and the t-statistic are all asymptotically pivotal,

and each can be modified to have an asymptotic standard F distribution or t distribution.

We suggest a finite sample variance correction to further improve the accuracy of the F and

t approximations. Our proposed asymptotic F and t tests are very appealing to practitioners

because our test statistics are simple modifications of the usual test statistics, and the F and

t critical values are readily available from standard statistical tables. A Monte Carlo study

shows that our proposed tests are much more accurate than existing tests. We also apply our

methods to an empirical study on the causal effect of access to domestic and international

markets on household consumption in rural China. The results suggest that the effect of access

to markets may be lower than the previous finding.
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1 Introduction

Clustering is a common feature for many cross-sectional and panel data sets in applied economics.

The data often come from a number of independent clusters with a general dependence structure

within each cluster. For example, in development economics, data are often clustered by geographi-

cal regions, such as village, county and province (e.g., de Brauw and Giles 2008; Pepper 2002; Dube

et al. 2010). In empirical finance and industrial organization, firm level data are often clustered

at the industry level (Samila and Sorenson, 2011; Bharath et al., 2013), and in many educational

studies, students’test scores are clustered at the classroom or school level (Andrabi et.al, 2011).

Because of learning from daily interactions, the presence of common shocks, and for many other

reasons, individuals in the same cluster will be interdependent while those from different clusters

tend to be independent. Failure to control for within group or cluster correlation often leads to

downwardly biased standard errors and spurious statistical significance.

Seeking to robustify inference, many practical methods employ clustered covariance estimators

(CCE). See White (1984), Liang and Zeger (1986), Arellano (1987) for seminal methodological con-

tributions, and Wooldridge (2003) and Cameron and Miller (2015) for overviews of the CCE and

its applications. It is now well known that standard test statistics based on the CCE are either

asymptotically chi-squared or normal. The chi-squared and normal approximations are obtained

under the so-called large-G asymptotic specification, which requires the number of clusters G to

grow with the sample size. The key ingredient behind these approximations is that the CCE be-

comes concentrated at the true asymptotic variance as G diverges to infinity. In effect, this type

of asymptotics ignores the estimation uncertainty in the CCE despite its high variation in finite

samples, especially when the number of clusters is small. In practice, it is not unusual to have

a data set that has a small number of clusters. For example, if clustering is based on large geo-

graphical regions such as U.S. states and regional blocks of neighboring countries, (e.g., Bertrand

et al., 2004; Obstfeld et al., 2010; Ibragimov and Müller, 2015), we cannot convincingly claim that

the number of cluster is large so that the large-G asymptotic approximations are applicable. In

fact, there is ample simulation evidence that the large-G approximation can be very poor when the

number of clusters is not large (e.g., Donald and Lang, 2007; Cameron et al., 2008; Bester et al.,

2011; Mackinnon and Webb, 2014).

In this paper, we adopt an alternative approach that yields more accurate approximations, and

that works well whether or not the number of clusters is large. In fact, our approximations work

especially well when the chi-squared and normal approximations are poor. They are obtained from a

limiting thought experiment where the number of clusters G is held fixed. Under this small (fixed)-

G asymptotics, the CCE no longer asymptotically degenerates; instead, it converges in distribution

to a random matrix that is proportional to the true asymptotic variance. The random limit of the

CCE has profound implications for the analyses of the asymptotic properties of GMM estimators

and the corresponding test statistics.

We start with the first-step GMM estimator where the underlying model is possibly over-
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identified and show that suitably modified Wald and t-statistics converge weakly to standard F

and t distributions, respectively. The modification is easy to implement because it involves only

a known multiplicative factor. Similar results have been obtained by Hansen (2007) and Bester,

Conley and Hansen (2011), which employ a CCE type HAC estimator but consider only linear

regressions and M-estimators for an exactly identified model.

We then consider the two-step GMM estimator that uses the CCE as a weighting matrix. Be-

cause the weighting matrix is random even in the limit, the two-step estimator is not asymptotically

normal. The form of the limiting distribution depends on how the CCE is constructed. If the CCE

is based on the uncentered moment process, we obtain the so-called uncentered two-step GMM

estimator. We show that the asymptotic distribution of this two-step GMM estimator is highly

nonstandard. As a result, the associated Wald statistic is not asymptotically pivotal. However,

it is surprising that the J-statistic is still asymptotically pivotal. Furthermore, we show that the

limiting distribution of the J-statistic can be represented as an increasing function of a standard

F random variable. So critical values are readily available from standard statistical tables and

software packages.

Next, we establish the asymptotic properties of the “centered”two-step GMM estimator1 whose

weighting matrix is constructed using recentered moment conditions. Invoking centering is not

innocuous for an over-identified GMM model because the empirical moment conditions, in this

case, are not equal to zero in general. Under the traditional large-G asymptotics, recentering

does not matter in large samples because the empirical moment conditions are asymptotically zero

and here are ignorable, even though they are not identically zero in finite sample. In contrast,

under the small-G asymptotics, recentering plays two important roles: it removes the first order

effect of the estimation error in the first-step estimator, and it ensures that the weighting matrix

is asymptotically independent of the empirical moment conditions. With the recentered CCE as

the weighting matrix, the two-step GMM estimator is asymptotically mixed normal. The mixed

normality reflects the high variation of the feasible two-step GMM estimator as compared to the

infeasible two-step GMM estimator, which is obtained under the assumption that the ‘effi cient’

weighing matrix is known. The mixed-normality allows us to construct the Wald and t-statistics

that are asymptotically nuisance parameter free.

We also consider two types of continuous updating (CU) estimators. The first type continuously

updates the first order conditions (FOC) underlying the two-step GMM estimator. Given that

FOC’s can be regarded as the empirical version of generalized estimating equations (GEE), we call

this type of CU estimator the CU-GEE estimator. The second type continuously updates the GMM

criterion function, leading to the CU-GMM estimator, which was first suggested by Hansen, Heaton

and Yaron (1996). Both CU estimators are designed to improve the finite sample performance of

two-step GMM estimators. Interestingly, we show that the continuous updating scheme has a

built-in recentering feature. So in terms of the first order asymptotics, it does not matter whether

1Our definition of the centered two-step GMM estimator is originated from the recentered (or demeaned) GMM
weighting matrix, and it should not be confused with “centering”the estimator itself.
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the empirical moment conditions are recentered or not. We find that the centered two-step GMM

estimator and the two CU estimators are all first-order asymptotically equivalent under the small-

G asymptotics. This result provides a theoretical justification for using the recentered CCE in a

two-step GMM framework.

To relate the small-G asymptotic pivotal distributions to standard distributions, we introduce

simple modifications to the Wald and t statistics associated with the centered two-step GMM

and CU estimators. We show that the modified Wald and t statistics are asymptotically F and t

distributed, respectively. This result resembles the corresponding result that is based on the first-

step GMM estimator. It is important to point out that the proposed modifications are indispensable

for our asymptotic F and t theory. In the absence of the modifications, the Wald and t statistics

converge in distribution to nonstandard distributions, and as a result, critical values have to be

simulated. The modifications involve only the standard J-statistic, and it is very easy to implement

because the modified test statistics are scaled versions of the original Wald test statistics with the

scaling factor depending on the J-statistic. Significantly, the combination of the Wald statistic and

the J-statistic enables us to develop the F approximation theory.

Finally, although recentering removes the first order effect of the first-step estimation error, the

centered two-step GMM estimator still faces some extra estimation uncertainty in the first-step

estimator. The main source of the problem is that we have to estimate the unobserved moment

process based on the first-step estimator. To capture the higher order effect, we propose to retain

one more term in our stochastic approximation that is asymptotically negligible. The expansion

helps us develop a finite sample correction to the asymptotic variance estimator. Our correction

resembles that of Windmeijer (2005), which considers variance correction for a two-step GMM

estimator but only in the i.i.d. setting. We show that the finite sample variance correction does not

change the limiting distributions of the test statistics, but they can help improve the finite sample

performance of our tests.

Monte Carlo simulations show that our new tests have a much more accurate size than existing

tests via standard normal and chi-square critical values, especially when the number of clusters G

is not large. An advantage of our procedure is that the test statistics do not entail much extra

computational cost because the main ingredient for the modification is the usual J-statistic. There

is also no need to simulate critical values because the F and t critical values can be readily obtained

from standard statistical tables.

Our small-G asymptotics is related to fixed-smoothing asymptotics for a long run variance (LRV)

estimation in a time series setting. The latter was initiated and developed in econometric literature

by Kiefer, Vogelsang and Bunzel (2002), Kiefer and Vogelsang (2005), Müller (2007), Sun, Phillips

and Jin (2008) and Sun (2013, 2014), among others. Our new asymptotics is in the same spirit in

that both lines of research attempt to capture the estimation uncertainty in covariance estimation.

With regards to orthonormal series LRV estimation, a recent paper by Hwang and Sun (2015b)

modifies the two-step GMM statistics using the J-statistic, and shows that the modified statistics
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are asymptotically F and t distributed. The F and t limit theory presented in this paper is similar,

but our cluster-robust limiting distributions differ from those of our predecessors in terms of the

multiplicative adjustment and the degrees of freedom. Moreover, we propose a finite sample variance

correction to capture the uncertainty embodied in the estimated moment process adequately. To

our knowledge, the finite sample variance correction provided in this paper has not been considered

in the literature on the fixed-smoothing asymptotics.

There is also a growing literature that uses the small-G asymptotics to design more accurate

cluster-robust inference. For instance, Ibragimov and Müller (2010, 2016) recently proposes a sub-

sample based t-test for a scalar parameter that is robust to heterogeneous clusters. Hansen (2007),

Stock and Watson (2008), and Bester, Conley and Hansen (2011) propose a cluster-robust F or t

tests under cluster-size homogeneity. Bell and McCaffrey (2002) and Imbens and Kolesár (2012) sug-

gest an adjusted t-critical value employing data-determined degrees of freedom. Recently, Canay,

Romano and Shaikh (2014) establishes a theory of randomization tests and suggests an alterna-

tive cluster-robust test. For other approaches, see Carter, Schnepel and Steigerwald (2013) which

proposes a measure of the effective number of clusters under the large-G asymptotics.; Cameron,

Gelbach and Miller (2008), MacKinnon and Webb (2016), and Webb (2014) which provide cluster

bootstrap approaches with asymptotic refinement. All these studies, however, mainly focus on a

simple location model or linear regressions that are special cases of exactly identified models.

The remainder of the paper is organized as follows. Section 2 presents the basic setting and

establishes the approximation results for the first-step GMM estimator under the small-G asymp-

totics. Sections 3 and 4 establish the small-G asymptotics for two-step GMM estimators and the

CU estimators, respectively. Section 5 is devoted to developing asymptotic F and t tests based on

the centered two-step GMM estimator and the CU estimators. Section 6 proposes a finite sample

variance correction. The next two sections apply our methods to the popular linear dynamic panel

model and report a simulation evidence in the context of this model. Section 8 applies our methods

to an empirical study on the causal effect of access to markets on household consumption in some

rural Chinese areas. The last section concludes. Proofs are given in the appendix.
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2 Basic Setting and the First-step GMM Estimator

We want to estimate the d×1 vector of parameters θ ∈ Θ. The true parameter vector θ0 is assumed

to be an interior point of parameter space Θ ⊆ Rd. The moment condition

Ef(Yi, θ) = 0 holds if and only if θ = θ0, (1)

where fi(θ) = f(Yi, θ) is an m× 1 vector of twice continuously differentiable functions. We assume

that q = m − d ≥ 0 and the rank of Γ = E [∂f(Yi, θ0)/∂θ′] is d. So the model is possibly over-

identified with the degree of over-identification q. The number of observations is N.

Define gn(θ) = N−1
∑N

i=1 fi(θ). Given the moment condition in (1), the initial “first-step”GMM

estimator of θ0 is given by

θ̂1 = arg min
θ∈Θ

gn(θ)′W−1
N gn(θ),

where Wn is an m ×m positive definite and a symmetric weighting matrix that does not depend

on the unknown parameter θ0 and plimN→∞Wn = W > 0. In the context of instrumental variable

(IV) regression, one popular choice for Wn is Z ′nZn/N where Zn is the data matrix of instruments.

Let

Γ̂(θ) = N−1

N∑
i=1

∂fi(θ)

∂θ′
.

To establish the asymptotic properties of θ̂1, we assume that for any
√
N consistent estimator θ̃,

plimN→∞Γ̂(θ̃) = Γ and that Γ is of full column rank. Also, under some regularity conditions, we

have the following Central Limit Theorem (CLT):
√
Ngn(θ0)

d→ N(0,Ω) where

Ω = lim
N→∞

1

N
E

(
N∑
i=1

fi(θ0)

)(
N∑
j=1

fj(θ0)

)′
.

Here Ω is analogous to the long run variance in a time series setting but the components of Ω are

contributed by cross-sectional dependences over all locations. For easy reference, we follow Sun and

Kim (2015) and call Ω the global variance. Primitive conditions for the above CLT in the presence of

cross-sectional dependence are provided in Jenish and Prucha (2009, 2012). Under these conditions,

we have √
N(θ̂1 − θ0)

d→ N
[
0, (Γ′W−1Γ)−1Γ′W−1ΩW−1Γ(Γ′W−1Γ)−1

]
.

Since Γ andW can be accurately estimated by Γ̂(θ̂1) andWN , we need only estimate Ω to make

reliable inference about θ0. The main issue is how to properly account for cross-sectional dependence

in the moment process {fj(θ0)}Nj=1. In this paper, we assume that the cross-sectional dependence has

a cluster structure, which is not uncommon in many microeconomic applications. More specifically,

our data consists of a number of independent clusters, each of which has an unknown dependence

structure. Let G be the total number of clusters and Lg be the size of cluster g. For simplicity, we

assume that every cluster has the common size Lg, i.e., L = L1 = L2 = .... = LG. The identical
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cluster size assumption can be relaxed to the assumption that each cluster has approximately same

size relative to the average cluster size, i.e., limN→∞ Lg/(G
−1
∑G

i=1 Li) = 1 for every g = 1, ..., G.

The following assumption formally characterizes the cluster dependence.

Assumption 1. (i) The data {Yj}Nj=1 consists of G clusters. (ii) Observations are independent

across clusters. (iii) The number of clusters G is fixed, and the size of each cluster L grows with

the total sample size N.

Assumption 1-i) implies that the set {fi(θ0), i = 1, 2, ..., N} can be partitioned into G nonover-

lapping clusters ∪Gg=1Gg where Gg = {f gk (θ0) : k = 1, ..., L}. In the context of this clustered structure,
Assumption 1-ii) implies that the within-cluster dependence for each cluster can be arbitrary but

Ef gk (θ0)fhl (θ0) = 0 if g 6= h. That is, f gk (θ0) and fhl (θ0) are independent if they belong to differ-

ent clusters. Independence across clusters in Assumption 1-ii) can be generalized to allow weak

dependence among clusters by restricting the number of observations located on the boundaries

between clusters. See Bester, Conley and Hansen (2011, BCH hereafter) for the detailed primitive

conditions. Under Assumption 1-ii), we have

Ω = lim
N→∞

1

N
E

(
N∑
i=1

fi(θ0)

)(
N∑
j=1

fj(θ0)

)′

= lim
N→∞

1

N

N∑
i=1

N∑
j=1

1(i, j ∈ same cluster)Efi(θ0)fj(θ0)′. (2)

Assumption 1-iii) specifies the direction of asymptotics we consider. Under this small-G asymp-

totic specification, we have

Ω =
1

G

G∑
g=1

lim
L→∞

V ar

(
1√
L

L∑
i=1

f gi (θ0)

)
:=

1

G

G∑
g=1

Ωg.

Thus, the global covariance matrix Ω can be represented as the simple average of Ωg, g = 1, ..., G,

where Ωg’s are the limiting variances within individual clusters. Motivated by this, we construct

the clustered covariance estimator (CCE) as follows:

Ω̂(θ̂1) =
1

N

N∑
i=1

N∑
j=1

1(i, j ∈ the same group)fi(θ̂1)fj(θ̂1)′

=
1

G

G∑
g=1

{(
1√
L

L∑
i=1

f gi (θ̂1)

)(
1√
L

L∑
j=1

f gj (θ̂1)

)′}
.

To ensure that Ω̂(θ̂1) is positive definite, we assume that G ≥ m, and we maintain this condition

throughout the rest of the paper.

Suppose we want to test the null hypothesis H0 : Rθ0 = r against the alternative H1 : Rθ0 6= r,

where R is a p × d matrix. We focus on linear restrictions without loss of generality because the
Delta method can be used to convert nonlinear restrictions into linear ones in an asymptotic sense.
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The F-test version of the Wald test statistic is given by

F (θ̂1) := (Rθ̂1 − r)′
{
Rv̂ar(θ̂1)R′

}−1

(Rθ̂1 − r)/p,

where

v̂ar(θ̂1)

=
1

N

[
Γ̂(θ̂1)′W−1

n Γ̂(θ̂1)
]−1 [

Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1)
] [

Γ̂(θ̂1)′W−1
n Γ̂(θ̂1)

]−1

.

When p = 1 and the alternative is one sided, we can construct the t-statistic:

t(θ̂1) :=
Rθ̂1 − r√
Rv̂ar(θ̂1)R′

.

To formally characterize the asymptotic distributions of F\(θ̂1) and t(θ̂1) under the small-G as-

ymptotics, we further maintain the following high level conditions.

Assumption 2. θ̂1
p→ θ0.

Assumption 3. (i) For each g = 1, ..., G, let

Γg(θ) := lim
L→∞

E

[
1

L

L∑
k=1

∂f gk (θ)

∂θ′

]
.

Then,

sup
θ∈N (θ0)

∥∥∥∥∥ 1

L

L∑
k=1

∂f gk (θ)

∂θ′
− Γg(θ)

∥∥∥∥∥ p→ 0,

holds, where N (θ0) is an open neighborhood of θ0 and ‖·‖ is the Euclidean norm. (ii) Γg(θ) is

continuous at θ = θ0, and for Γg = Γg(θ0), Γ = G−1
∑G

g=1 Γg has full rank.

Assumption 4. Let Bm,g ∼i.i.d.N(0, Im) for g = 1, ..., G, then

P

(
1√
L

L∑
k=1

f gk (θ0) ≤ x

)
= P (ΛgBm,g ≤ x ) + o(1) as L→∞.

for each g = 1, ..., G where x ∈ Rm and Λg is the matrix square root of Ωg.

Assumption 5. (Homogeneity of Γg) For all g = 1, ..., G, Γg = Γ.

Assumption 6. (Homogeneity of Ωg) For all g = 1, ..., G, Ωg = Ω.

