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Abstract

This paper develops new methods for examining a “no greater than” inequality

of the rank of a matrix and for rank determination in a general setup, which improve

upon existing methods. Existing rank tests assume a priori that the rank is no less

than the hypothesized value, which is often unrealistic. These tests when directly

applied may fail to control the asymptotic null rejection rate, and the multiple

testing method based on them can be conservative with the asymptotic null rejection

rate strictly below the nominal level whenever the rank is less than the hypothesized

value. We prove that our proposed tests have the asymptotic null rejection rate

that is exactly equal to the nominal level under minimal assumptions regardless of

whether the rank is less than or equal to the hypothesized value. As our simulation

results show, these characteristics lead to an improved power property in general. In

application to a context with stationary and nonstationary data, respectively, our

tests yield improved tests for identification in linear IV models and for the existence

of stochastic trend and/or cointegration with or without VAR specification. In

addition, our simulation results show that the improved power property of our

tests leads to an improved accuracy of the sequential testing procedure for rank

determination.

Keywords: Rank inequality, Rank determination, Size control, Conservativeness,

Identification test, Cointegration test.
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1 Introduction

The rank of a matrix plays a fundamental role in numerous economic and statistical

settings, including identification of structural parameters (Fisher, 1966), existence of

common features (Engle and Kozicki, 1993) with the canonical example being that of

cointegration (Engle and Granger, 1987), the rank of a (consumer) demand system

(Gorman, 1981; Lewbel, 1991), specification of factor models (Ross, 1976), dimension

reduction in regression analysis (Li, 1991; Bura and Yang, 2011), and model specification

in time series (Aoki, 1990; Gill and Lewbel, 1992). These problems reduce to examining

the following hypotheses: for an unknown matrix Π0 of size m× k with m ≥ k,

H0 : rank(Π0) ≤ r v.s. H1 : rank(Π0) > r , (1)

where r ∈ {0, . . . , k − 1} is some prespecified value and rank(Π0) denotes the rank of

Π0. If r = k − 1, then (1) is simply a testing problem of whether Π0 has full rank.

Despite a rich set of results in the literature, previous studies instead focus on the

following hypotheses

H
(r)
0 : rank(Π0) = r v.s. H

(r)
1 : rank(Π0) > r . (2)

In effect, this is a different testing problem and assumes a priori that rank(Π0) is no less

than r. Unfortunately, in the aforementioned problems, it is unrealistic to make such

an assumption. As shown in Section 2.2, when in fact rank(Π0) < r, directly applying

existing rank tests to (1) may fail to control the asymptotic null rejection rate, since

the asymptotic distributions of test statistics can be very different from those when

rank(Π0) = r. As we shall prove (see Lemma A.4), when rank(Π0) < r, the problem

(1) becomes irregular in the sense that a functional characterizing the problem admits

a degenerate first order derivative and is second order nondifferentiable. A general

inferential framework for such functionals was not available until very recently (Fang

and Santos, 2015; Chen and Fang, 2015). To the best of our knowledge, no direct tests

for (1) exist in the literature.

Our method builds on the insight that (1) can be equivalently reformulated as

H0 : φ(Π0) = 0 v.s. H1 : φ(Π0) > 0 , (3)

where φ(Π0) ≡
∑k

j=r+1 σ
2
j (Π0) is the sum of the k − r smallest squared singular values

σ2
j (Π0) of Π0 (i.e., the sum of the k − r smallest eigenvalues of Πᵀ0Π0). For a given

estimator Π̂n of Π0, we then employ the plug-in estimator τ2
nφ(Π̂n) as our test statistic,

where τn is the rate at which Π̂n admits an asymptotic distribution. Towards invoking

the Delta method, we prove, however, that the first order derivative of the map Π 7→
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φ(Π) is null at Π = Π0 under H0, necessitating a second order analysis. Since the

asymptotic distributions (under the composite null) implied by the second order Delta

method (Shapiro, 2000) are highly nonstandard, we appeal to the bootstrap procedure

recently developed by Fang and Santos (2015) and Chen and Fang (2015) in order

to obtain valid critical values and conduct inference. We also extend the results to

accommodate the case when the convergence rates of Π̂n are not homogenous across its

columns as in VAR models with stochastic trend and cointegration (see Appendix B).

There are several attractive features of our tests. First, since we rely on the Delta

method, the theory is conceptually simple and requires minimal assumptions. Essen-

tially, all we need are a matrix estimator Π̂n that converges weakly and a consistent

bootstrap analog Π̂∗n. As a matter of fact, our tests apply to various data generating

processes. Second, implementation of the procedure is computationally easy, only in-

volving calculation of singular value decompositions. Finally, since construction of the

critical values is based on bootstrapping the asymptotic distributions pointwise in Π0,

the resulting tests have the asymptotic null rejection rate that is exactly equal to the

nominal level regardless of whether rank(Π0) = r or rank(Π0) < r. As our simulation

results show, these characteristics lead to good power properties of our tests in general.