Assumption 2 is made for convenience, and primitive suffi cient conditions are available from

the standard GMM asymptotic theory. Assumption 3 is a uniform law of large numbers (ULLN),

from which we obtain Γ̂(θ̂1) = G−1
∑G

g=1 Γg + op(1) = Γ + op(1). Together with Assumption 1-

(ii), Assumption 4 implies that L−1/2
∑L

j=1 f
g
j (θ0) follows a central limit theorem jointly over g =

1, ..., G with zero asymptotic covariance between any two clusters. The homogeneity conditions in

Assumptions 5 and 6 guarantee the asymptotic pivotality of the cluster-robust GMM statistics we
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consider. Similar assumptions are made in BCH (2011) and Sun and Kim (2015), which develop

asymptotically valid F tests that are robust to spatial autocorrelation in the same spirit as our

small-G asymptotics. Let

B̄m := G−1

G∑
g=1

Bm,g and S̄ := G−1

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
where Bm,g as in Assumption 4. Also, let Wp(K,Π) denote a Wishart distribution with K degrees

of freedom and p × p positive definite scale matrix Π. By construction,
√
GB̄m ∼ N(0, Im), S̄ ∼

G−1Wp(G−1, Im) and B̄m ⊥ S̄. To present our asymptotic results, we partition B̄m and S̄ as follows:

B̄m =

 B̄d
d×1

B̄q
q×1

 , B̄d =

 B̄p
p×1

B̄d−p
(d−p)×1

 , S̄ =

 S̄dd
d×d

S̄dq
d×q

S̄qd
q×d

S̄qq
q×q

 ,

S̄dd =

 S̄pp
p×p

S̄p,d−p
p×(d−p)

S̄d−p,p
(d−p)×p

S̄d−p,d−p
(d−p)×(d−p)

 , and S̄dq =

 S̄pq
p×q

S̄d−p,q
(d−p)×q

 .

Proposition 1. Let Assumptions 1∼6 hold. Then

(a) F (θ̂1)
d→ F1∞ := GB̄′pS̄−1

pp B̄p/p;

(b) t(θ̂1)
d→ T1∞ := N(0,1)√

χ2G−1/G
where N(0, 1) ⊥

√
χ2
G−1.

Remark 1. The limiting distribution F1∞ follows Hotelling’s T2distribution. Using the well-known

relationship between the T 2 and standard F distributions, we obtain F1∞
d
= (G/G− p)Fp,G−p where

Fp,G−p is a random variable that follows the F distribution with degree of freedom (p,G−p). Similarly,
T1∞

d
= (G/G− 1)tG−1 where tG−1 is a random variable that follows the t distribution with degree of

freedom G− 1.

Remark 2. As an example of the general GMM setting, consider the linear regression model yj =

x′jθ + εj. Under the assumption that cov(xj, εj) = 0, the moment function is fj(θ) = xj(yj − x′jθ).
With the moment condition Efj(θ0) = 0, the model is exactly identified. This set up was employed

in Hansen (2007), Stock and Watson (2008), and BCH (2011); indeed, our F and t approximations

in Proposition 1 are identical to what is obtained in these papers.

Remark 3. Under the large-G asymptotics where G → ∞ but L is fixed, one can show that the

CCE Ω̂(θ̂1) converges in probability to Ω for

Ω = lim
G→∞

1

G

G∑
g=1

V ar

(
1√
L

L∑
k=1

f gk (θ0)

)
.

The convergence of Ω̂(θ̂1) to Ω does not require the homogeneity of Ωg in Assumption 6 (Hansen,

2007; Carter et al., 2013). Under this type of asymptotics, the test statistics F (θ̂1) and t(θ̂1) are

asymptotically χ2
p/p and N(0, 1). Let F1−α

p,G−p and χ
1−α
p be the 1− α quantiles of Fp,G−p and the χ2

p
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distributions, respectively. As G/(G− p) > 1 and F1−α
p,G−p > χ1−α

p /p, it is easy to see that

G

G− pF
1−α
p,G−p > χ1−α

p /p.

However, the difference between the two critical values G(G − p)−1F1−α
p,G−p and χ

1−α
p /p shrinks to

zero as G increases. Therefore, the small-G critical value G(G− p)−1F1−α
p,G−p is asymptotically valid

under the large-G asymptotics. The asymptotic validity holds even if the homogeneity conditions

of Assumptions 5 and 6 are not satisfied. The small-G critical value is robust in the sense that it

works whether G is small or large.

Remark 4. Let Λ the matrix square root of Ω,i.e. ΛΛ′ = Ω. Then, it follows from the proof of

Proposition 1 that Ω̂(θ̂1) converges in distribution to a random matrix Ω1∞ given by

Ω1∞ = ΛD̃Λ′ where D =
1

G

G∑
g=1

D̃gD̃
′
g

D̃g = Bm,g − ΓΛ(Γ′ΛW
−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ B̄m (3)

for ΓΛ = Λ−1Γ and WΛ = Λ−1W (Λ′)−1. D̃g is a quasi-demeaned version of Bm,g with quasi-

demeaning attributable to the estimation error in θ̂1. Note that the quasi-demeaning factor ΓΛ(Γ′ΛW
−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ

depends on all of Γ,Ω and W , and cannot be further simplified in general. The estimation error in

θ̂1 affects Ω1∞ in a complicated way. However, for the first-step Wald and t statistics, we do not care

about Ω̂(θ̂1) per se. Instead, we care about the scaled covariance matrix Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1),

which converges in distribution to Γ′W−1Ω1∞W
−1Γ. But

Γ′ΛW
−1
Λ D̃g = Γ′ΛW

−1
Λ

(
Bm,g − B̄m

)
,

and thus

Γ′W−1Ω1∞W
−1Γ = Γ′ΛW

−1
Λ D̃W−1

Λ ΓΛ =
1

G

G∑
g=1

Γ′ΛW
−1
Λ D̃g

(
Γ′ΛW

−1
Λ D̃g

)′
d
= Γ′ΛW

−1
Λ

1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′ (
Γ′ΛW

−1
Λ

)′
.

So, to the first order small-G asymptotics, the estimation error in θ̂1 affects Γ′W−1Ω1∞W
−1Γ via

simple demeaning only. This is a key result that drives the asymptotic pivotality of F (θ̂1) and t(θ̂1).

3 Two-step GMM Estimation and Inference

In an overidentified GMM framework, we often employ a two-step procedure to improve the effi ciency

of the initial GMM estimator and the power of the associated tests. It is now well-known that the

optimal weighting matrix is the (inverted) asymptotic variance of the sample moment conditions.

There are two different ways to estimate the asymptotic variance, and these lead to two different
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estimators Ω̂(θ̂1) and Ω̂c(θ̂1) where

Ω̂(θ) =
1

G

G∑
g=1

(
1√
L

L∑
k=1

f gk (θ)

)(
1√
L

L∑
l=1

f gl (θ)

)′
,

Ω̂c(θ) =
1

G

G∑
g=1

{
1√
L

L∑
k=1

[f gk (θ)− gn(θ)]

}{
1√
L

L∑
l=1

[f gl (θ)− gn(θ)]

}′
.

While Ω̂(θ̂1) employs the uncentered moment process {f gi (θ̂1)}Ni=1, Ω̂c(θ̂1) employs the recentered

moment process {f gi (θ̂1)− gn(θ̂1)}Gi=1. For inference based on the first-step estimator θ̂1, it does not

matter which asymptotic variance estimator is used. This is so because for any asymptotic variance

estimator Ω̂(θ̂1), the Wald statistic depends on Ω̂(θ̂1) only via Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1). It is easy

to show that the following asymptotic equivalence:

Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1)

= Γ̂(θ̂1)′W−1
n Ω̂c(θ̂1)W−1

n Γ̂(θ̂1) + op (1)

= Γ′W−1
n Ω̂c(θ0)W−1

n Γ + op (1) .

Thus, the limiting distribution of the Wald statistic is the same whether the estimated moment

process is recentered or not. It is important to point out that the asymptotic equivalence holds

because two asymptotic variance estimators are pre-multiplied by Γ̂(θ̂1)′W−1
n and post-multiplied by

W−1
n Γ̂(θ̂1). The two asymptotic variance estimators are not asymptotically equivalent by themselves

under small-G asymptotics.

Depending on whether we use Ω̂(θ̂1) or Ω̂c(θ̂1), we have different two-step GMM estimators:

θ̂2 = arg min
θ∈Θ

gn(θ)′
[
Ω̂(θ̂1)

]−1

gn(θ),

θ̂
c

2 = arg min
θ∈Θ

gn(θ)′
[
Ω̂c(θ̂1)

]−1

gn(θ).

Given that Ω̂(θ̂1) and Ω̂c(θ̂1) are not asymptotically equivalent and that they enter the definitions

of θ̂2 and θ̂
c

2 by themselves, the two estimators have different asymptotic behaviors, as shown in the

next two subsections.

3.1 Uncentered Two-step GMM Estimator

In this subsection, we consider the two-step GMM estimator θ̂2 based on the uncentered moment

process. We establish the asymptotic properties of θ̂2 and the associated Wald statistic and J-

statistic. We show that the J-statistic is asymptotically pivotal, even though the Wald statistic is

not.
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It follows from standard asymptotic arguments that

√
N(θ̂2 − θ0) = −

[
Γ′Ω̂−1(θ̂1)Γ

]−1

Γ′Ω̂−1(θ̂1)
1√
G

G∑
g=1

(
1√
L

L∑
k=1

f gk (θ0)

)
+ op(1). (4)

Using the joint convergence of the following

Ω̂(θ̂1)
d→ Ω1∞ = ΛD̃Λ′ and

1√
G

G∑
g=1

(
1√
L

L∑
k=1

f gk (θ0)

)
d→
√
GΛB̄m, (5)

we obtain:
√
N(θ̂2 − θ0)

d→ −
[
Γ′Λ

(
D̃
)−1

ΓΛ

]−1

Γ′Λ

(
D̃
)−1√

GB̄m

where as before

D̃ =
1

G

G∑
g=1

D̃gD̃
′
g for D̃g = Bm,g − ΓΛ(Γ′ΛW

−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ B̄m.

Since D̃ is random, the limiting distribution is not normal. Even though both D̃g and B̄m are

normal, there is a nonzero correlation between them. As a result, D̃ and B̄m are correlated, too.

This makes the limiting distribution of
√
N(θ̂2 − θ0) highly nonstandard.

To understand the limiting distribution, we define the infeasible estimator θ̃2 by assuming that

Ω̂(θ0) is known, which leads to

θ̃2 = arg min
θ∈Θ

gn(θ)′Ω̂−1(θ0)gn(θ).

Now √
N(θ̃2 − θ0)

d→ −
[
Γ′ΛS−1ΓΛ

]−1
Γ′ΛS−1

√
GB̄m

where S = G−1
∑G

g=1Bm,gB
′
m,g. The only difference between the asymptotic distributions of√

N(θ̂2 − θ0) and
√
N(θ̃2 − θ0) is the quasi-demeaning embedded in the definition of D̃g. This

difference captures the first order effect of having to estimate the optimal weighting matrix, which

is needed to construct the feasible two-step estimator θ̂2.

To make further links between the limiting distributions, let’s partition S in the same way that
S̄ is partitioned. Also, define U to be the m × m matrix of the eigen vectors of Γ′ΛΓΛ = Γ′Ω−1Γ

and UΣV ′ be a singular value decomposition (SVD) of ΓΛ. By construction, U ′U = UU ′ = Im,

V ′V = V ′V = Id, and Σ′ =
[
Ad×d Od×q

]
. We then define W̃ = U ′WΛU and partition W̃ as

before. We also introduce

βS = SdqS−1
qq , βW̃ = W̃dqW̃

−1
qq and κG = G · B̄′qS−1

qq B̄q.

By construction, βS is the “random”regression coeffi cient induced by S while βW̃ is the regression

coeffi cient induced by the constant matrix W̃ . Also, κG is the quadratic form of normal random

vector
√
G B̄q with random matrix Sqq. Finally, on the basis of θ̂2, the J-statistic for testing over-
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identification restrictions is

J(θ̂2) := Ngn(θ̂2)′
(

Ω̂(θ̂1)
)−1

gn(θ̂2)/q. (6)

The following proposition characterizes and connects the limiting distributions of the three esti-

mators: the first-step estimator θ̂1, the feasible two-step estimator θ̂2, and the infeasible two-step

estimator θ̃2.

Proposition 2. Let Assumptions 1∼6 hold. Then

(a)
√
N(θ̂1 − θ0)

d→ −V A−1
√
G(B̄d − βW̃ B̄q);

(b)
√
N(θ̃2 − θ0)

d→ −V A−1
√
G(B̄d − βSB̄q);

(c)
√
N(θ̂2 − θ0)

d→ −V A−1
√
G(B̄d − βSB̄q)− V A−1

√
G(B̄d − βW̃ B̄q) · (κG/G);

(d)
√
N(θ̂2 − θ0) =

√
N(θ̃2 − θ0) +

√
N(θ̂1 − θ0) · (κG/G) + op(1);

(e) J(θ̂2)
d→ κG where (a) , (b) , (c) , and (e) hold jointly.

Part (d) of the proposition shows that
√
N(θ̂2−θ0) is asymptotically equivalent to a linear com-

bination of the infeasible two-step estimator
√
N(θ̃2− θ0) and the first-step estimator

√
N(θ̂1− θ0).

This contrasts with the conventional GMM asymptotics, wherein feasible and infeasible estimators

are asymptotically equivalent.

It is interesting to see that the linear coeffi cient in Parts (c) and (d) is proportional to the

limit of the J-statistic. Given κG = Op(1) as G increases, the limiting distribution of
√
N(θ̂2 − θ0)

becomes closer to that of
√
N(θ̃2 − θ0). In the special case where q = 0, i.e., when the model is

exactly identified, κG = 0 and
√
N(θ̂2 − θ0) and

√
N(θ̃2 − θ0) have the same limiting distribution.

This is expected given that the weighting matrix is irrelevant in the exactly identified GMM model.

Using the Sherman—Morrison formula2, it is straightforward to show

κG
d
=

(
G

q

) q
G−qFq,G−q

1 + q
G−qFq,G−q

.

It is perhaps surprising that while the asymptotic distributions of θ̂2 is complicated and nonstandard,

the limiting distribution of the J-statistic is not only pivotal but is also an increasing function of

the standard F distribution. For the J test at the significance level α, say 5%, the critical value

from κG can be obtained from (
G

q

) q
G−qF

1−α
q,G−q

1 + q
G−qF

1−α
q,G−q

.

Equivalently, we have
G− q
q

qκG
G− qκG

d
= Fq,G−q,

2(C + ab′)−1 = C−1 − C−1ab′C−1

1+b′C−1a for any invertable square matrix C and conforming column vectors such that
1 + b′C−1a 6= 0.
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and so

J̃(θ̂2) :=
G− q
q

qJ(θ̂2)

G− qJ(θ̂2)

d→ Fq,G−q.

That is, the transformed J-statistic J̃(θ̂2) is asymptotically F distributed. This is very convenient

in empirical applications.

It is important to point out that the convenient F limit of J(θ̂2) holds only if the J-statistic is

equal to the GMM criterion function evaluated at the two-step GMM estimator θ̂2. This effectively

imposes a constraint on the weighting matrix. If we use a weighting matrix that is different from

Ω̂(θ̂1), then the resulting J-statistic may not be asymptotically pivotal any longer.

Define the F-statistic and variance estimate for the two-step estimator θ̂2 as

FΩ̂(θ̂1)(θ̂2) = (Rθ̂2 − r)′
(
Rv̂arΩ̂(θ̂1)(θ̂2)R′

)−1

(Rθ̂2 − r)/p for

v̂arΩ̂(θ̂1)(θ̂2) =
1

N

(
Γ̂(θ̂2)′Ω̂−1(θ̂1)Γ̂(θ̂2)

)−1

.

In the above definitions, we use a subscript notation Ω̂(θ̂1) to clarify the choice of CCE in F-

statistic and asymptotic variance estimator above. Now the question is, is the above F-statistic

asymptotically pivotal as the J-statistic J(θ̂2)? Unfortunately, the answer is no, as implied by the

following proposition which uses the additional notation:

Ep+q,p+q :=

(
Epp Epq
E′pq Eqq

)
=

(
Spp Spq
S′pq Sqq

)
+

(
β̃
p

W̃ B̄qB̄
′
q(β̃

p

W̃ )′ β̃
p

W̃ B̄qB̄
′
q

B̄qB̄
′
q(β̃

p

W̃ )′ B̄qB̄
′
q

)

where β̃
p

W̃ is the p× q matrix and consists of the first p rows of Ṽ ′βW̃ where Ṽ is the d× d matrix
of the eigen vector of (RV A−1)

′
RV A−1.

Proposition 3. Let Assumptions 1∼6 hold. Then

FΩ̂(θ̂1)(θ̂2)
d→ G

p
(B̄p − EpqE−1

qq B̄q)
′ (Epp·q)−1 (B̄p − EpqE−1

qq B̄q)

=
1

p

G( B̄p

B̄q

)′(
Epp Epq
E′pq Eqq

)−1(
B̄p

B̄q

)
−GB̄′qE−1

qq B̄q

 , (7)

where

Epp·q = Epp − EpqE−1
qq E′pq.

Due to the presence of the second term in Ep+q,p+q, which depends on β̃W̃ , the F-statistic is not
asymptotically pivotal. It depends on several nuisance parameters including Ω. To see this, we note

that the second term in (7) is the same as (G/q) · B̄′qS−1
qq B̄q = κG. So the second term is the limit

of the J-statistic, which is nuisance parameter free. However, the first term in (7) is not pivotal
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because we have

G

(
B̄p

B̄q

)′(
Epp Epq
E′pq Eqq

)−1(
B̄p

B̄q

)

= G

( B̄p

B̄q

)′(
S̄pp S̄pq
S̄′pq S̄qq

)−1(
B̄p

B̄q

)
−
(
B̄′p+qS̄−1

p+q,p+qw̃B̄q

)2

1 + B̄′qw̃
′
p+qS̄−1

p+qw̃B̄q


where w̃ =

(
(β̃

p

W )′, Iq

)′
. Here, as in the case of the J-statistic, the first term in the above equation

is nuisance parameter free. But the second term is clearly a nonconstant function of β̃
p

W , which, in

turn, depends on R,Γ,W and Ω.

3.2 Centered Two-step GMM estimator

Given that the estimation error in θ̂1 affects the limiting distribution of Ω̂(θ̂1), the Wald statistic

based on the uncentered two-step GMM estimator θ̂2 is not asymptotically pivotal. In view of (3),

the effect of the estimator error is manifested via a location shift in D̃g; the shifting amount depends

on θ̂1. A key observation is that the location shift is the same for all groups under the homogeneity

Assumptions 5 and 6. So if we demean the empirical moment process, we can remove the location

shift that is caused by the estimator error in θ̂1. This leads to the recentered asymptotic variance

estimator and a pivotal inference for both the Wald test and J test.

It is important to note that recentering is not innocuous for an over-identified GMM model

because N−1
∑N

i=1 fi(θ̂1) is not zero in general. In the time series HAR variance estimation, recen-

tering is known to have several advantages. For example, as Hall (2000) observes, in conventional

increasing smoothing asymptotic theory, recentering can potentially improve the power of the J-test

using a HAR variance estimator when the model is misspecified. Also Lee (2014) recently proposes

a misspecification robust GMM bootstrap employing the recentered GMM weight matrix. In the

context of fixed smoothing asymptotics, Sun (2014) shows that the recentering has a crucial role to

yield an asymptotically pivotal inference from the two-step Wald test statistic.

In our small-G asymptotic framework, recentering plays an important role in the CCE estima-

tion. It ensures that the limiting distribution of Ω̂c(θ̂1) is invariant to the initial estimator θ̂1. The

following lemma proves a more general result and characterizes the small-G limiting distribution of

the centered CCE matrix for any
√
N consistent estimator θ̃.

Lemma 1. Let Assumptions 1∼6 hold. Let θ̃ be any
√
N consistent estimator of θ0. Then

(a) Ω̂c(θ̃) = Ω̂c(θ0) + op(1);

(b) Ω̂c(θ0)
d→ Ωc

∞ where Ωc
∞ = ΛS̄Λ′.

Lemma 1 indicates that the centered CCE Ωc(θ̂1) converges in distribution to the random matrix

limit Ωc
∞ = ΛS̄Λ′, which follows a (scaled) Wishart distribution G−1Wm(G − 1,Ω). Using Lemma
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1, it is possible to show
√
N(θ̂

c

2 − θ0)
d→ −

[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m. (8)

Since (Ωc
∞)−1 is independent with

√
GΛB̄m ∼ N(0,Ω), the limiting distribution of θ̂

c

2 is mixed

normal.

On the basis of θ̂
c

2, we can construct the “trinity”of GMM test statistics. The first one is the

normalized Wald statistic defined by

FΩ̂c(θ̂1)(θ̂
c

2) := (Rθ̂
c

2 − r)′{Rv̂arΩ̂c(θ̂
c
2)(θ̂

c

2)R′}−1(Rθ̂
c

2 − r)/p where (9)

v̂arΩ̂c(θ̂1)(θ̂
c

2) =
1

N

(
Γ̂(θ̂

c

2)′
(

Ω̂c(θ̂
c

2)
)−1

Γ̂(θ̂
c

2)

)−1

.

When p = 1 and the alternative is one sided, we can construct the t-statistic below:

tΩ̂c(θ̂1)(θ̂
c

2) :=

(
Rθ̂

c

2 − r
)

{Rv̂arΩ̂c(θ̂1)(θ̂
c

2)R′}1/2
.

The second test statistic is the Quasi-Likelihood Ratio (QLR) type of statistic. Define the restricted

and centered two-step estimator θ̂
c,r

2 :

θ̂
c,r

2 = arg min
θ∈Θ

gn(θ)′
[
Ω̂c(θ̂1)

]−1

gn(θ) s.t. Rθ = r.

The QLR statistic is given by

LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) := N

{
gn(θ̂

c

2)′
[
Ω̂c(θ̂1)

]−1

gn(θ̂
c

2)− gn(θ̂
c,r

2 )′
[
Ω̂c(θ̂1)

]−1

gn(θ̂
c,r

2 )

}
/p.

The last test statistic we consider is the Lagrange Multiplier (LM) or score statistic in the GMM

setting. Let ∆Ω̂c(·)(θ) be the gradient of the GMM criterion function Γ̂(θ)′
[
Ω̂c(·)

]−1

gn(θ), then the

GMM score test statistic is given by

LMΩ̂c(θ̂1)(θ̂
c,r

2 ) := N
[
∆Ω̂c(θ̂1)(θ̂

c,r

2 )
]′{

Γ̂(θ̂
c,r

2 )′
[
Ω̂c(θ̂1)

]−1

Γ̂(θ̂
c,r

2 )

}−1 [
∆Ω̂c(θ̂1)(θ̂

c,r

2 )
]
/p.

In the definition of all three types of the GMM test statistics, we plug the first-step estimator θ̂1

into Ω̂c(·), but Lemma 1 indicates that replacing θ̂1 with any
√
N consistent estimator (e.g., θ̂2 and

θ̂
c

2) does not affect the small-G asymptotic results. This contrasts with the small-G asymptotics for

the uncentered two-step estimator θ̂2. Lastly, we also construct the standard J- statistic based on

θ̂
c

2 :

J(θ̂
c

2) := Ngn(θ̂
c

2)′
(

Ω̂c(θ̂1)
)−1

gn(θ̂
c

2)/q,

where Ω̂c(θ̂1) can be replaced by Ω̂c(θ̂
c

2) without affecting the limiting distribution of the J statistic.
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Using (8) and Lemma 1, we have FΩ̂c(θ̂1)(θ̂
c

2)
d→ F2∞ where

F2∞ = G
[
R
(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

]′ [
R
(
Γ′ΛS̄−1ΓΛ

)−1
R′
]−1

(10)

×
[
R
(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

]
/p.

When p = 1, we get tΩ̂c(θ̂1)(θ̂
c

2)
d→ T2∞ with

T2∞ =
R
(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1

√
GB̄m√

R
(
Γ′ΛS̄−1ΓΛ

)−1
R′

.

Also, it follows in a similar way that

J(θ̂
c

2)
d→ J∞ := G

{
B̄m − ΓΛ

(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

}′
S̄−1 (11)

×
{
B̄m − ΓΛ

(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

}
/q.

The remaining question is whether the above representations for F2∞ and J∞ are free of nuisance
parameters. The following proposition provides a positive answer.

Proposition 4. Let Assumptions 1∼6 hold and define S̄pp·q = S̄pp − S̄pqS̄−1
qq S̄qp.

(a) FΩ̂c(θ̂1)(θ̂
c

2)
d→ G

(
B̄p − S̄pqS̄−1

qq B̄q

)′ S̄−1
pp·q
(
B̄p − S̄pqS̄−1

qq B̄q

)′
/p

d
= F2∞;

(b) tΩ̂c(θ̂1)(θ̂
c

2)
d→
√
G
(
B̄p − S̄pqS̄−1

qq B̄q

)
/
√
S̄pp·q

d
= T2∞ for p = 1;

(c) LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) = FΩ̂c(θ̂1)(θ̂
c

2) + op(1);

(d) LMΩ̂c(θ̂1)(θ̂
c,r

2N) = FΩ̂c(θ̂1)(θ̂
c

2) + op(1);

(e) J(θ̂
c

2)
d→ (G/q)B̄′qS̄−1

qq B̄q
d
= J∞.

To simplify the representations of F2∞ and T2∞ in the above proposition, we note that

G

[
S̄pp S̄pq
S̄qp S̄qq

]
d
=

G∑
g=1

(
Bp+q,g − B̄p+q

) (
Bp+q,g − B̄p+q

)′
,

where Bp+q,g := (B′p,g, B
′
p,g)
′. The above random matrix has a standard Wishart distribution

Wp+q(G − 1, Ip+q). It follows from the well-known properties of a Wishart distribution that

S̄pp·q ∼Wp(G− 1− q, Ip)/G and S̄pp·q is independent of S̄pq and S̄qq.3 Therefore, if we condition on
∆ := S̄pqS̄−1

qq

√
GB̄q, the limiting distribution F2∞ satisfies

G− p− q
G

F2∞
d
=
G− p− q

G

(
√
GB̄p + ∆)′S̄pp·q(

√
GB̄p + ∆)

p
d
= Fp,G−p−q

(
‖∆‖2) , (12)

where Fp,G−p−q(‖∆‖2) is a noncentral F distribution with random noncentrality parameter ‖∆‖2 .

3See Proposition 7.9 in Bilodeau and Brenner.
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Similarly, the limiting distribution T2∞ can be represented as√
G− 1− q

G
T2∞

d
=

√
G− 1− q

G

√
GB̄p + ∆√
S̄pp·q

d
= tG−1−q(∆), (13)

which is a noncentral t distribution with a noncentrality parameter ∆. The nonstandard limiting

distributions are similar to those in Sun (2014) which provides the fixed-smoothing asymptotic

result in the case of the series LRV estimation. However, in our setting of clustered dependence,

the scale adjustment and degrees of freedom parameter in (12) and (13) are different from those in

Sun (2014).

The critical values from the nonstandard limiting distribution F2∞ can be obtained through

simulation, but Sun (2014) shows that F2∞ can be approximated by a noncentral F distribution.

With regard to the QLR and LM types of test statistics, Proposition 4-(c) and (d) shows that they

are asymptotically equivalent to FΩ̂c(θ̂1)(θ̂
c

2). This also implies that all three types of test statistics

share the same small-G limit as given in (12) and (13). Similar results are obtained by Sun (2014)

and Hwang and Sun (2015a; 2015b), which focus on two-step GMM estimation and HAR inference

in a time series setting.

For the J-statistic J(θ̂
c

2), it follows from Proposition 4-(e) that

G− q
G

J(θ̂
c

2)
d→ J∞

d
=
G− q
G

B̄′qS̄−1
qq B̄q

d
= Fq,G−q.

This is consistent with Kim and Sun’s (2012) results except that our adjustment and degrees of

freedom parameter are different.

4 Iterative Two-step and Continuous Updating Schemes

Another class of popular GMM estimators is the continuous updating (CU) estimators, which are

designed to improve the poor finite sample performance of two-step GMM estimators. See Hansen

et al. (1996) and Newey and Smith (2000, 2004) for more discussion on the CU-type estimators.

Here, we consider two types of continuous updating schemes first suggested in Hansen et al. (1996).

The first is motivated by the iterative scheme that updates the FOC of two-step GMM estimation

until it converges. The FOC for θ̂
j

IE is

Γ̂(θ̂
j

IE)′Ω̂−1(θ̂
j−1

IE )gn(θ̂
j

IE) = 0 for j ≥ 1.

In view of the above FOC, θ̂IE can be regarded as a generalized-estimating-equations (GEE) esti-

mator, which is a class of estimators first studied by Liang and Zeger (1986). When the number of

iterations j goes to infinity until θ̂
j

IE converges, we obtain the continuously update GEE estimator

θ̂CU-GEE. The FOC for θ̂CU-GEE is given by

Γ̂(θ̂CU-GEE)′Ω̂−1(θ̂CU-GEE)gn(θ̂CU-GEE) = 0. (14)
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We employ the uncentered CCE, Ω̂(·) in the definition of θ̂CU-GEE, but it is not diffi cult to show that

Γ̂(θ̂CU-GEE)′Ω̂−1(θ̂CU-GEE)gn(θ̂CU-GEE)

= Γ̂(θ̂CU-GEE)′
(

Ω̂c(θ̂CU-GEE)
)−1

gn(θ̂CU-GEE) · 1

1 + ν(θ̂CU-GEE)

where

ν(θ̂CU-GEE) = L · gn(θ̂CU-GEE)′
(

Ω̂c(θ̂CU-GEE)
)−1

gn(θ̂CU-GEE).

Since 1/(1 + ν(θ̂CU-GEE)) is always positive, the first-order condition in (14) holds if and only if

Γ̂(θ̂CU-GEE)′
[
Ω̂c(θ̂CU-GEE)

]−1

gn(θ̂CU-GEE) = 0 (15)

which indicates that the recentering CCE weight in (14) has no effect on the iteration GMM

estimator.

The second CU scheme continuously updates the GMM criterion function, which leads to the

familiar continuous updating GMM (CU-GMM) estimator:

θ̂CU = arg min
θ∈Θ

gn(θ)′Ω̂−1(θ)gn(θ).

Although we use the uncentered CEE Ω̂(θ) in the above definition, the original definition of θ̂CU in

Hansen, Heaton and Yaron (1996) is based on the centered CCE weighting matrix Ω̂c(θ). It is easy

to show that

LΩ̂gn(θ)−1(θ)gn(θ) = Lgn(θ)′Ω̂−1(θ)
[
Ω̂(θ)− Lgn(θ)gn(θ)′

] [
Ω̂c(θ)

]−1

gn(θ)

= Lgn(θ)′
(

Ω̂c(θ)
)−1

gn(θ)
{

1− Lgn(θ)′Ω̂−1(θ)gn(θ)
}
.

So we have

Lgn(θ)′
(

Ω̂c(θ)
)−1

gn(θ) =
Lgn(θ)′Ω̂−1(θ)gn(θ)

1− Lgn(θ)′Ω̂−1(θ)gn(θ)
.

The above equation reveals the fact that the CU-GMM estimator will not change if the uncentered

weighting matrix Ω̂(θ) is replaced by the centered one Ω̂c(θ), i.e.,

θ̂CU = arg min
θ∈Θ

gn(θ)′
(

Ω̂c(θ)
)−1

(θ)gn(θ). (16)

Similar to the centered two-step GMM estimator, the two CU estimators can be regarded as

having a built-in recentering mechanism. For this reason, the limiting distributions of the two CU

estimators are the same as that of the centered two-step GMM estimator, as is shown below.

Proposition 5. Let Assumptions 1, 3∼6 hold. Assume that θ̂CU-GEE and θ̂CU-GMM are
√
N consis-

tent. Then
√
N(θ̂CU-GEE − θ0)

d→ −
[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m,

√
N(θ̂CU-GMM − θ0)

d→ −
[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m.
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The proposition shows that the CU estimators and the centered two-step GMM estimator are

asymptotically equivalent under the small-G asymptotics.

Construct the Wald statistics based on the two CU estimators as follows:

FΩ̂c(θ̂CU-GEE )(θ̂θ̂CU-GEE ) = (Rθ̂CU-GEE − r)′{Rv̂arΩ̂c(θ̂CU-GEE )(θ̂CU-GEE)R′}−1(Rθ̂CU-GEE − r)/p

FΩ̂c(θ̂CU )(θ̂θ̂CU ) = (Rθ̂CU − r)′{Rv̂arΩ̂c(θ̂CU )(θ̂CU)R′}−1(Rθ̂CU − r)/p

We construct tΩ̂c(θ̂CU-GEE )(θ̂CU-GEE) and tΩ̂c(θ̂CU )(θ̂CU) in a similar way when p = 1. It follows from

Proposition 5 that the Wald statistics based on θ̂CU-GEE and θ̂CU-GMM are asymptotically equivalent

to FΩ̂c(θ̂‘)
(θ̂
c

2). As a result,

FΩ̂c(θ̂CU-GEE )(θ̂CU-GEE)
d→ F2∞ and FΩ̂c(θ̂CU )(θ̂CU)

d→ F2∞.

Similarly,

tΩ̂c(θ̂CU-GEE )(θ̂CU-GEE)
d→ T2∞ and tΩ̂c(θ̂CU (θ̂CU)

d→ T2∞.

In summary, we have shown that all three estimators θ̂
c
2, θ̂CU-GEE and θ̂CU, and the corresponding

Wald test statistics converge in distribution to the same nonstandard distributions. Proposition 4-

(c) and (d) continues to hold for the CU-GEE and CU-GMM estimators, leading to the asymptotic

equivalence of the three test statistics based on the CU-type estimators.

The findings in this subsection are quite interesting. Under the first order large-G asymptotics,

the CU estimators and the default (uncentered) two-step GMM are all asymptotically equivalent.

In other words, the first-order large-G asymptotics is not informative about the merits of the CU

estimators. One may develop a high order expansion under the large-G asymptotics to reveal

the advantages of CU estimators. In fact, Newey and Smith (2000, 2004) develops the stochastic

expansion of CU estimators in the i.i.d setting and shows that the CU schemes automatically remove

the high order estimation error of two-step estimator which is caused by the non-optimal weighting

matrix in the first-step estimator. See also Anatolyev (2005) which extends the work of Newey

and Smith (2000, 2004) to a time series setting. We could adopt these approaches, instead of the

small-G asymptotics, to capture the estimation uncertainty of the first-step estimator in the default

(uncentered) two-step GMM procedures. But the high order asymptotic analysis is technically very

challenging and often requires strong assumptions on the smoothness of moment process. Although

the small-G asymptotics we develop here is just a first order theory, it is powerful enough to reveal

the asymptotic difference between the CU and the plain uncentered two-step GMM estimators.

Moreover, the built-in recentering function behind the CU estimators provides some justification

for the use of the centered CCE in a two-step GMM framework.
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5 Asymptotic F and t tests

Under the small-G asymptotics, the limiting distributions of two-step test statistics, including

Wald, QLR and LM, and the t statistics, are nonstandard and hence critical values have to be

simulated in practice. This contrasts with the conventional large-G asymptotics, where the limiting

distributions are the standard chi-square and normal distributions. In this section, we show that

a simple modification of the two-step Wald and t statistics enables us to develop the standard F

and t asymptotic theory under the small-G asymptotics. The asymptotic F and t tests are more

appealing in empirical applications because the standard F and t distributions are more accessible

than the nonstandard F2∞ and T2∞ distributions.

The modified two-step Wald, QLR and LM statistics are

F̃Ω̂c(θ̂
c
2)(θ̂

c

2) :=
G− p− q

G
·
FΩ̂c(θ̂

c
2)(θ̂

c

2)

1 + q
G
J(θ̂

c

2)
, (17)

L̃RΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) :=
G− p− q

G
·
LRΩ̂c(θ̂1)(θ̂

c

2, θ̂
c,r

2 )

1 + q
G
J(θ̂

c

2)
,

L̃M Ω̂c(θ̂1)(θ̂
c,r

2 ) :=
G− p− q

G
·
LMΩ̂c(θ̂1)(θ̂

c,r

2 )

1 + q
G
J(θ̂

c

2)
,

and the corresponding version of the t-statistic is

t̃Ω̂c(θ̂c2)(θ̂
c

2) :=

√
G− 1− q

G
·

tΩ̂c(θ̂c2)(θ̂
c

2)√
1 + q

G
J(θ̂

c

2)
.

The modified test statistics involve a scale multiplication factor that uses the usual J-statistic and

a constant factor that adjusts the degrees of freedom.

It follows from Proposition 4 and Theorem 2 that(
FΩ̂c(θ̂

c
2)(θ̂

c

2), J(θ̂
c

2)
)

d→ (F2∞, J∞) (18)

d
=
(
G
(
B̄p − S̄pqS̄−1

qq B̄q

)′ S̄−1
pp·q
(
B̄p − S̄pqS̄−1

qq B̄q

)′
/p, (G/q)B̄′qS̄−1

qq B̄q

)
(19)

So

FΩ̂c(θ̂
c
2)(θ̂

c

2)
d→ G− p− q

G

F2∞

1 + q
G
J∞

d
=
G− p− q

pG
ξ′pS̃−1

pp·qξp,

where

ξp :=

√
G(B̄p − S̄pqS̄−1

qq B̄q)√
1 + B̄′qS̄−1

qq B̄q

.

Similarly,

t̃Ω̂c(θ̂c2)(θ̂
c

2)
d→
√
G− 1− q

G
· T2∞√

1 + q
G
J∞

d
=

ξp√
S̃pp·q

.

In the proof of Theorem 1 we show that ξp follows a standard normal distribution N(0, Ip)
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and that ξp is independent of S̃
−1
pp·q. So the limiting distribution of F̃Ω̂c(θ̂

c
2)(θ̂

c

2) is proportional to a

quadratic form in the standard normal vector ξp with an independent inverse-Wishart distributed

weighting matrix S̃−1
pp·q . It follows from a theory of multivariate statistics that the limiting distri-

bution of F̃Ωc(θ̂
c
2)(θ̂

c

2) is Fp,G−p−q. Similarly, the limiting distribution of t̃Ω̂c(θ̂c2)(θ̂
c

2) is tG−1−q. This is

formalized in the following theorem.

Theorem 1. Let Assumptions 1∼6 hold. Then the modified Wald, QLR and LM all converge in

distribution to Fp,G−p−q. Also, the t statistics has limiting distribution tG−1−q.

Together with the asymptotic equivalence between θ̂
c

2, θ̂CU-GEE and θ̂CU-GMM established in

Proposition 5, the proof of Theorem 1 implies that the modified Wald, LR,LM, and t statistics

based on θ̂CU-GEE and θ̂CU-GMM are all asymptotically F and t distributed under the small-G as-

ymptotics. This equivalence relationship is consistent with the recent paper by Hwang and Sun

(2015b) which establishes the asymptotic F and t limit theory of two-step GMM in time series

setting. But our cluster-robust limiting distributions in Theorem 1 are different from Hwang and

Sun (2015b) in terms of the multiplicative adjustment and the degrees of freedom correction.