In application to a context with stationary and nonstationary data, respectively, our

tests yield new and powerful tests for identification in linear IV models (Fisher, 1966)

and for the existence of stochastic trend and/or cointegration with or without VAR

specification (Engle and Granger, 1987).

As an alternative to the direct application, one may instead adapt existing rank

tests into multiple testing procedures, since H0 holds if and only if H
(q)
0 holds for some

0 ≤ q ≤ r. Specifically, the multiple testing method rejects H0 if and only if all H
(q)
0 are

rejected and otherwise fails to reject. However, as demonstrated in Sections 2.2 and 4.1,

the method can be severely conservative when rank(Π0) > r and Π0 is close to a matrix

with rank strictly less than r, with the asymptotic null rejection rate strictly below

the nominal level when rank(Π0) < r. This is in sharp contrast to our tests, which

by design achieve asymptotic null rejection rates exactly equal to the nominal level

and hence improve the power properties. In an application to testing for identification

in stochastic discount factor models, compared to the multiple testing method based

the Kleibergen and Paap (2006) test, our tests suggest much weaker evidence of non-

identification of the risk premia parameters.

In some settings such as the rank of a demand system, specification of factor models

and model specification in time series, the main concern boils down to determining the

true rank of a matrix. To determine rank(Π0), one may implement the sequential testing

procedure, following Johansen (1995), based on rank tests for (1) or (2). Interestingly,

efficient rank determination does not require the ability of detecting whether rank(Π0)

is strictly less than a hypothesized value. This explains the prevalence of existing rank
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tests in rank determination. Nevertheless, the power of detecting whether rank(Π0)

is strictly greater than hypothesized values plays an important role in the procedure.

Our simulation results show that the improved power property of our tests leads to an

improved accuracy of the sequential testing procedure for rank determination.

As mentioned previously, the literature has been mostly concerned with the hypothe-

ses (2). In the context of multivariate regression, Anderson (1951) proposed a likelihood

ratio test based on canonical correlations. This test is restrictive in the sense that it

crucially depends on a Kronecker product structure of the covariance matrix of a matrix

estimator. Building on the LDU decomposition approach in Gill and Lewbel (1992),

Cragg and Donald (1996) proposed a test with the test statistic being a quadratic form

of the vectorization of a submatrix in the LDU decomposition that is sensitive to vari-

able ordering. In Cragg and Donald (1997), the authors provided a test based on a

constrained minimum χ2 distance criterion, which is computationally intensive because

it involves minimization over the set of all matrices with rank r. Moreover, both tests

rely on the condition that the asymptotic covariance matrix of the vectorization of the

matrix estimator is nonsingular, which we do not require in our analysis. Motivated by

the need to relax this nonsingularity condition, Robin and Smith (2000) developed a test

based on functionals of the characteristics of a suitably transformed matrix. However,

their test depends on a rank condition that is “empirically nonverifiable”. All these rank

tests may fail to control the asymptotic null rejection rate when directly applied to the

hypotheses (1).

Moreover, Kleibergen and Paap (2006) proposed a test based on singular value de-

composition of a transformed matrix with the test statistic having the χ2((m−r)(k−r))
asymptotic distribution under H

(r)
0 . Despite overcoming many of the deficiencies of pre-

vious tests, this test still requires some covariance matrix nonsingular because it is based

on a Wald statistic, which we do not require in our analysis. More importantly, this

rank test also has the aforementioned drawback when directly applied to the hypotheses

(1). There are, nonetheless, a few exceptions that study (1), notably Cragg and Donald

(1993) who considered a special case of Cragg and Donald (1997). However, the asymp-

totic distribution of the test statistic when rank(Π0) < r is not available, though Cragg

and Donald (1993) established that the asymptotic null distribution when rank(Π0) = r

is least favorable under somewhat restrictive conditions. Thus, when rank(Π0) > r and

Π0 is close to a matrix with rank strictly less than r, their test can be conservative. We

refer the reader to Camba-Mendez and Kapetanios (2009), Portier and Delyon (2014)

and Al-Sadoon (2015) for further discussions of the literature.

We now introduce some notation. We denote by Mm×k the space of m × k real

matrices for m, k ∈ N. For a matrix A ∈ Mm×k, we write the transpose of A by Aᵀ,

the trace of A by tr(A) if m = k, the column vectorization of A by vec(A), and the

Frobenius norm of A by ‖A‖, i.e., ‖A‖ ≡
√

tr(AᵀA). We let Ik denote the k×k identity
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matrix for k ∈ N.