It follows from the proofs of Theorem 1 and Proposition 4 that
√
N(θ̂

c

2 − θ0)
d→MN

(
0,
(
Γ′Ω−1Γ

)−1 · (1 + B̄′qS̄−1
qq B̄q)

)
(20)

and J(θ̂
c

2)
d→ (G/q)B̄′qS̄−1

qq B̄q

holds jointly under small-G asymptotics. Here, MN(0,V) denotes a random variable that follows

a mixed normal distribution with conditional variance V. The random multiplication term (1 +

B̄′qS̃
−1
qq B̄q) in (20) reflects the estimation uncertainty of CCE weighting matrix on the limiting

distribution of
√
N(θ̂

c

2 − θ0). The small-G limiting distribution in (20) is in sharp contrast to that

of under the conventional large-G asymptotics as the latter completely ignores the variability in the

cluster-robust GMM weighting matrix. By continuous mapping theorem,
√
N(θ̂

c

2 − θ0)√
1 + (G/q)J(θ̂

c

2)

d→ N
(

0,
(
Γ′Ω−1Γ

)−1
)
. (21)

and this shows that the J-statistic modification factor in the denominator effectively cancels out

the uncertainty of CCE to recover the limiting distribution of
√
N(θ̂

c

2 − θ0) under the conventional

large-G asymptotics. In view of (21), the finite sample distribution of
√
N(θ̂

c

2 − θ0) can be well-

approximated by N(0, ṽarΩ̂c(θ̂1)(θ̂
c

2)) where

ṽarΩ̂c(θ̂1)(θ̂
c

2) := v̂arΩ̂c(θ̂1)(θ̂
c

2) ·
(

1 +
q

G
J(θ̂

c

2)
)
. (22)

The modification term (1+(q/G)J(θ̂
c

2))−1 degenerates to one as G increases so that the two variance

estimates in (22) become close to each other. Thus, the multiplicative term (1 + (q/G)J(θ̂
c

2))−1 in

(17) can be regarded as a finite sample modification to the standard variance estimate v̂arΩ̂c(θ̂1)(θ̂
c

2)

under the large-G asymptotics. For more discussions about the role of J-statistic modification, see

Hwang and Sun (2015b) which casts the two-step GMM problems into OLS estimation and inference
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in classical normal linear regression.

6 Finite Sample Variance Correction

6.1 Centered Two-step GMM Estimation

Define the infeasible two-step GMM estimator with the centered CCE weighting matrix Ω̂c(θ0):

θ̃
c

2 = arg min
θ∈Θ

gn(θ)′
(

Ω̂c(θ0)
)−1

gn(θ).

Then
√
N(θ̃

c

2 − θ0) = −
[
Γ′
(

Ω̂c(θ0)
)−1

Γ

]−1

Γ′
(

Ω̂c(θ0)
)−1√

Ngn(θ0) + op(1)

. But we also have

√
N(θ̂

c

2 − θ0) = −
[
Γ′
(

Ω̂c(θ̂1)
)−1

Γ

]−1

Γ′
(

Ω̂c(θ̂1)
)−1√

Ngn(θ0) + op(1) (23)

Together with Lemma 1, this implies that
√
N(θ̂

c

2 − θ0) =
√
N(θ̃

c

2 − θ0) + op (1) .

That is, the estimation error in θ̂1 has no effect on the asymptotic distribution of
√
N(θ̂

c

2 − θ0) in

the first-order asymptotic analysis. However, in finite samples θ̂
c

2 does have higher variation than

θ̃
c

2, and this can be attributed to the high variation in Ω̂c(θ̂1) than Ω̂c(θ0). To account for this extra

variation, we could develop a higher order asymptotic theory under the small-G asymptotics. But

this is a formidable task that requires new technical machinery and lengthy calculations. Instead,

we keep one additional term in the stochastic expansion of
√
N(θ̂

c

2 − θ0) in hopes of developing a

finite sample correction to our asymptotic variance estimator.

To this end, we first introduce the notion of asymptotic equivalence in distribution ξn
a∼ η

n

for two stochastically bounded sequences of random vectors ξn ∈ R` and ηn ∈ R` when ξn and ηn
converge in distribution to each other. Now under the small-G asymptotics we have:

√
N(θ̂

c

2 − θ0)
a∼ −

{
Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1√
NgN(θ0) + (E1n + E2n)

√
N(θ̂1 − θ0)
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where

E1n = −
∂

{
Γ′
[
Ω̂c(θ)

]−1

Γ

}−1

∂θ′

∣∣∣∣∣∣∣∣∣
θ=θ0

Γ′
[
Ω̂c(θ)

]−1

gn(θ0)

E2n = −
{

Γ′
[
Ω̂c(θ)

]−1

Γ

}−1 ∂Γ′
[
Ω̂c(θ)

]−1

gn(θ0)

∂θ′

∣∣∣∣∣∣∣
θ=θ0

are d × d matrices. In finite samples, if we estimate the term Γ′
[
Ω̂c(θ0)

]−1

gn(θ0) in E1n by

Γ̂(θ̂
c

2)[Ω̂c(θ̂1)]−1gn(θ̂
c

2), then the estimate will be identically zero because of the FOC’s. For this

reason, we drop E1n and keep only E2n, which leads to the distributional approximation:

√
N(θ̂

c

2 − θ0)
a∼ −

{
Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1√
Ngn(θ0) + E2n

√
N(θ̂1 − θ0). (24)

Using element by element differentiation with respect to θj for 1 ≤ j ≤ d, we can write the j-th

column of E2n as

E2n[., j] = −
{

Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ0

[
Ω̂c(θ0)

]−1

gn(θ0), (25)

where

∂Ω̂c(θ0)

∂θj
= Υj(θ0) + Υ′j(θ0) and

Υj(θ0) =
1

G

G∑
g=1

[
1√
L

L∑
r=1

(
f gr (θ0)− 1

N

N∑
s=1

fs(θ0)

)

· 1√
L

L∑
s=1

(
∂f gs (θ0)

∂θj
− 1

N

N∑
s=1

∂fs(θ0)

∂θj

)′]
. (26)

Note that the term E2n

√
N(θ̂1 − θ0) has no first order effect on the asymptotic distribution of√

N(θ̂
c

2− θ0). This is true because E2N converges to zero in probability. In fact, it follows from (25)

and (26) that E2n = Op(N
−1/2).

It follows from (24) that

√
N(θ̂

c

2 − θ0)
a∼ −

( [
Γ′ (Ωc

∞)−1 Γ
]−1 En(Γ′W−1Γ)−1

)( Γ′ (Ωc
∞)−1 ΛZ

Γ′W−1ΛZ

)
(27)

where Z ∼ N(0, Id), Z is independent of Ωc
∞, and En has the same marginal distribution as E2n but

it is independent of Z and Ωc
∞. It then follows that

√
N(θ̂

c

2 − θ0) is asymptotically equivalent in

distribution to the mixed normal distribution with the conditional variance given by

Ξn =

( [
Γ′ (Ωc

∞)−1 Γ
]−1

(Γ′W−1Γ)−1E ′n

)′(
Γ′ (Ωc

∞)−1 Ω (Ωc
∞)−1 Γ Γ′ (Ωc

∞)−1 ΩW−1Γ

Γ′W−1Ω′ (Ωc
∞)−1 Γ Γ′W−1ΩW−1Γ

)( [
Γ′ (Ωc

∞)−1 Γ
]−1

(Γ′W−1Γ)−1E ′n

)
.
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Motivated by the above approximation, we propose to use the following corrected variance

estimator:

v̂aradj
Ω̂c(θ̂1)

(θ̂
c

2) =
1

N
Ξ̂n

=
1

N

( [
Γ̂′
[
Ω̂c(θ̂1)

]−1

Γ̂

]−1

Ên(Γ̂′W−1
n Γ̂)−1

)

×

 Γ̂′
[
Ω̂c
(
θ̂1

)]−1

Γ̂ Γ̂′W−1
n Γ̂

Γ̂′W−1
n Γ̂ Γ̂′W−1

n Ω̂c
(
θ̂1

)
W−1
n Γ̂


×


[
Γ̂′
[
Ω̂c
(
θ̂1

)]−1

Γ̂′
]−1

(Γ̂′W−1
n Γ̂)−1Ê ′n


= v̂arΩ̂c(θ̂1)(θ̂

c

2) + Ênv̂arΩ̂c(θ̂1)(θ̂
c

2) + v̂arΩ̂c(θ̂1)(θ̂
c

2)Ê ′n + Ênv̂ar(θ̂1)Ê ′n (28)

where

Ên[., j] =

{
Γ̂′
[
Ω̂c(θ̂1)

]−1

Γ̂′
}−1

Γ̂′

{[
Ω̂c(θ̂1)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ̂1)

]−1
}
gn(θ̂

c

2),

Γ̂ = Γ̂(θ̂
c

2).

The last three terms in (28), which are of smaller order, serve as a finite sample correction to the

original variance estimator.4

Windmeijer (2005), too, has used the idea of variance correction, and his proposed correction

has been widely implemented in applied work for simple models such as linear IV models and lin-

ear dynamic panel data models. However, Windmeijer (2005) considers only an i.i.d. setting, and

there are two principal differences between Windmeijer’s approach and ours. First, our asymptotic

variance estimator involves a centered CCE; in contrast, Windmeijer’s involves only a plain vari-

ance estimator. Second, we consider the small-G asymptotics; Windmeijer (2005) considers the

traditional asymptotics. More broadly, we often have to keep higher-order terms to develop a high

order Edgeworth expansion. Here we choose to focus on variance correction instead of distribution

correction, which is often the real target behind the Edgeworth expansion. In addition to technical

reasons, a principal reason for our choice is that we have already developed more accurate small-G

asymptotic approximations.

With the finite sample corrected variance estimator, we can construct the variance-corrected

Wald statistic:

F adj
Ω̂c(θ̂1)

(θ̂
c

2) = (Rθ̂
c

2 − r)′
[
Rv̂aradj

Ω̂c(θ̂1)
(θ̂
c

2)R′
]−1

(Rθ̂
c

2 − r)/p. (29)

When p = 1 and for one-sided alternative hypotheses, we can construct the variance-corrected

4Note that the corrected variance estimator is not necessarily larger than the original estimator in finite samples.
In the simulation work we consider later, we observe that the smaller value of corrected variance estimate rather
deteriorates the finite sample performance of variance-corrected statistics. To avoid this undesirable situation, we may
make an adjustment to v̂aradj

Ω̂c(θ̂1)
(θ̂
c

2) so that v̂ar
adj
Ω̂c(θ̂1)

(θ̂
c

2)− v̂arΩ̂c(θ̂1)(θ̂
c

2) is guaranteed to be positive semidefinite.

The adjustment is in a similar spirit with Politis (2011).
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t-statistic:

tadj
Ω̂c(θ̂1)

(θ̂
c

2) =
(Rθ̂

c

2 − r)√
Rv̂arcΩ̂c(θ̂1)(θ̂

c

2))R′
. (30)

Given that the variance correction terms are of smaller order, the variance-corrected statistic will

have the same limiting distribution as the original statistic.

Assumption 7. For each g = 1, ..., G and s = 1, ..., d, define Qg
s(θ) as

Qg
s(θ) = lim

L→∞
E

[
1

L

L∑
k=1

∂

∂θ′

(
∂f gk (θ)

∂θs

)]
Then,

sup
θ∈N (θ0)

∥∥∥∥∥ 1

L

L∑
k=1

∂

∂θ′

(
∂f gk (θ)

∂θs

)
−Qg

s(θ)

∥∥∥∥∥ p→ 0.

holds for each g = 1, ..., G and s = 1, ..., d where N (θ0) is an open neighborhood of θ0 and ‖·‖ is the
Euclidean norm. Also, Qg

s(θ0) = Qs(θ0) for g = 1, ...G.

This assumption trivially holds if the moment conditions are linear in parameters.

Theorem 2. Let Assumptions 1∼7 hold. Then

F adj
Ω̂c(θ̂1)

(θ̂
c

2) = FΩ̂c(θ̂1)(θ̂
c

2) + op(1) and

tadj
Ω̂c(θ̂1)

(θ̂
c

2) = tΩ̂c(θ̂1)(θ̂
c

2) + op(1).

In the proof of Theorem 2, we show that Ên = (1 + op(1))E2n. That is, the high order correction

term has been consistently estimated in a relative sense. This guarantees that Ên is a reasonable
estimator for E2n, which is of order op(1).

As a direct implication of Theorem 2, the small-G asymptotic distributions of F c
Ω̂c(θ̂1)

(θ̂
c

2) and

tc
Ω̂c(θ̂1)

(θ̂
c

2) are

F adj
Ω̂c(θ̂1)

(θ̂
c

2)
d→ F2∞ and t

adj
Ω̂c(θ̂1)

(θ̂
c

2)
d→ T2∞.

6.2 CU Estimation

For the CU-GEE estimator, we have the following expansion
√
N(θ̂CU-GEE − θ0)

= −
(

Γ′
(

Ω̂c(θ0)
)−1

Γ

)−1

Γ′
(

Ω̂c(θ0)
)−1√

Ngn(θ0) + E2n

√
N(θ̂CU-GEE − θ0) + op (1) . (31)

This can be regarded as a special case of (24) wherein the first-step estimator θ̂1 is replaced by the

CU-GEE estimator. So

√
N(θ̂CU-GEE − θ0)

a∼ − (Id − E2n)−1

(
Γ′
(

Ω̂c(θ0)
)−1

Γ

)−1

Γ′
(

Ω̂c(θ0)
)−1√

Ngn(θ0). (32)
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We can obtain the same expression for the CU-GMM estimator
√
N(θ̂CU-GMM − θ0).

In view of the representation in (32), the corrected variance estimator for the CU type estimators

can be constructed as follows:

v̂aradj
Ω̂c(θ̂CU-GEE )

(θ̂CU-GEE) =
(
Id − ÊCU-GEE

)−1

v̂ar
(
θ̂CU-GEE

)(
Id − Ê ′CU-GEE

)−1

v̂aradj
Ω̂c(θ̂CU-GEE )

(θ̂CU-GMM) =
(
Id − ÊCU-GMM

)−1

v̂ar
(
θ̂CU-GMM

)(
Id − Ê ′CU-GMM

)−1

where

ÊCU-GEE[., j] =

{
Γ̂′
[
Ω̂c(θ̂CU-GEE)

]−1

Γ̂′
}−1

× Γ̂′

{[
Ω̂c(θ̂CU-GEE)

]−1 ∂Ω̂c(θ̂CU-GEE)

∂θj

[
Ω̂c(θ̂CU-GEE)

]−1
}
gn(θ̂CU-GEE)

and ÊCU-GMM is defined in the same way but with θ̂CU-GEE replaced by θ̂CU-GMM. With the finite

sample corrected and adjusted variance estimators in place, the test statistics based on all three

estimators θ̂
c

2, θ̂CU-GEE and θ̂CU-GMM converge in distribution to the same nonstandard distributions.

A multiplicative modification provided in Section 5 can then turn the nonstandard distributions

F2∞ and T2∞ into standard F and t distributions.

7 Simulation Evidence

7.1 Design

This section compares the finite sample performance of our new tests by focusing on the following

linear dynamic panel data model.

yit = γyit−1 + x1,itβ1 + x2,itβ2 + x3,itβ3 + ηi + uit.

The unknown parameter vector is θ = (γ, β1, β2, β3) and the corresponding covariates are wit =

(yit−1, xit)
′ with xit = (x1,it, x2,it, x3,it)

′. The true value of θ is chosen as θ0 = (0.5, 1, 1, 1). We

denote sgit = (sg1,it, ..., s
g
k,it)

′ as any vector valued observations in cluster g, and stack all observations

at same period by cluster to define s(g),t = (sg1t, ..., s
g
Lt)
′. The j-th predetermined regressor xgj,it are

generated according to the following process:

xgj,it = ρxgj,it−1 + ηgi + ρugit−1 + egj,it

for j = 1, 2, 3, i = 1, ..., L, and t = 1, ..., T . We characterize the within-cluster dependence in η(g),

e(g),t and u(g),t by spatial locations that are indexed by a one-dimensional lattice. Define Ση and Σu

to be L× L matrices whose (i, j)-th elements are σηij = λ|i−j| and σuij = λ|i−j|, respectively, and Σe

to be a 3L× 3L block diagonal matrix with diagonal matrix Σd,e of size L×L for d = 1, ..., 3. The

(i, j)-th element of Σd,e is σed,ij = λ|i−j| for d = 1, ..., 3. The parameter λ governs the degree of spatial
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dependence in each cluster. When λ = 0, there is no clustered dependence and our model reduces

to that of Windmeijer (2005) which considers a static panel data model with only one regressor.

The individual fixed effects and shocks in group g are generated by:

η(g) ∼ i.i.d.N(0,Ση), vec(e(g),t) ∼ i.i.d.N(0,Σe), (33)

u(g),t = τ tΣ
1/2
u (δg1ω

g
1t, , .., δ

g
Lω

g
Lt)
′,

δgi ∼ i.i.d.U [0.5, 1.5], and ωgit ∼ i.i.d.χ2
1 − 1

for i = 1, ..., LN and t = 1, ..., T where τ t = 0.5 + 0.1(t − 1). The DGP of individual shock u(g),t

in (33) features a non-Gaussian process which is heteroskedastic over both time t and individual i.

Also, the clustered dependence structure implies

{η(g), vec(e(g),t), δ(g), ω(g),t}z ⊥ {η(h), vec(e(h),t), δ(h), ω(h),t}

for g 6= h at any t and s.

Before we draw an estimation sample for t = 1, ..., T , 50 initial values are generated with

τ t = 0.5 for t = −49, ..., 0, xgd,i,−49 ∼i.i.d.N(ηgi /(1 − ρ), (1 − ρ)−1Σd,e) for d = 1, ..., 3, and ygi,−49 =

(
∑3

d=1 xd,i,−49βd + ηgi + ugi,−49)/(1− γ). We fix the values of λ and ρ at 0.75 and 0.70, respectively;

thus each observation is reasonably persistent with respect to both time and spatial dimensions.

We set the number of time periods to be T = 4. In Appendix, we describe how to implement

our new inference procedures in the context of linear dynamic panel model. The parameters are

estimated by the first differenced GMM (AB estimator). The initial first-step estimator with Wn =

(1/N)
∑N

i=1 Z
′
iHZi where H is a matrix that consists with 2’s on the main diagonal, with -1’s

on the main diagonal, and zeros elsewhere. With all possible lagged instruments, the number of

moment conditions for the AB estimator is dT (T − 1)/2 = 24 and the degrees of over-identification

is q = 20. It could be better to use only a subset of full moment conditions because using this full

set of instruments may lead to poor finite sample properties, especially when the number of clusters

G is small. Thus, we also employ a reduced set of instruments; that is, we use the most recent lag

zit = (yit−2, x
′
it−1)′, leading to d(T − 1) = 12 moment conditions.

7.2 Choice of tests

We focus on theWald type of tests as the Monte Carlo results for other types of tests are qualitatively

similar. We examine the empirical size of a variety of testing procedures, all of which are based on

first-step or two-step GMM estimators. For the first-step procedures, we consider the unmodified

F-statistic F1 := F1(θ̂1) and the degrees-of-freedom modified F-statistic [(G− p) /G]F1 where the

associated critical values are χ1−α
p /p and F1−α

p,G−p, respectively. These two tests have the same size-

adjusted power, because the modification only involves a constant multiplier factor.

For the two-step GMM estimation and related tests, we examine five different procedures. The

first three tests use different test statistics but the same critical value χ1−α
p /p. The first test
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uses the “plain”F-statistic F2 := FΩ̂c(θ̂1)(θ̂
c

2) as defined in (9). The second test uses the statistic

[(G− p− q) /G] ·F2 where (G− p− q) /G is the degree-of-freedom correction factor. The third test
uses F̃2 := FΩ̂c(θ̂1)(θ̂

c

2) as defined in (17). Note that

F̃2 =
(G− p− q)

G
· F2

1 + (q/G)J(θ̂
c

2)
.

Compared to the second test statistic, F̃2 has the additional J-statistic correction factor (1 +

(q/G)J(θ̂
c

2))−1. The three tests use increasingly more sophisticated test statistics. Because [(G− p− q) /G]→
1 and (1 + (q/G)J(θ̂

c

2))−1 → 1 as G → ∞, both corrections can be regarded as devices for finite
sample improvement under the large-G asymptotics.

Table 1: Summary of the first-step, two-step tests, and J test

First-step GMM tests
statistic d.f. adj. F1−α

p,G−p · ·
F1 − − − −

G−p
G
F1 Y Y − −

Two-step GMM tests
statistic d.f. adj. J-modification F1−α

p,G−p−q variance correction

F2 − − − −
G−p−q
G

F2 Y − − −
F̃2 Y Y − −
F̃2 Y Y Y −

F̃adj+ Y Y Y Y
J-tests

statistic d.f. adj. F1−α
q,G−q · ·

J − − − −
G−q
G
J c Y Y − −

Notes: The first-step tests are based on the first-step GMM estimator θ̂1. They use the associated F-
statistic F1= F 1(θ̂1) with critical value χ1−α

p /p or F 1−α
p,G−p. The first J test employs the statistic J(θ̂2)

and critical value χ1−α
q , and the second J test employs the statistic G−q

G Jc = G−q
G J(θ̂

c

2) and critical

value F1−α
q,G−q. All two-step tests are based on the centered two-step GMM estimator θ̂

c

2 but use different

test statistics and critical values: the unmodified F-statistic F2 = FΩ̂c(θ̂1)(θ̂
c

2), J-statistic and degrees-of-

freedom corrected statistic F̃2 = F̃Ω̂c(θ̂1)(θ̂
c

2), and J-statistic, degrees-of-freedom, and finite-sample-variance

corrected F-statistic F̃adj+2 = F̃
adj+
Ω̂c(θ̂1)

(θ̂
c

2), coupled with critical value χ
1−α
p /p or F1−α

p,G−p−q.
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Figure 1: Emprical size of the first-step and two-step tests when G = 50, L = 50, q = 20, and p = 3
with the nominal size 5% (green line).

The last two tests employ the new F critical values which are justified from the small-G asymptotics.

The fourth test uses the same statistic F̃2 as the third test but employs the F critical value F1−α
p,G−p−q

instead. The fifth test uses the most refined version of the F-statistic F̃ adj as defined in (29) and

the same F critical value F1−α
p,G−p−q employed in the fourth test. A summary of the tests considered

is given in Table 1.

7.3 Results

7.3.1 Balanced Cluster Size

We first consider the case when all clusters have an equal number of individuals and take different

values of G ∈ {30, 35, 50, 100} and L ∈ {50, 100}. The null hypotheses of interests are

H01 : β10 = 1

H02 : β10 = β20 = 1

H03 : β10 = β20 = β30 = 1

with the corresponding number of joint hypotheses p = 1, 2 and 3, respectively, and the significance

level is 5%. The number of simulation replications is 5000.

Tables 2∼5 report the empirical size of the first-step and two-step tests for different values of
G ∈ {30, 35, 50, 100} and L = {50, 100}. The results indicate that both the first-step and two-
step tests based on unmodified statistics F1 and F2 suffer from severe size distortions, when the

conventional chi-square critical values are used. For example, with G = 50, L = 50, and p = 3,
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the empirical size of the first-step chi-square test (using the full set of IVs, and m = 24) is around

43%. This size distortion becomes more severe, as the number of clusters becomes smaller, say, for

example when G is between 30 and 35. The empirical size of the first-step F test with G = 50

reduces to 36.3% when the F critical value is employed. This finding is consistent with the findings

in BCH (2011) and Hansen (2007), which highlight the improved finite sample performance of the

small-G approximation in some exactly identified models. Tables 2∼5 also indicate that the finite
sample size distortion of all tests become less severe as the number of moment conditions decreases

or the cluster size increases.

For the two-step test that employs the plain two-step statistic F2 and chi-squared critical value,

the empirical size is 63.4% for the above mentioned values of L,G, m, and p. In view of the

large size distortion, we can conclude that the two-step chi-square test suffers more size distortion

than the first-step chi-square test. This relatively large size distortion reflects the additional cost

in estimating the weighting matrix, which is not captured by the chi-square approximation. The

degrees-of-freedom adjusted F2 reduces the size distortion by almost one third, but the empirical size

of 40.1% is still far away from the nominal size of 5%. This motivates us to implement an additional

correction via the J-statistic multiplier coupled with the new critical value F1−α
p,G−p−q. Tables 2∼5

show that using the additional modification and the F critical value significantly alleviates the

remaining size distortion. The size distortion in the previous example becomes 13.5% which is

much closer to the targeted level 5%. Lastly, we find evidence that the most refined statistic F̃ adj+2 ,

equipped with the finite sample variance correction, successfully captures the higher order estimation

uncertainty and yields more accurate finite sample size. For instance, while the empirical size of

the most basic two-step chi-square test is 63.4%, the empirical size of the most refined two-step F

test is 5.7%, which is very close to the nominal size of 5%. Figure ?? summarizes the outstanding
performance of our modified two-step tests with F critical values.

Next we investigate the finite sample power performances of the first-step procedure and the

two-step procedures F2, F̃2, and F̃
adj
2 . We use the finite sample critical values under the null, so

the power is size-adjusted and the power comparison is meaningful. The DGPs are the same as

before except that the parameters are generated from the local null alternatives β1 = β10 + c/
√
N

for c ∈ [0, 15], and d = 2 and p = 1. Figures 2∼5 report the power curves for the first-step and
two-step tests for G ∈ {30, 35, 50, 100}. The degree of over-identification q considered here is 10 for

the full instrument set, and is 4 for the reduced instrument set. The results first indicate that there

is no real difference between power curves of the modified (F̃2) and unmodified (F2) two-step tests.

In fact, some simulation results not reported here indicate the modified F test can be slightly more

powerful as the number of parameters gets larger. Also, the finite sample corrected test F̃ adj+2 does

not lead to a loss of power compared with the uncorrected one F̃2.

Figures 2∼5 also indicate that two-step tests are more powerful than first-step tests. The power
gain of the two-step procedures becomes more significant as the number of G increases. This is

because the two-step estimator becomes more effi cient. However, there is a cost in estimating the

CCE weighting matrix, the power of first-step procedures might dominate the power of the two-step
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ones in other scenarios, i.e., when the cost of employing CCE weighting matrix outweighs the benefit

of estimating it. Some simulation results not reported here show that the power of the first-step

test can be higher than that of a two-step test when the number of parameters d and the number

of joint hypotheses p are large.

Lastly, Tables 2∼5 show that the finite sample size distortion of the (centered) J test and the
transformed (uncentered) J test is substantially reduced when we employ F critical values instead

of conventional chi-squared critical values.

In sum, our simulation evidence clearly demonstrates the size accuracy of our most refined F

test regardless of whether the number of clusters G is small or moderate.

7.3.2 Unbalanced Cluster Size

Although our small-G asymptotics is valid as long as the cluster sizes are approximately equal, we

remain wary of the effect of the cluster size heterogeneity on the quality of the small-G approxi-

mation. In this subsection, we turn to simulation designs with heterogeneous cluster sizes. Each

simulated data set consists of 5, 000. Each simulated data set consists of 5, 000 observations that

are divided into 50 clusters. The sequence of alternative cluster-size designs starts by assigning

120 individuals to each of first 10 clusters and 95 individuals to each of next 40 clusters. In each

succeeding cluster-size design, we subtract 10 individuals from the second group of clusters and add

them to the first group of clusters. In this manner, we construct a series of four cluster-size designs,

in which the proportion of the samples in the first group of clusters grows monotonically from 24%

to 48%. The design is similar to Carter, Schnepel and Steigerwald (2013) which investigates the be-

havior of cluster-robust t-statistic under cluster heterogeneity. Table 6 describes the heterogeneous

cluster-size designs we consider. All other parameter values are the same as before.

Tables 7∼8 report the empirical size of the first-step, two-step, and J tests for q = 20 and p = 3.

The results immediately indicate that the two-step tests suffer from severe size distortion when

the conventional chi-square critical value is employed. For example, under design II, the empirical

size of the “plain”two-step chi-square test is around 60.4% for G = 50, q = 20, and p = 3. The

size distortion become more severe when the degree of heterogeneity across cluster-size increases.

However, our small-G asymptotics still performs very well as they reduce the empirical sizes to

4.3% ∼ 7.9%, which are much closer to the nominal size of 5%. Figures ??∼?? summarize the
outstanding performance of our modified two-step F tests, even with unbalanced cluster sizes. The

results of J tests are omitted here as they are qualitatively similar to those of the F tests.

8 Empirical Application

In this section we employ the proposed procedures to revisit the study of Emran and Hou (2013),

which investigates the casual effects of access to domestic and international markets on household
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consumption in rural China. They use a survey data of 7998 rural households across 19 provinces

in China. The survey data comes from Chinese Household Income Project (ICPSR 3012) in 1995.5

The regression equation for per capita consumption for household i, Ci, in 1995 (yuan) is specified

as

Ci = α0 + αp + βdA
d
i + βsA

s
i + βds(A

d
i × Asi ) +X ′iβh (34)

+Xv′
i βv +Xc′

i βc + εi,

where Adi and A
s
i are the log distances of access to domestic (km) and international markets (km),

respectively. Xi is the vector of household characteristics that may affect consumption choice, and

Xv
i , X

c
i are village, county level controls, respectively, which capture the heterogeneity in economic

environments across different regions, and αp is the province level fixed effect.

Among the unknown parameters in vector θ = (α0, αp, β
′
m, β

′
h, β

′
v, β

′
c)
′, our focus of interest

is βm = (βd, βs, βds)
′ which measures the casual effect of access to domestic and international

markets on household consumption in the rural areas. To identify these parameters, Emran and

Hou (2013) employs geographic instrumental variables that capture exogenous variations in access

to markets, e.g., straight-line distances to the nearest navigable river and coastline, along with the

topographic and agroclimatic features of the counties.6 There are 21 instrument variables and 31

control variables, including province dummy variables so that the number of moment conditions

m is 52. The number of estimated parameters d is 34, and the degree of over-identification q is

18. Because of the close economic and cultural ties within the same county in rural Chinese areas,

the study clusters the data by the county level and estimates the model using 2SLS and two-step

GMM with uncentered cluster-robust weighting matrix. The data set consists of 7462 observations

divided into 86 clusters where the number of households vary across from a low of 49 to a high of 270.

Statistical inferences in Emran and Hou (2013) are conducted using the large-G asymptotics only.

We apply our more accurate asymptotics to Emran and Hou’s study. The inference methods we use

here are described in Tables 9 and 10 which present the test statistics, the reference distribution,

and the standard error formula (finite sample corrected or not) for each method. Here we view

all corrections, including the degree-of-freedom correction, the J correction, and the finite sample

variance corrections as corrections to the variance estimator.

Table 11 shows the point estimation results, standard error estimates, and associated confidence

intervals (CIs) for each of 2SLS and the uncentered and centered two-step GMM estimators. Similar

to Emran and Hou (2013), our results show that the better access to domestic and international

markets has a substantial positive effect on household consumption, and that the domestic market

effect is significantly higher. For the 2SLS method, there are no much differences in confidence

interval and standard error between the large-G and small-G results. This is well expected because

the number of clusters G = 86 is large enough so that the large-G and small-G approximations are

5The data set is downloadable from the Review of Economics and Statistics website.
6For the detailed description of the control variables and instrument variables, see the appendix in Emran and

Hou (2013).
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close to each other.

The uncentered two-step GMM estimate of the effect of access to domestic market is βd =

−2722.22. The reported standard error 400.5 is about 40% smaller than that of 2SLS. However,

the plain two-step standard error estimate might be downward biased because the variation of the

cluster-robust weighting matrix is not considered. The centered two-step GMM estimator gives a

smaller effect of market access βd = −2670.0 with the modified standard error of 519.2, which is 25%

larger than the plain two-step standard error. However, the modified standard error is still smaller

than that based on the 2SLS method. So the two-step estimator still enjoys the benefit of using

the cluster-robust weighting matrix. The results for other parameters deliver similar qualitative

messages. Table 11 also provides the finite sample corrected standard error estimates of two-step

estimators that capture the extra variation of feasible CCE, leading to slightly larger standard errors

and wider CIs than the uncorrected ones. Overall, our results suggest that the effect of access to

markets may be lower than the previous finding after we take into account the randomness of the

estimated optimal GMM weighting matrix.

9 Conclusion

This paper studies GMM estimation and inference under clustered dependence. To obtain more

accurate asymptotic approximations, we utilize an alternative asymptotics under which the sample

size of each cluster is growing, but the number of cluster size G is fixed. The paper is comprehensive

in that it covers the first-step GMM, the second-step GMM, and continuously-updating GMM

estimators. For the two-step GMM estimator, we show that only if centered moment processes

are used in constructing the weighting matrix can we obtain asymptotically pivotal Wald statistic

and t-statistic. We also find that the centered two-step GMM estimator and CU estimators are

all first-order equivalent under the small-G asymptotics. With the help of the standard J-statistic,

the Wald statistic and t-statistic based on these estimators can be modified to have to standard F

and t limiting distributions. A finite sample variance correction is suggested to further improve the

performance of the asymptotic F and t tests. The advantages of our procedures are clearly reflected

in finite samples as demonstrated by our simulation study and empirical application.

In an overidentified GMM model, the set of moment conditions can be divided into two blocks:

the moment conditions that are for identifying unknown parameters, and the rest of ones for im-

proving the effi ciency of the GMM estimator. We expect that the spatial dependence between these

two blocks of moment conditions is the key information to assess the relative power performance of

first-step and two-step tests. Recently, Hwang and Sun (2015a) compares these two types of tests

by employing more accurate asymptotic approximations in a time series GMM framework. We leave

the extension of this analysis to the spatial setting to future research.
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Table 2: Empirical size of first-step and two-step tests based on the centered CCE when LN = 50,
number of clusters G = 30 and 35, number of joint hypothesis p = 1 ∼ 3 and number of moment
conditions m = 12, 24.

Test
G = 30 statistic critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.374 0.475 0.528 0.274 0.302 0.332
G−p
G
F1 F1−α

p,G−p 0.333 0.389 0.417 0.236 0.232 0.220
F2 χ1−α

p /p 0.659 0.857 0.939 0.308 0.415 0.492
G−p−q
G

F2 χ1−α
p /p 0.414 0.562 0.658 0.229 0.276 0.308

two-step F̃2 χ1−α
p /p 0.128 0.159 0.192 0.147 0.164 0.182

F̃2 F1−α
p,G−p−q 0.087 0.082 0.079 0.124 0.128 0.129

F̃ c+2 F1−α
p,G−p−q 0.015 0.015 0.012 0.063 0.063 0.058

J-test J χ1−α
q − 0.935 − − 0.329 −

G−q
q

J
G−J F1−α

q,G−q − 0.069 − − 0.086 −
G−q
Gq
J c F1−α

q,G−q − 0.129 − − 0.071 −
Test m = 24 m = 12

G = 35 Statistic Critical values p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.381 0.482 0.538 0.268 0.292 0.316
G−p
G
F1 F1−α

p,G−p 0.348 0.407 0.429 0.236 0.236 0.218
F2 χ1−α

p /p 0.572 0.756 0.864 0.292 0.357 0.416
G−p−q
G

F2 χ1−α
p /p 0.366 0.483 0.561 0.199 0.248 0.275

two-step F̃2 χ1−α
p /p 0.145 0.174 0.195 0.143 0.156 0.159

F̃2 F1−α
p,G−p−q 0.111 0.119 0.115 0.128 0.126 0.117

F̃ c+2 F1−α
p,G−p−q 0.038 0.034 0.033 0.066 0.060 0.057

J-test J χ1−α
q − 0.869 − − 0.307 −

G−q
q

J
G−J F1−α

q,G−q − 0.080 − − 0.091 −
G−q
Gq
J c F1−α

q,G−q − 0.091 − − 0.073 −
See footnote to Table 1.
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Table 3: Empirical size of first-step and two-step tests based on the centered CCE when LN = 50,
number of clusters G = 50 and 100, number of joint hypothesis p = 1 ∼ 3 and number of moment
conditions m = 12, 24.

Test
G = 50 statistic critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.347 0.399 0.429 0.247 0.258 0.273
G−p
G
F1 F1−α

p,G−p 0.325 0.356 0.363 0.227 0.222 0.217
F2 χ1−α

p /p 0.399 0.538 0.634 0.208 0.255 0.299
G−p−q
G

F2 χ1−α
p /p 0.269 0.344 0.401 0.168 0.192 0.206

two-step F̃2 χ1−α
p /p 0.142 0.158 0.175 0.129 0.140 0.139

F̃2 F1−α
p,G−p−q 0.123 0.129 0.135 0.119 0.116 0.115

F̃ c+2 F1−α
p,G−p−q 0.067 0.064 0.057 0.064 0.060 0.058

J-test J χ1−α
q − 0.666 − − 0.235 −

G−q
q

J
G−J F1−α

q,G−q − 0.093 − − 0.098 −
J c F1−α

q,G−q − 0.072 − − 0.072 −
Test

G = 100 Statistic Critical values m = 24 m = 12
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.266 0.292 0.303 0.195 0.200 0.200

G−p
G
F1 F1−α

p,G−p 0.254 0.274 0.274 0.188 0.183 0.172
F2 χ1−α

p /p 0.213 0.271 0.305 0.120 0.142 0.156
G−p−q
G

F2 χ1−α
p /p 0.163 0.185 0.202 0.102 0.105 0.110

two-step F̃2 χ1−α
p /p 0.115 0.119 0.113 0.086 0.085 0.084

F̃2 F1−α
p,G−p−q 0.109 0.108 0.099 0.082 0.079 0.076

F̃ c+2 F1−α
p,G−p−q 0.078 0.069 0.063 0.053 0.049 0.049

J-test J χ1−α
q − 0.342 − − 0.156 −

G−q
q

J
G−J F1−α

q,G−q − 0.106 − − 0.095 −
J c F1−α

q,G−q − 0.069 − − 0.065 −
See footnote to Table 1.
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Table 4: Empirical size of first-step and two-step tests based on the centered CCE when LN = 50,
number of clusters G = 30 and 35, number of joint hypothesis p = 1 ∼ 3 and number of moment
conditions m = 12, 24.

Test
G = 30 Statistic Critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.344 0.402 0.440 0.249 0.117 0.289
G−p
G
F1 F1−α

p,G−p 0.300 0.328 0.333 0.217 0.208 0.195
F2 χ1−α

p /p 0.610 0.798 0.883 0.275 0.347 0.436
G−p−q
G

F2 χ1−α
p /p 0.371 0.517 0.612 0.191 0.220 0.246

two-step F̃2 χ1−α
p /p 0.101 0.130 0.164 0.116 0.117 0.124

F̃2 F1−α
p,G−p−q 0.061 0.064 0.059 0.095 0.088 0.124

F̃ c+2 F1−α
p,G−p−q 0.017 0.015 0.013 0.045 0.043 0.040

J-test J χ1−α
q − 0.930 − − 0.336 −

G−q
q

J
G−J F1−α

q,G−q − 0.073 − − 0.098 −
G−q
Gq
J c F1−α

q,G−q − .114 − − 0.077 −
Test m = 24 m = 12

G = 35 Statistic Ref.dist. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.321 0.373 0.393 0.237 0.257 0.269
G−p
G
F1 F1−α

p,G−p 0.292 0.303 0.300 0.213 0.207 0.187
F2 χ1−α

p 0.522 0.697 0.826 0.224 0.301 0.362
G−p−q
G

F2 χ1−α
p /p 0.306 0.411 0.484 0.162 0.196 0.224

two-step F̃2 χ1−α
p 0.105 0.125 0.136 0.107 0.115 0.118

F̃2 F1−α
p,G−p−q 0.079 0.079 0.076 0.090 0.090 0.087

F̃ c+2 F1−α
p,G−p−q 0.038 0.032 0.026 0.049 0.049 0.044

J-test J χ1−α
q − 0.853 − − 0.288 −

G−q
q

J
G−J F1−α

q,G−q − 0.080 − − 0.098 −
G−q
Gq
J c F1−α

q,G−q − 0.078 − − 0.075 −
See footnote to Table 1.
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Table 5: Empirical size of first-step and two-step tests based on the centered CCE when LN = 50,
number of clusters G = 50 and 100, number of joint hypothesis p = 1 ∼ 3 and number of moment
conditions m = 12, 24.

Test
G = 50 Statistic Critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.269 0.305 0.324 0.206 0.214 0.222
G−p
G
F1 F1−α

p,G−p 0.250 0.260 0.257 0.189 0.180 0.175
F2 χ1−α

p /p 0.341 0.469 0.575 0.176 0.211 0.250
G−p−q
G

F2 χ1−α
p /p 0.209 0.268 0.324 0.129 0.146 0.164

two-step F̃2 χ1−α
p /p 0.099 0.115 0.125 0.094 0.098 0.105

F̃2 F1−α
p,G−p−q 0.088 0.091 0.093 0.086 0.083 0.084

F̃ c+2 F1−α
p,G−p−q 0.059 0.056 0.052 0.057 0.052 0.055

J-test J χ1−α
q − 0.629 − − 0.221 −

G−q
q

J
G−J F1−α

q,G−q − 0.087 − − 0.094 −
J c F1−α

q,G−q − 0.064 − − 0.063 −
Test

G = 100 Statistic Critical values m = 24 m = 12
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

first-step F1 χ1−α
p /p 0.185 0.203 0.209 0.149 0.147 0.152

G−p
G
F1 F1−α

p,G−p 0.176 0.185 0.182 0.143 0.136 0.128
F2 χ1−α

p /p 0.168 0.225 0.258 0.100 0.120 0.129
G−p−q
G

F2 χ1−α
p /p 0.125 0.149 0.161 0.082 0.089 0.093

two-step F̃2 χ1−α
p /p 0.085 0.091 0.094 0.069 0.073 0.071

F̃2 F1−α
p,G−p−q 0.081 0.082 0.083 0.065 0.067 0.064

F̃ c+2 F1−α
p,G−p−q 0.067 0.065 0.064 0.056 0.055 0.051

J-test J χ1−α
q − 0.293 − − 0.135 −

G−q
q

J
G−J F1−α

q,G−q − 0.081 − − 0.081 −
J c F1−α

q,G−q − 0.055 − − 0.053 −
See footnote to Table 1.
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Figure 2: Size-adjusted power of the first-step (2SLS) and two-step tests with G = 30 and LN = 50.
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Figure 3: Size-adjusted power of first-step (2SLS) and two-step tests with G = 35 and L = 50.
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Figure 4: Size-adjusted power of first-step (2SLS) and two-step tests with G = 50 and L = 50.
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Figure 5: Size-adjusted power of first-step (2SLS) and two-step tests with G = 100 and L = 50.
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Figure 6: Empirical size of first-step and two-step tests based on the centered CCE when there is
a heterogeneity in cluster size with the nominal size 5% (green line): Design I with G = 50, q = 8,
and p = 3.
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Figure 7: Empirical size of first-step and two-step tests based on the centered CCE when there is
a heterogeneity in cluster size with the nominal size 5% (green line): Design II with G = 50, q = 8,
and p = 3.

Table 6: Design of heterogeneity in cluster size

G = 50 L1 = ... = L10 L11 = ... = L50 N

Design I 120 95 5000
Design II 160 85 5000
Design III 200 75 5000
Design IV 240 65 5000
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Figure 8: Empirical size of first-step and two-step tests based on the centered CCE when there is a
heterogeneity in cluster size with the nominal size 5% (green line): Design III with G = 50, q = 8,
and p = 3.

Figure 9: Empirical size of first-step and two-step tests based on the centered CCE when there is a
heterogeneity in cluster size with the nominal size 5% (green line): Design IV with G = 50, q = 20,
and p = 3.
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Table 7: Empirical size of first-step and two-step tests based on the centered CCE when there is a
heterogeneity in cluster size: Design I∼II

Design I
test statistic critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.265 0.303 0.322 0.205 0.201 0.217
G−p
G
F1 F1−α

p,G−p 0.246 0.264 0.261 0.186 0.168 0.165
F2 χ1−α

p /p 0.335 0.472 0.575 0.153 0.194 0.242
G−p−q
G

F2 χ1−α
p /p 0.209 0.265 0.319 0.118 0.132 0.153

two-step F̃2 χ1−α
p /p 0.095 0.104 0.119 0.086 0.087 0.091

F̃2 F1−α
p,G−p−q 0.082 0.083 0.085 0.074 0.071 0.072

F̃ adj+2 F1−α
p,G−p−q 0.054 0.048 0.043 0.046 0.046 0.047

J-test J χ1−α
q − 0.632 − − 0.228 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.089 − − 0.100 −
G−q
Gq
J c F1−α

q,G−q − 0.067 − − 0.068 −
Design II

m = 24 m = 12
G = 35 test statistic critical values p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.268 0.304 0.323 0.206 0.213 0.220
G−p
G
F1 F1−α

p,G−p 0.250 0.265 0.261 0.193 0.182 0.171
F2 χ1−α

p /p 0.361 0.501 0.601 0.160 0.209 0.254
G−p−q
G

F2 χ1−α
p /p 0.231 0.291 0.338 0.124 0.141 0.170

two-step F̃2 χ1−α
p /p 0.112 0.120 0.132 0.088 0.092 0.100

F̃2 F1−α
p,G−p−q 0.097 0.098 0.102 0.079 0.076 0.082

F̃ adj+2 F1−α
p,G−p−q 0.063 0.060 0.057 0.053 0.052 0.056

J-test J χ1−α
q − 0.638 − − 0.214 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.083 − − 0.094 −
G−q
Gq
J c F1−α

q,G−q − 0.081 − − 0.072 −
See footnote to Table 1.
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Table 8: Empirical size of first-step and two-step tests based on the centered CCE when there is a
heterogeneity in cluster size: Design III∼IV

Design III
test statistic critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.276 0.315 0.327 0.203 0.215 0.228
G−p
G
F1 F1−α

p,G−p 0.254 0.276 0.268 0.186 0.186 0.178
F2 χ1−α

p /p 0.378 0.532 0.632 0.168 0.222 0.274
G−p−q
G

F2 χ1−α
p /p 0.244 0.323 0.374 0.134 0.164 0.184

two-step F̃2 χ1−α
p /p 0.117 0.132 0.145 0.097 0.109 0.117

F̃2 F1−α
p,G−p−q 0.101 0.107 0.110 0.088 0.091 0.092

F̃ adj+2 F1−α
p,G−p−q 0.04 0.057 0.061 0.061 0.062 0.060

J-test J χ1−α
q − 0.631 − − 0.213 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.076 − − 0.089 −
G−q
Gq
J c F1−α

q,G−q − 0.102 − − 0.079 −
Design IV

m = 24 m = 12
G = 35 test statistic critical values p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
first-step F1 χ1−α

p /p 0.255 0.306 0.327 0.200 0.214 0.226
G−p
G
F1 F1−α

p,G−p 0.232 0.265 0.266 0.180 0.179 0.171
F2 χ1−α

p /p 0.397 0.555 0.664 0.185 0.243 0.304
G−p−q
G

F2 χ1−α
p /p 0.264 0.363 0.429 0.139 0.174 0.205

two-step F̃2 χ1−α
p /p 0.131 0.155 0.176 0.104 0.120 0.136

F̃2 F1−α
p,G−p−q 0.115 0.125 0.140 0.094 0.102 0.110

F̃ adj+2 F1−α
p,G−p−q 0.075 0.077 0.079 0.062 0.070 0.077

J-test J χ1−α
q − 0.621 − − 0.206 −

G−q
q

qJ
G−qJ F1−α

q,G−q − 0.070 − − 0.080 −
G−q
Gq
J c F1−α

q,G−q − 0.151 − − 0.092 −
See footnote to Table 1.
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Table 9: Summary of the difference between the conventional large-G asympototics and alternative
fixed-G asympotics for the first-step (2SLS ) and two-step GMM methods.

2SLS
Asymptotics Weight Test statistic Reference distribution

· Wald t · Wald t ·
large-G Z ′HZ/N F (θ̂1) t(θ̂1) · χ2

p/p N(0, 1) ·
fixed-G Z ′HZ/N G−p

G F (θ̂1)
√

G−1
G t(θ̂1) · Fp,G−p tG−1 ·

Two-step GMM
Asymptotics Weight Test statistic Reference distribution

· Wald t J Wald t J

large-G Ω̂ F (θ̂2) t(θ̂2) J(θ̂2) χ2
p/p N(0, 1) χ2

q

fixed-G Ω̂c F̃ (θ̂
c

2) t̃(θ̂
c

2)
G−q
G J(θ̂

c

2) Fp,G−p−q tG−1−q Fq,G−q
Ω̂c F̃ adj+(θ̂

c

2) t̃adj+(θ̂
c

2) · Fp,G−p−q tG−1−q ·

Table 10: Summary of standard error formula when p = 1

2SLS
large-G fixed-G

standard error
[
Rv̂ar(θ̂1)R

′
]1/2 [

G−1
G Rv̂arΩ(θ̂1)(θ̂1)R

′
]1/2

Two-step GMM
large-G fixed-G

standard error
[
Rv̂ar(θ̂1)R

′
]1/2 [

G
G−1−qRv̂arΩ̂(θ̂1)(θ̂

c

2)R
′
(
1 + (q/G)J(θ̂

c

2)
)]1/2

corrected standard error ·
[

G
G−1−qRv̂ar

adj
Ω̂(θ̂1)

(θ̂)R′
(
1 + (q/G)J(θ̂

c

2)
)]1/2
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Table 11: Results for Emran and Hou (2013) data

2SLS
Variables Large-G Asymptotics Fixed-G Asymptotics

Domestic market (Adi ) −2713.2 (712.1) −2713.2 (716.8)
[−4109.9,−1316.4] [−4138.0,−1288.0]

International market (Asi ) −1993.5 (514.8) −1993.5 (517.9)
[−3002.5,−984.4] [−3023.10,−963.8]

Interaction (Adi × Asi ) 345.8 (105.0) 345.8 (105.6)
[140.0, 551.7] [135.8, 555.9]

H0 : βd = βs −2.3218 (2.02%) −2.771 (2.26%)

Two-step GMM
Variables Large-G Asymptotics Fixed-G Asymptotics

−2722.8 (400.5) −2670.0 (519.2)

Domestic market (Adi ) (520.7)
[−3507.7,−1937.9] [−3706.2,−1633.8]

[−3709.2,−1630.7]
−2000.2 (344.3) −1981.3 (446.4)

International market (Asi ) (447.7)
[−2675.0,−1325.5] [−2872.3,−1090.3]

[−2874.9,−1087.7]
362.7 (68.7) 364.1 (89.1)

Interaction (Adi×A
s
i ) (89.4)

[228.0, 497.3] [186.2, 541.9]
[187.5, 542.4]

H0 : βd = βs −5.239 (0%) −3.3318 (0%)
−3.3217 (0%)

J-statistic (q = 18) 1.1708 (99.8%) 0.3096 (45.83%)

Notes: Standard errors for 2SLS and the weighting matrix for (centered) two-step GMM estimators are
clustered at the county level. Numbers in parentheses are standard errors and intervals are 95% confidence
intervals. For hypothesis testing, the numbers in parentheses are P-values.
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10 Appendix: Application to Linear Dynamic Panel Model

We discusses how to implement our inference procedures in the context of a linear dynamic panel

model:

yit = γyit−1 + x′itβ + ηi + uit, (35)

for i = 1, ..., N , t = 1, ..., T, where xit = (x1
it, ..., x

d−1
it )′ ∈ Rd−1. The unknown parameter vector is

θ = (γ, β′)′ ∈ Rd. We assume that the vector of regressors wit = (yit−1, x
′
it )′ is correlated with ηi

and is predetermined with respect to uit, i.e., E(wituit+s) = 0 for s = 0, ..., T − t.

When T is small, popular panel estimators such as the fixed-effects estimator or first-differenced

estimator suffer from the Nickel bias (Nickel, 1981). Anderson and Hsiao (1981) consider the first-

differenced equation

∆yit = ∆w′itθ + ∆uit, t = 2, ..., T

and propose a consistent IV estimator that employs the lagged wit as the instrument. Building

upon Anderson and Hsiao (1981), Arellano and Bond (1991, AB hereafter) examine the problem in

a GMM framework and find dT (T − 1)/2 sequential instruments:

Zi
(T−1)×d(T−1)T/2

= diag(z′i2, ..., z
′
iT )

zit = (yi0, ..., yit−2, x
′
i1, ..., x

′
it−1)′, 2 ≤ t ≤ T.

The moment conditions are then given by

E (Z ′i∆ui) = 0,

where ∆ui is the (T − 1) vector (∆ui2, ...,∆uiT )′. The original AB method assumes away cross-

sectional dependence, but clustered dependence can be easily accommodated. Here we assume that

the moment vector {Z ′i∆ui}Ni=1 can be partitioned into independent clusters. That is, {Z ′i∆ui}Ni=1 =

∪Gg=1{Z
g′
i ∆ugi }

LN
i=1 with Z

g′
i ∆ugi and Z

h′
j ∆uhj being independent for all g 6= h.

The first-step GMM estimator with weighting matrix W−1
n is given by

θ̂1 =
(
∆w′ZW−1

n Z ′∆w
)−1

∆w′ZW−1
n Z ′∆y,

where Z ′ is the dT (T − 1)/2 × N(T − 1) matrix (Z ′1, Z
′
2, ..., Z

′
N), ∆wi is the (T − 1) × d matrix

(∆wi2,...,∆wiT )′, ∆yi is the (∆yi2,...,∆yiT )′, ∆w and ∆y are (∆w′1, ...,∆w
′
N)′ and (∆y′1, ...,∆y

′
N)′,

respectively. The corresponding Wald statistic7 for testing H0 : Rθ0 = r vs H1 : Rθ0 6= r is given

by

F (θ̂1) := (Rθ̂1 − r)′
{
Rv̂ar(θ̂1)R′

}−1

(Rθ̂1 − r)/p

7The formula for the t-statistic, which is omitted here, is straightforward.
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where

v̂ar(θ̂1) = N
(
∆w′ZW−1

n Z ′∆w
)−1
(

∆w′ZW−1
n Ω̂(θ̂1)W−1

n Z ′∆w
) (

∆w′ZW−1
n Z ′∆w

)−1
.

Let Z(g) be the L(T − 1) × dT (T − 1)/2 matrix obtained by stacking all Zi’s belonging to

cluster g. Similarly, let ∆û(g) be the L(T −1) stacked vector of the estimated first-differenced errors

∆ûi = ∆yi − ∆w′iθ̂1. Then, in the presence of clustered dependence, the CCE and centered CCE

are constructed as follows:

Ω̂(θ̂1) =
1

G

G∑
g=1

(
Z ′(g)∆û(g)√

L

)(
Z ′(g)∆û(g)√

L

)′

Ω̂c(θ̂1) =
1

G

G∑
g=1

(
Z ′(g)∆û(g)√

L
− 1

G

G∑
h=1

Z ′(h)∆û(h)√
L

)(
Z ′(g)∆û(g)√

L
− 1

G

G∑
h=1

Z ′(h)∆û(h)√
L

)′
.

Using the centered CCE Ω̂c(θ̂1) as the weighting matrix, the two-step GMM estimator θ̂
c

2 is

θ̂
c

2 =

{
∆w′Z

[
Ω̂c(θ̂1)

]−1

Z ′∆w

}−1

∆w′Z
[
Ω̂c(θ̂1)

]−1

Z ′∆y,

and the Wald statistic for θ̂
c

2 is

FΩ̂c(θ̂1)(θ̂
c

2) := (Rθ̂
c

2 − r)′{Rv̂arΩ̂c(θ̂1)(θ̂2)R′}−1(Rθ̂
c

2 − r)/p,

v̂arΩ̂c(θ̂1)(θ̂
c

2) = N

{
∆w′Z

[
Ω̂c(θ̂1)

]−1

Z ′∆w

}−1

.

Under the conventional large-G asymptotics, both F (θ̂1) and FΩ̂c(θ̂1)(θ̂
c

2) are asymptotically χ2
p/p.

Under our small-G asymptotics, we have

F (θ̂1)
d→ G

G− pFp,G−p and

FΩ̂c(θ̂1)(θ̂
c

2)
d→ G

G− p− qFp,G−p−q
(
‖∆‖2) . (36)

In addition to utilizing these new approximations, we suggest a variance correction in order to

capture the higher order effect of θ̂1 on Ω̂c(θ̂1). The finite sample corrected variance is

v̂arcΩ̂c(θ̂1)(θ̂
c

2) = v̂arΩ̂c(θ̂1)(θ̂
c

2) + Ênv̂arΩ̂c(θ̂1)(θ̂
c

2) + v̂arΩ̂c(θ̂1)(θ̂
c

2)Ê ′n + Ênv̂ar(θ̂1)Ê ′n (37)

where the j-th column is given by

Ên[., j] = −
{

∆w′Z
[
Ω̂c(θ̂1)

]−1

Z ′∆w

}−1

∆w′Z
[
Ω̂c(θ̂1)

]−1

· ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ

[
Ω̂c(θ)

]−1

Z ′∆û2,

∆û2 = ∆y −∆wθ̂
c

2
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and

∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

= Υj(θ̂1) + Υ′j(θ̂1),

Υj(θ̂1) = − 1

G

G∑
g=1

(
Z ′(g)∆wj,(g)√

Lg
− 1

G

G∑
h=1

Z ′(h)∆wj,(h)√
Lh

)(
Z ′(g)∆û(g)√

Lg
− 1

G

G∑
h=1

Z ′(h)∆û(h)√
Lh

)′
∆wi

(T−1)×d
= (∆w1,i, ...,∆wd,i) and ∆w(g)

LN (T−1)×d
= (∆w1,(g), ...,∆wd,(g))

for each j = 1, ..., d. Here, ∆w(g) is a L(T − 1) × d matrix that stacks {∆wi}Ni=1 belonging to the

group g. The extra adjustment toward a ‘larger’corrected estimator v̂aradj+
Ω̂c(θ̂1)

(θ̂
c

2) directly follows

from (??).

Based on the finite sample corrected variance estimator in (37) and the usual J-statistic, we

construct the modified Wald statistic:

F̃ adj
Ω̂c(θ̂1)

(θ̂
c

2) =
G− p− q

G

F adj+
Ω̂c(θ̂1)

(θ̂
c

2)

1 + q
G
J(θ̂

c

2)
(38)

where

J(θ̂
c

2) := Ngn(θ̂
c

2)′
(

Ω̂c(θ̂
c

2)
)−1

(θ)gn(θ̂
c

2).

From the F limit theory in Section 5, we have

F̃ adj
Ω̂c(θ̂1)

(θ̂
c

2)
d→ Fp,G−p−q (39)

and
G− q
G

J(θ̂
c

2)
d→ Fq,G−q.

Critical values for from the F distribution are readily available from statistical tables.
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Appendix of Proofs

Proof of Proposition 1. Part (a). For each g = 1, ..., G,

1√
L

L∑
i=1

f gi (θ̂1) =
1√
L

L∑
i=1

{
f gi (θ0) +

∂f gi (θ̃
∗
)

∂θ′

[
θ̂1 − θ0

]}
,

where θ̃
∗
is between θ̂1 and θ0. Here, θ̃

∗
may be different for different rows of ∂f gk (θ̃

∗
)/∂θ′. For

notational simplicity, we do not make this explicit. By Assumptions 2 and 5, we have

1√
L

L∑
i=1

f gi (θ̂)

=
1√
L

L∑
i=1

f gi (θ0)− 1

L

L∑
i=1

∂f gi (θ̃
∗
)

∂θ′
(Γ′W−1Γ)−1Γ′W−1 1

G

G∑
h=1

(
1√
L

L∑
j=1

fhj (θ0)

)
+ op (1)

=
1√
L

L∑
i=1

f gi (θ0)− Γg(Γ
′W−1Γ)−1Γ′W−1 1

G

G∑
h=1

(
1√
L

L∑
i=1

fhi (θ0)

)
+ op (1) . (40)

Using Assumptions 4—6, we then have

1√
L

L∑
i=1

f gi (θ̂1)

d→ ΛgBm,g − Γg(Γ
′W−1Γ)−1Γ′W−1ΛB̄m

= ΛBm,g − Γ(Γ′W−1Γ)−1Γ′W−1ΛB̄m

where B̄m := G−1
∑G

g=1Bm,g. It follows that

Γ̂(θ̂1)′W−1
N

1√
L

L∑
i=1

f gi (θ̂1)

d→ Γ′W−1
[
ΛBm,g − Γ(Γ′W−1Γ)−1Γ′W−1ΛB̄m

]
= Γ′W−1ΛBm,g − Γ′W−1ΛB̄m = Γ′W−1Λ

(
Bm,g − B̄m

)
.

So, the scaled CCE matrix converges in distribution to a random matrix:

Γ̂(θ̂1)′W−1
N Ω̂(θ̂1)W−1

N Γ̂(θ̂1)

=
1

G

G∑
g=1

{(
Γ̂(θ̂1)′W−1

N

1√
L

L∑
i=1

f gi (θ̂1)

)(
1√
L

L∑
j=1

f gj (θ̂1)W−1
N Γ̂(θ̂1)

)′}

d→ Γ′W−1Λ

{
1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′}(
Γ′W−1Λ

)′
.
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Therefore,

NRv̂ar(θ̂1)R′

=
[
Γ̂(θ̂1)′W−1

n Γ̂(θ̂1)
]−1 [

Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1)
] [

Γ̂(θ̂1)′W−1
n Γ̂(θ̂1)

]−1

= R
[
Γ′W−1Γ

]−1
Γ′W−1Λ

{
1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′}
ΛW−1Γ

[
Γ′W−1Γ

]−1
R′

= R̃

{
1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′}
R̃′

where R̃ := R [Γ′W−1Γ]
−1

Γ′W−1Λ. Also, it follows by Assumption 4 that
√
N(Rθ̂1 − r) = −R(Γ′W−1Γ)−1Γ′W−1

√
NgN(θ0) + op(1)

= −R(Γ′W−1Γ)−1Γ′W−1 1√
G

G∑
g=1

(
1√
L

L∑
i=1

f gi (θ0)

)
+ op(1)

d→ −R̃ 1√
G

G∑
g=1

Bm,g = −R̃
√
GB̄m.

Combining the results so far yields:

F (θ̂1)
d→
(
R̃
√
GB̄m

)′{
R̃

1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
R̃′

}−1

R̃
√
GB̄m/p = F1∞.

Define the p × p matrix Λ̃ such that Λ̃Λ̃′ = R̃R̃′. Then we have the following distributional

equivalence[
R̃
√
GB̄m, R̃ 1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
R̃′

]
d
=
[ √

GΛ̃B̄p, Λ̃S̄ppΛ̃′
]
.

Using this, we get

F1∞
d
= GB̄′pS̄−1B̄p/p

as desired for Part (a). Part (b) can be similarly proved.

Proof of Proposition 2. Parts (a), (b) and (c). All three estimators can be represented in the
following form

−(Γ′M−1Γ)−1Γ′M−1Λ
√
GB̄m + op(1)

for some weighing matrix M which may be random. Let

MΛ = Λ−1M (Λ′)
−1 and ΓΛ = Λ−1Γ.

Then

−(Γ′M−1Γ)−1Γ′M−1Λ
√
GB̄m = −(ΓΛM

−1
Λ ΓΛ)−1ΓΛM

−1
Λ

√
GB̄m,
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Let UΣV ′ be a singular value decomposition (SVD) of ΓΛ. By construction, U ′U = UU ′ = Im,

V ′V = V ′V = Id, and

Σ =

[
Ad×d

Oq×d

]
,

where A is a diagonal matrix. Denoting

M̃ = U ′MΛU =

(
M̃11 M̃12

M̃21 M̃22

)
,

we have

(ΓΛM
−1
Λ ΓΛ)−1ΓΛM

−1
Λ

=
[
V Σ′U ′M−1

Λ UΣV ′
]−1

V Σ′U ′M−1
Λ

=
[
V Σ′ (U ′MΛU)

−1
ΣV ′

]−1

V Σ′ (U ′MΛU)
−1
U ′

= V
(
A′M̃11A

)−1 (
A′d×d, O′q×d

)( M̃11 M̃12

M̃21 M̃22

)
U ′

= V A−1(M̃11)−1
(
Id, Od×q

)( M̃11 M̃12

M̃21 M̃22

)
U ′

= V A−1(M̃11)−1
(
M̃11, M̃12

)
U ′ = V A−1

(
Id, (M̃11)−1M̃12

)
U ′

= V A−1
(
Id, −M̃12M̃

−1
22

)
U ′.

So

−(ΓΛM
−1
Λ ΓΛ)−1ΓΛM

−1
Λ

√
GB̄m = −V A−1

(
Id, −M̃12M̃

−1
22

)
U ′
√
GB̄m.

For θ̂1, the matrix M is W , and so

M̃ = W̃ = (ΛU)−1W
[
(ΛU)−1]′ = ( W̃11 W̃12

W̃21 W̃22

)
.

Therefore √
N(θ̂1 − θ0)

d→ −
√
GV A−1

(
B̄d − βW̃ B̄q

)
,

where we have used U ′B̄m
d
= B̄m = (B̄′d, B̄

′
q)
′ for any orthonormal matrix U.

For θ̃, the matrix MΛ is S, and so
√
N(θ̃2 − θ0)

d→ −
[
V Σ′U ′M−1

Λ UΣV ′
]−1

V Σ′U ′M−1
Λ

√
GU ′B̄m

= −V (ΣU ′S−1UΣ′)−1ΣU ′S−1U
√
GU ′B̄m

d
= −V (ΣS−1Σ′)−1ΣS−1

√
GB̄m,

using the asymptotic equivalence (S, B̄m)
d
= (U ′SU,U ′B̄m) for any orthonormal matrix U. Therefore,

√
N(θ̃2 − θ0)

d→ −V A−1
√
G(B̄d − βSB̄q).
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For the estimator θ̂2, the matrix MΛ is D∞. We have
√
N(θ̂2N − θ0)

d→ −
[
Γ′ΛD

−1
∞ ΓΛ

]−1
Γ′ΛD

−1
∞
√
GB̄m

= −
[
V Σ′ (U ′D∞U)

−1
ΣV ′

]−1

V Σ (U ′D∞U)
−1
U ′
√
GB̄m

= −V
[
Σ′D−1

∞ Σ
]−1

Σ′D−1
∞ U

′
√
GB̄m

= −V A−1
(
Id, −D12D−1

22

)
U ′
√
GB̄m (41)

where

D∞ = U ′D∞U =

 D11
d×d

D12
d×q

D21
q×d

D22
q×q

 .

To investigate each component of D∞ = G−1
∑G

g=1 U
′D̃gD̃

′
gU , we first look at the term U ′D̃g for

each g = 1, ..., G :

U ′D̃g = U ′Bm,g − U ′ΓΛ(Γ′ΛW
−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ B̄m

= U ′Bm,g − U ′UΣV ′(Γ′ΛW
−1
Λ ΓΛ)−1V Σ′U ′W−1

Λ UU ′B̄m

= BU
m,g − Σ(Σ′U ′W−1

Λ UΣ)−1Σ′U ′W−1
Λ UB̄U

m

where BU
m,g = U ′Bm,g and B̄U

m = U ′B̄m. But

BU
m,g − Σ(Σ′W̃−1Σ)−1Σ′W̃−1B̄U

m

= BU
m,g −

[
A

O

]
(AW̃ 11A)−1

[
A O′

]( W̃ 11 W̃ 12

W̃ 21 W̃ 22

)
B̄U
m

= BU
m,g −

 (
W̃ 11

)−1

O′

O O

( W̃ 11 W̃ 12

W̃ 21 W̃ 22

)
B̄U
m

= BU
m,g −

 I
(
W̃ 11

)−1

W̃ 12

O O

 B̄U
m

= BU
m,g −

[
B̄U
d − βW̃ B̄U

q

O

]
= (BU

m,g − B̄U
m) + wB̄U

q

for

w =

(
βW̃
Iq

)
∈ Rm×q.
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So, the matrix D∞ can be represented by

D∞ =
1

G

G∑
g=1

(
BU
m,g − B̄U

m + wB̄U
q

) (
BU
m,g − B̄U

m + wB̄U
q

)′
=

1

G

G∑
g=1

(BU
m,g − B̄U

m)(BU
m,g − B̄U

m)′ + wB̄U
q (B̄U

q )′w′

:= S̃U∞ + wB̄U
q (B̄U

q )′w′.

From this, the block matrix components of D∞ are

D11 = S̃U∞,11 + βW̃ B̄
U
q (B̄U

q )′β′
W̃
,

D12 = S̃U∞,12 + βW̃ B̄
U
q (B̄U

q )′,

D21 = S̃U∞,21 + B̄U
q (B̄U

q )′β′
W̃
,

D22 = S̃U∞,22 + B̄U
q (B̄U

q )′ = SU∞,22. (42)

Using these representations, we can rewrite (41) as
√
N(θ̂2 − θ0)

d→ −V A−1
(
Id, −D12D−1

22

)√
GB̄U

m

= V A−1
√
G
[
B̄U
d − D12D−1

22 B̄
U
q

]
= −V A−1

√
G
[
B̄U
d −

(
S̃U∞,12 + βW̃ B̄

U
q (B̄U

q )′
) (
SU∞,22

)−1
B̄U
q

]
= −V A−1

√
G
{
B̄U
d −

[
SU∞,12 − (B̄U

d − βW̃ B̄U
q )(B̄U

q )′
] (
SU∞,22

)−1
B̄U
q

}
d
= −V A−1

√
G
(
B̄d − βS∞B̄q

)
− V A−1

√
G
{
B̄d − βW̃ B̄q

}
· (κG/G).

(d) It is easy to check that the weak convergences in (a)∼(c) hold jointly. By continuous
mapping theorem we have

√
N(θ̂2 − θ0)−

√
N(θ̃2 − θ0)−

√
N(θ̂1 − θ0) · (κG/G)

d→ 0,

which implies that
√
N(θ̂2 − θ0)−

√
N(θ̃2 − θ0)−

√
N(θ̂1 − θ0) · (κG/G) = op (1) .

That is √
N(θ̂2 − θ0) =

√
N(θ̃2 − θ0) +

√
N(θ̂1 − θ0) · (κG/G) + op (1) .

(e) Using the same argument in the proof of Proposition 1, we have

√
Ngn(θ̂2) =

1√
G

G∑
g=1

(
1√
L

L∑
i=1

f gi (θ̂2)

)
d→ Λ
√
G
(
UU ′B̄m − ΓΛ

[
Γ′ΛD

−1
∞ ΓΛ

]−1
Γ′ΛD

−1
∞ B̄m

)
d
= Λ
√
G
[
UB̄U

m − ΓΛV A
−1
(
B̄U
d − D12D−1

22 B̄
U
q

)]
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with D12 and D22 given in (42). Therefore,

J(θ̂2) = Ngn(θ̂2)′
(

Ω̂(θ̂1)
)−1

gn(θ̂2)

d→ G
{
UB̄U

m − ΓΛV A
−1
(
B̄U
d − D12D−1

22 B̄
U
q

)}′ × Λ (ΛD∞Λ′)
−1

Λ

×
{
UB̄U

m − ΓΛV A
−1
(
B̄U
d − D12D−1

22 B̄
U
q

)}
= G

{
B̄U
m − U ′ΓΛV A

−1
(
B̄U
d − D12D−1

22 B̄
U
q

)}′
U ′D−1

∞ U

×
{
B̄U
m − U ′ΓΛV A

−1
(
B̄U
d − D12D−1

22 B̄
U
q

)}
= G

{
B̄U
m −

[
Id×d

Oq×d

] (
B̄U
d − D12D−1

22 B̄
U
q

)}′
D−1
∞

×
{
B̄U
m −

[
Id×d

Oq×d

] (
B̄U
d − D12D−1

22 B̄
U
q

)}

= G

(
D12D−1

22 B̄
U
q

B̄U
q

)′
D−1
∞

(
D12D−1

22 B̄
U
q

B̄U
q

)
= G(B̄U

q )′D−1
22 B̄

U
q =d GB̄′qS

−1
∞,22B̄q = κG,

where the second last equality follows from straightforward calculations. The joint convergence can

be proved easily.

Proof of Proposition 3. It follows from
√
N(θ̂2 − θ0)

d→ V A−1
√
G
[
B̄U
d − D12D−1

22 B̄
U
q

]
and Ω̂(θ̂1)

d→ ΛD∞Λ′

jointly that

F2,Ω̂(θ̂1)(θ̂2)

=
[
R(θ̂2 − θ0)

]′ (
Rv̂arΩ̂(θ̂1)(θ̂2)R′

)−1

R(θ̂2 − θ0)/p

d→ G(B̄U
d − D12D−1

22 B̄
U
q )′A−1′V ′R′

[
R
(

Γ′ (ΛD∞Λ′)
−1

Γ
)−1

R′
]−1

×RV A−1(B̄U
d − D12D−1

22 B̄
U
q )/p

= G(B̄U
d − D12D−1

22 B̄
U
q )′A−1′V ′R′ ·

{
R
[
Γ′ (Λ′)

−1
U (U ′D∞U)

−1
U ′Λ−1Γ

]−1

R′
}−1

×RV A−1(B̄U
d − D12D−1

22 B̄
U
d )/p

= G(B̄U
d − D12D−1

22 B̄
U
q )′A−1′V ′R′

{
RV A−1D11·2A

−1′V ′R′
}−1

×RV A−1(B̄U
d − D12D−1

22 B̄
U
d )/p.

Let Ũp×pΣ̃Ṽ ′d×d be a SVD of RV A
−1, where Σ̃ =

(
Ãp×p, Op×(d−p)

)
. By definition, Ṽ is the matrix
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of eigenvectors of (RV A−1)
′
(RV A−1) . Let

V =

(
Ṽd×d O

O Iq×q

)
and define

D̃=

(
D̃11 D̃12

D̃21 D̃22

)
=

(
Ṽd×d O

O Iq

)′(
D11 D12

D21 D22

)(
Ṽd×d O

O Iq

)
= V′D∞V.

Then

D̃ =
1

G

G∑
g=1

V′U ′(Bm,g − B̄m)(Bm,g − B̄m)′VU +

(
Ṽ ′βW̃
Iq

)
B̄U
q (B̄U

q )′

(
Ṽ ′βW̃
Iq

)′

=d 1

G

G∑
g=1

(Bm,g − B̄m)(Bm,g − B̄m)′ +

(
Ṽ ′βW̃
Iq

)
B̄qB̄

′
q

(
Ṽ ′βW̃
Iq

)′
,

which implies that

D̃11 :=

(
D̃pp D̃p,d−p
D̃d−p,p D̃d−p,d−p

)
d
=

1

G

G∑
g=1

(Bd,g − B̄d)(Bd,g − B̄d)
′ +
(
Ṽ ′βW̃

)
B̄qB̄

′
q

(
Ṽ ′βW̃

)′
, (43)

and

D̃12 :=

(
D̃pq
D̃d−p,q

)
d
=

1

G

G∑
g=1

(Bd,g − B̄d)(Bq,g − B̄q)
′ +
(
Ṽ ′βW̃

)
B̄qB̄

′
q. (44)

Now

F2,Ω̂(θ̂1)(θ̂2)

d→ G(B̄U
d − D12D−1

22 B̄
U
q )′Ṽ Σ̃′Ũ ′

{
ŨΣ̃Ṽ ′D11·2Ṽ Σ̃′Ũ ′

}−1

ŨΣ̃Ṽ ′(B̄U
d − D12D−1

22 B̄
U
q )/p

= G(B̄U
d − D12D−1

22 B̄
U
q )′Ṽ Σ̃′ ·

{
Σ̃Ṽ ′D11·2Ṽ Σ̃′

}−1

· Σ̃Ṽ ′(B̄U
d − D12D−1

22 B̄
U
q )/p

= G(Ṽ ′B̄U
d − D̃12D̃−1

22 B̄
U
q )′ · Σ̃′

{
Σ̃D̃11·2Σ̃′

}−1

Σ̃ · (Ṽ ′B̄U
d − D̃12D̃−1

22 B̄
U
q )/p

= G(Ṽ ′B̄U
d − D̃12D̃−1

22 B̄
U
q )′ · Σ̃′

{
Σ̃
(
D̃11 − D̃12D̃−1

22 D̃21

)
Σ̃′
}−1

(Ṽ ′B̄U
d − D̃12D̃−1

22 B̄
U
q )/p

d
= G

[
B̄p − D̃pqD̃−1

qq B̄q

]′
Ã′
{
Ã
(
D̃pp − D̃pqD̃−1

qq D̃qp
)
Ã′
}−1

Ã
[
B̄p − D̃pqD̃−1

qq B̄q

]
/p

d
= G

[
B̄p − D̃pqD̃−1

qq B̄q

]′ (
D̃pp − D̃pqD̃−1

qq D̃qp
)−1 [

B̄p − D̃pqD̃−1
qq B̄q

]
/p,

where D̃pq, D̃qq, and D̃qp in the last two equalities are understood to equals the corresponding
components on the right hand sides of (43) and (44). Here we have abused the notation a little bit.

We have (
D̃pp D̃pq
D̃′pq D̃qq

)
=

(
S̃pp S̃pq

S̃ ′pq S̃qq

)
+ w̃B̄qB̄

′
qw̃
′ (45)
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for

w̃ =

(
β̃
p

W̃

Iq

)
∈ R(p+q)×q.

We have therefore shown that the first representation of the limit of F2,Ω̂(θ̂1)(θ̂2) holds. Direct

calculations show that the second representation is numerically identical to the first representation.

This completes the proof of Proposition 3.

Proof of Lemma 1. The centered CCE Ω̂c(θ̃) can be represented as:

Ω̂c(θ̃) =
1

G

G∑
h=1

{
1√
L

L∑
i=1

(
fhi (θ̃)− 1

N

G∑
g=1

L∑
s=1

f gs (θ̃)

)

× 1√
L

L∑
j=1

(
fhj (θ̃)− 1

N

G∑
g=1

L∑
s=1

f gs (θ̆N)

)′}
.

To prove Part (a), it suffi ces to show that

1√
L

L∑
i=1

(
fhi (θ̃)− 1

N

G∑
g=1

L∑
s=1

f gs (θ̃)

)
(46)

=
1√
L

L∑
i=1

(
fhi (θ0)− 1

N

G∑
g=1

L∑
s=1

f gs (θ0)

)
(1 + op(1))

holds for each h = 1, ..., G. By Assumption 3 and using a Taylor expansion, we have

1√
L

L∑
i=1

fhi (θ̃) = (1 + op(1))

(
1√
L

L∑
i=1

fhi (θ0) +
1

L

L∑
i=1

∂fhi (θ̃)

∂θ′
√
L(θ̃ − θ0)

)

Using
√
N(θ̃ − θ0) = Op(1) and Assumption 5, we have

1√
L

L∑
i=1

fhi (θ̃) = (1 + op(1))

(
1√
L

L∑
i=1

fhi (θ0) + Γ
√
L(θ̃ − θ0)

)

for each h = 1, ..., G. That is, the effect of the estimation uncertainty in θ̃ does not change with the

cluster. It then follows that

1√
L

L∑
i=1

(
fhi (θ̃)− 1

N

G∑
g=1

L∑
s=1

f gs (θ̃)

)

= (1 + op(1))

(
1√
L

L∑
i=1

fhi (θ0)− 1

G

G∑
g=1

1√
L

L∑
i=1

f gi (θ0)

)
,

which completes the proof of part (a).

To prove Part (b), we apply CLT in Assumption 4 together with 6 to obtain:

1√
L

L∑
i=1

fhi (θ0)− 1

G

G∑
g=1

1√
L

L∑
i=1

f gi (θ0)
d→ Λ

(
Bm,h − B̄m

)
,
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where the convergence holds jointly for h = 1, ..., G. As a result,

Ω̂c(θ̂)
d→ 1

G
Λ

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
Λ′.

Proof of Proposition 4. The proof of part (a) is essentially the same as the proof of Proposition 3.

The only difference is that the second term in (45) will not be present for the centered two-step

GMM estimator θ̂
c

2. The proof of part (b) is similar. The proof of part (e) is similar to that of

Proposition 2(e).

To prove part (c), recall that the restricted two-step GMM estimator θ̂
c,r

2N minimizes

gn(θ)′
[
Ω̂c(θ̂1)

]−1

gn(θ)/2 + λ′n(Rθ − r). (47)

The first order conditions are

Γ̂(θ̂
c,r

2 )
[
Ω̂c(θ̂1)

]−1

gn(θ̂
c,r

2 ) +R′λn = 0, (48)

Rθ̂
c,r

2 − r = 0.

Using a Taylor expansion and Assumption 3, we can combine two FOC’s to get

√
N(θ̂

c,r

2 − θ0) = −Φ̃−1Γ′
[
Ω̂c(θ̂1)

]−1√
Ngn(θ0) (49)

− Φ̃−1R′
(
RΦ̃−1R′

)−1

RΦ̃−1Γn′
[
Ω̂c
n(θ̂1)

]−1√
Ngn(θ0) + op(1),

where Φ̃ := Γ′
[
Ω̂c
n(θ̂1)

]−1

Γ. Subtracting (49) from (8), we have

√
N(θ̂

c

2 − θ̂
c,r

2 ) = −Φ̃−1R′
(
RΦ̃−1R′

)−1

RΦ̃−1Γ′
[
Ω̂c(θ̂1)

]−1√
Ngn(θ0) + op(1). (50)

By Taylor expansion and Assumption 3 we have

g′n(θ̂
c,r

2 ) = g′n(θ̂
c

2) + (θ̂
c,r

2 − θ̂
c

2)′Γ′ + op(N
−1/2)

and

Ng′n(θ̂
c

2)
[
Ω̂c(θ̂1)

]−1

gn(θ̂
c

2)−Ng′n(θ̂
c,r

2 )
[
Ω̂c(θ̂1)

]−1

gn(θ̂
c

2) (51)

= N(θ̂
c

2 − θ̂
c,r

2 )′Γ̂′(θ̂
c

2)
[
Ω̂c(θ̂1)

]−1

gn(θ̂1) +Op

(
1√
N

)
= Op

(
1√
N

)
.

Here the last equality follows from the FOC’s for θ̂
c

2. In a similar way, we can write the second term
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in (51) as

Ng′n(θ̂
c,r

2 )
[
Ω̂c(θ̂1)

]−1

gn(θ̂
c

2)

= Ng′n(θ̂
c,r

2 )
[
Ω̂c(θ̂1)

]
gn(θ̂

c,r

2 ) +N(θ̂
c

2 − θ̂
c,r

2 )′Φ̃(θ̂
c

2 − θ̂
c,r

2 ) + op(1).

Combining this and (50), we get

LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 )

=

{
Ngn(θ̂

c

2)′
[
Ω̂c(θ̂1)

]−1

gn(θ̂
c

2)−Ngn(θ̂
c,r

2 )′
[
Ω̂c(θ̂1)

]−1

gn(θ̂
c,r

2 )

}
/p

= N(θ̂
c,r

2 − θ̂
c

2)′Φ̃(θ̂
c,r

2 − θ̂
c

2)/p+ op(1)

=
√
Ng′n(θ0)

[
Ω̂c(θ0)

]−1

ΓΦ̃−1R′
(
RΦ̃−1R′

)−1

RΦ̃−1Γ′
√
Ngn(θ0)/p+ op(1)

=
√
N
(
Rθ̂

c

2 − r
)′ (

RΦ̃−1R′
)−1√

N
(
Rθ̂

c

2 − r
)
/p+ op(1)

= F2,Ω̂c(θ̂1)(θ̂
c

2) + op(1).

as desired.

To prove part (d), we rewrite the FOC in (48) as
√
N∆Ω̂c(θ̂1)(θ̂

c,r

2 ) = −R′
√
Nλn

= −R′
(
RΦ̃−1R′

)−1

RΦ̃−1Γ′
[
Ω̂c(θ̂1)

]−1√
Ngn(θ0) + op(1)

= Φ̃
√
N
(
θ̂
c

2 − θ̂
c,r

2

)
+ op(1).

So,

LMΩ̂c(θ̂1)(θ̂
c,r

2 ) = N
[
∆Ω̂c(θ̂1)(θ̂

c,r

2 )
]′

Φ̃−1
[
∆Ω̂c(θ̂1)(θ̂

c,r

2 )
]
/p

= N
(
θ̂
c

2 − θ̂
c,r

2

)′
Φ̃
√
N
(
θ̂
c

2 − θ̂
c,r

2

)
/p+ op(1)

= LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) + op(1)

= F2,Ω̂c(θ̂1)(θ̂
c

2) + op(1).

Proof of Proposition 5. For the result with CU-GEE estimator θ̂CU-GEE, we have

√
N(θ̂CU-GEE − θ0) = −

(
Γ′
(

Ω̂c(θ̂CU-GEE)
)−1

Γ

)−1

Γ′
(

Ω̂c(θ̂CU-GEE)
)−1√

Ngn(θ0) + op(1).

Since θ̂CU-GEE is
√
N consistent, we can apply Lemma 1 to obtain Ωc

N(θ̂CU-GEE) = Ωc
N(θ0) + op(1).

Invoking the continuous mapping theorem yields
√
N(θ̂CU-GEE − θ0)

d→ −
{

Γ′ (Ωc
∞)−1 Γ

}−1
{

Γ′ (Ωc
∞)−1 Λ

√
GB̄m

}
as desired.
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For the CU-GMM estimator, we let Γ̂j(θ̂CU-GMM) be the j-th column of Γ̂j(θ̂CU-GMM). Then, the

FOC with respect to the j-th element of θ̂CU-GMM is

0 = Γ̂j(θ̂CU-GMM)′
[
Ω̂c(θ̂CU-GMM)

]−1

gn(θ̂CU-GMM)

− gn(θ̂CU-GMM)′
[
Ω̂c(θ̂CU-GMM)

]−1

Υj(θ̂CU-GMM)
[
Ω̂c(θ̂CU-GMM)

]−1

gn(θ̂CU-GMM), (52)

where

Υj(θ) =
1

N

G∑
g=1

(
L∑
r=1

f gr (θ)

)(
L∑
s=1

∂fs(θ)

∂θj

)′
− LNgN(θ)

(
∂gN(θ)

∂θj

)′
.

The second term in (52) can be written as

gn(θ̂CU-GMM)′
[
Ω̂c(θ̂CU-GMM)

]−1

Υj(θ̂CU-GMM)
[
Ω̂c(θ̂CU-GMM)

]−1

gn(θ̂CU-GMM)

=
√
Lgn(θ̂CU-GMM)′

[
Ω̂c(θ̂CU-GMM)

]−1
[

1

G

G∑
g=1

(
1

L

L∑
r=1

f gr (θ̂CU-GMM)

)

·
{(

1

L

L∑
s=1

∂f gs (θ̂CU-GMM)

∂θ

)
− 1

G

G∑
g=1

(
1

L

L∑
s=1

∂f gs (θ̂CU-GMM)

∂θ

)}′]

·
(

Ω̂c(θ̂CU-GMM)
)−1√

Lgn(θ̂CU-GMM).

Given that θ̂CU-GMM = θ0 +Op(L
−1/2
N ), we have

Ω̂c(θ̂CU-GMM) = Op(1)

√
Lgn(θ̂CU-GMM) =

1

G

G∑
g=1

(
1√
L

L∑
s=1

f gs (θ0)

)
+ Γ
√
L(θ̂CU-GMM − θ0) + op(1) = Op(1)

1

L

L∑
s=1

f gs (θ̂CU-GMM) =
1

L

L∑
s=1

f gs (θ0) +
1

L

L∑
s=1

∂f gs (θ̃)

∂θ
(θ̂CU-GMM − θ0) = Op

(
1√
L

)
and for each g = 1, ..., G,(

1

L

L∑
r=1

f gr (θ̂CU-GMM)

){(
1

L

L∑
s=1

∂f gs (θ̂CU-GMM)

∂θ

)

− 1

G

G∑
g=1

(
1

L

L∑
s=1

∂f gs (θ̂CU-GMM)

∂θ

)′}

= Op

(
1√
L

)
· op(1) = op

(
1√
L

)
.

Combining these together, the second term in FOC in (52) is op(L
−1/2
N ). As a result,

Γ̂(θ̂CU-GMM)′
[
Ω̂c(θ̂CU-GMM)

]−1

gn(θ̂CU-GMM) = op

(
1√
L

)
,
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and so

√
N(θ̂CU-GMM − θ0) = −

{
Γ′
[
Ω̂c(θ̂CU-GMM)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ̂CU-GMM)

]−1√
Ngn(θ0) + op(1)

d→ −
{

Γ′ (Ωc
∞)−1 Γ

}−1
Γ′ (Ωc

∞)−1 Λ
√
GB̄m.

Proof of Theorem 1. Define B′q = (B′q,1, ..., B
′
q,G)′ and denote

vg =
(
Bq,g − B̄q

)′ [ G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]−1

B̄q.

Then, the distribution of
√
GS̃pqS̃

−1
qq B̄q conditional on Bq can be represented as

√
G

(
G∑
g=1

(
Bp,g − B̄p

) (
Bq,g − B̄q

)′)( G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′)−1

B̄q

=
√
G

G∑
g=1

(
Bp,g − B̄p

)
vg =

√
G

G∑
g=1

Bp,gvg −
√
GB̄p

G∑
g=1

vg

d
= N

(
0, G

G∑
g=1

v2
g · Ip

)

where the last line holds because
∑G

g=1 vg = 0. Note that

G
G∑
g=1

v2
g = G

G∑
g=1

(Bq,g − B̄q

)′ [ G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]−1

B̄q

· B̄′q

[
G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]−1 (
Bq,g − B̄q

)
= GB̄′q

[
G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]−1 [ G∑
g=1

(
Bq,g − B̄q

)
×
(
Bq,g − B̄q

)′] [ G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′]
B̄q

= B̄′q

[
G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′
/G

]−1

B̄q

= B̄′qS̃
−1
qq B̄q.

So conditional on Bq,
√
GS̃pqS̃

−1
qq B̄q is distributed as N(0, B̄′qS̃

−1
qq B̄q · Ip). It then follows that the

distribution of
√
G
(
B̄p − S̃pqS̃−1

qq B̄q

)
conditional on Bq is

√
G
(
B̄p − S̃pqS̃−1

qq B̄q

)
∼ N

(
0, (1 + B̄′qS̃

−1
qq B̄q) · Ip

)
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using the independence of B̄p from S̃pqS̃
−1
qq B̄q conditional on Bq. Therefore the conditional distrib-

ution of ξp is

ξp :=

√
G(B̄p − S̃pqS̃−1

qq B̄q)√
1 + B̄′qS̃

−1
qq B̄q

∼ N(0, Ip).

Given that the conditional distribution of ξp does not depend on Bq, the unconditional distribution

of ξp is also N(0, Ip).

Using ξp ∼ N(0, Ip), S̃pp·q ∼ G−1Wm(G− q − 1, Ip) and ξp is independent of S̃pp·q, we have

ξ′p

(
GS̃pp·q

G− q − 1

)−1

ξp ∼ Hotelling’s T 2 distribution T 2
p,G−q−1.

It then follows that
G− p− q

p (G− q − 1)
ξ′p

(
GS̃pp·q

G− q − 1

)−1

ξp ∼ Fp,G−p−q.

That is
G− p− q

pG
ξ′p

(
S̃pp·q

)−1

ξp ∼ Fp,G−p−q.

Together with Proposition 4(c)(d), this completes the proof of the F limit theory in parts (a), (b)

and (c). The proof of the t limit theory is similar and is omitted here.

Proof of Theorem 2. We first show that Ên = E2n (1 + op (1)) . For each j = 1, ..., d, we have

Ên[., j] =

{
Γ̂′
[
Ω̂c(θ̂1)

]−1

Γ̂

}−1

Γ̂′
[
Ω̂c(θ̂1)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ̂1)

]−1

gn(θ̂
c

2)

=

{
Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ̂1)

]−1

gn(θ̂
c

2)(1 + op(1))

where the second equality holds by Assumption 3, 5 and Lemma 1. Using a Taylor expansion, we

have

gn(θ̂
c

2) = gn(θ0)− Γ

{
Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1

gn(θ0)(1 + op(1)).

So

Ên[., j] =

{
Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ0)

]−1

gn(θ̂
c

2)(1 + op(1))

−
{

Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ0)

]−1

Γ

×
{

Γ′
[
Ω̂c(θ0)

]−1

Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1

gn(θ0)

}
(1 + op(1))
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for each j = 1, ..., d. For the term, ∂Ω̂c(θ)
∂θj

∣∣∣
θ=θ̂1

, recall that

∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

= Υj(θ̂1) + Υ′j(θ̂1),

Υj(θ) =
1

N

G∑
g=1

[
L∑
r=1

(
f gr (θ)− 1

N

N∑
s=1

fs(θ)

)(
L∑
s=1

(
∂f gs (θ)

∂θj
− 1

N

N∑
s=1

∂fs(θ)

∂θj

))′]
.

It remains to show that Υj(θ̂1) = Υj(θ0)(1 + op(1)). From the proof of Lemma 1, we have

1√
L

L∑
r=1

(
f gr (θ̂1)− 1

N

N∑
s=1

fs(θ̂1)

)

=
1√
L

L∑
r=1

(
f gr (θ0)− 1

N

N∑
s=1

fs(θ0)

)
(1 + op(1)) (53)

for each g = 1, ..., G. By Assumption 3, 7 and a Taylor expansion, we have:

1√
L

L∑
s=1

∂f gs (θ̂1)

∂θj
=

(
1√
L

L∑
s=1

∂f gs (θ0)

∂θj
+

1√
L

L∑
s=1

∂

∂θ′

(
∂f gs (θ0)

∂θj

)√
L(θ̂1 − θ0)

)
(1 + op(1))

:=

(
1√
L

L∑
s=1

∂f gs (θ0)

∂θj
+Q(θ0)

√
L(θ̂1 − θ0)

)
(1 + op(1))

for j = 1, ..., d and g = 1, ..., G. This implies that

L∑
s=1

(
∂f gs (θ̂1)

∂θj
− 1

N

N∑
s=1

∂fs(θ̂1)

∂θj

)

=
L∑
s=1

(
∂f gs (θ0)

∂θj
− 1

N

N∑
s=1

∂fs(θ0)

∂θj

)
(1 + op(1)) (54)

Combining these together, we have Υ(θ̂1) = Υ(θ0)(1 + op(1)) from which we obtain the desired

result

Ên = E2n (1 + op (1)) . (55)

Now, define the infeasible corrected variance

v̂arc,inf
Ω̂c(θ̂1)

(θ̂
c

2)

= v̂arΩ̂c(θ̂1)(θ̂
c

2) + E2nv̂arΩ̂c(θ̂1)(θ̂
c

2) + v̂arΩ̂c(θ̂1)(θ̂
c

2)E ′2n + E ′2nv̂ar(θ̂1)Ê ′2n

and the corresponding infeasible Wald statistic

Fc
2,Ω̂c(θ̂1)

(θ̂
c

2) = (Rθ̂
c

2 − r)′
[
Rv̂arc,inf

Ω̂c(θ̂1)
(θ̂
c

2)R′
]−1

(Rθ̂2 − r)/p.

The result in (55) implies

F c
2,Ω̂c(θ̂1)

(θ̂
c

2) = Fc
2,Ω̂c(θ̂1)

(θ̂
c

2)(1 + op(1)).
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Also, E2n = op(1) and we have

v̂arc,inf
Ω̂c(θ̂1)

(θ̂
c

2) = v̂arcΩ̂c(θ̂1)(θ̂
c

2)(1 + op(1)),

and so

F c
2,Ω̂c(θ̂1)

(θ̂
c

2) = Fc
2,Ω̂c(θ̂1)

(θ̂
c

2) + op(1)

= F2,Ω̂c(θ̂1)(θ̂
c

2) + op(1).
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