The remainder of the paper is organized as follows. Section 2 presents related ex-

amples to illustrate the importance of the problem, and demonstrates the drawback

of existing rank tests and the conservativeness of the multiple testing method. Sec-

tion 3 develops the test statistic, establishes its asymptotic distribution, and proposes a

bootstrap procedure for inference. Section 4 presents Monte Carlo studies, applies our

method to study identification in stochastic discount factor models, and demonstrates

the accuracy improvement of the sequential testing procedure for rank determination

based on our tests. Section 5 briefly concludes. All the proofs are collected in the

appendices.

2 Examples and Motivation

In this section, we first present related examples in which the testing problem (1) is of

importance. In order to motivate the development of our tests, we then demonstrate

that existing rank tests when directly applied to (1) can fail to control the asymptotic

null rejection rate, and that the multiple testing method can be conservative.

2.1 Examples

The first example is what motivated this paper in the first place.

Example 2.1 (Identification). Let Y ∈ R and Z ∈ Rk be random variables satisfying

Y = Zᵀβ0 + u . (4)

Let W ∈ Rm be instrument variables such that E[Wu] = 0 with m ≥ k. Then identifi-

cation of the coefficient β0 reduces to whether E[WZᵀ] is of full rank. Thus, testing for

identification of β0 reduces to examining the hypotheses (1) with

Π0 = E[WZᵀ] and r = k − 1 . (5)

We cannot restrict ourselves to examine the hypotheses (2), since it is unrealistic to as-

sume rank(Π0) ≥ k−1 unless k = 1. More generally, (local) identification in parametric,

semiparametric and nonparametric models can often be expressed in terms of some ma-

trices being of full rank (Fisher, 1961; Rothenberg, 1971; Roehrig, 1988; Chesher, 2003;

Matzkin, 2008; Chen et al., 2014). For identification in DSGE models, see, for example,

Canova and Sala (2009) and Komunjer and Ng (2011). In addition, when W = Z, then

Π0 is a positive semidefinite matrix and the concern becomes the existence of perfect

multicolinearity among Z. �
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The next example concerns the existence of stochastic trend and/or cointegration in

a vector autoregression (VAR) system (Engle and Granger, 1987; Johansen, 1991).

Example 2.2 (VAR Trend/Cointegration). Let {Yt} be a k × 1 time series such that

each component of Yt is integrated of order 0 or 1, that is, each component is a stationary

or unit root process. Assume the entire vector is a VAR(1) process

Yt = Φ0Yt−1 + ut , (6)

where ut are white noise with nonsingular covariance matrix Σ. The error-correction

representation of (6) is given by (Hamilton, 1994, p.580):

∆Yt = (Φ0 − Ik)Yt−1 + ut . (7)

Then the existence of stochastic trend for Yt means that Φ0 − Ik is not of full rank.

Thus, testing for the existence of stochastic trend reduces to examining the hypotheses

(1) with

Π0 = Φ0 − Ik and r = k − 1 . (8)

It is unrealistic to assume that there is at most one linearly independent stochastic

trend (i.e., rank(Π0) ≥ k − 1) unless k = 1, so we cannot instead focus on examining

the hypotheses (2). In addition, the existence of cointegrating relations for Yt means

that Φ0 − Ik is nonzero.1 Thus, testing for the existence of cointegration reduces to

examining the hypotheses (1) with r = 0. We confine our attention to the class of

VAR(1) models with white noise errors for simplicity, but our framework applies more

broadly to VAR(p) processes with dependent and heteroskedastic errors. �

Our results allow us to study stochastic trend and cointegration nonparametrically.

The following example concerns the existence of stochastic trend and/or cointegration

without a VAR specification (Engle and Granger, 1987; Bierens, 1997; Shintani, 2001).

Example 2.3 (Nonparametric Trend/Cointegration). Let {Yt} be a k × 1 time series

such that each component of Yt is integrated of order 0 or 1, that is, each component is

a stationary or unit root process. Let the first difference of Yt follow a linear process

∆Yt = C(L)ut ≡
∞∑
j=0

Cjut−j , (9)

where ut are white noise with nonsingular covariance matrix Σ, and C0 = Ik. Since the

long run covariance matrix of ∆Yt is equal to C(1)ΣC(1)ᵀ, then existence of cointegrating

relations for Yt means that the long run covariance matrix of ∆Yt is not of full rank.

1Recall that Yt is said to be cointegrated if there exists nonzero λ ∈ Rk such that λᵀYt is stationary.
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Thus, testing for the existence of cointegration reduces to examining the hypotheses (1)

with

Π0 =

∞∑
t=−∞

E[∆Yt∆Y0] and r = k − 1 . (10)

We cannot restrict ourselves to examine the hypotheses (2), since it is unrealistic to

assume there is at most one linearly independent cointegration vectors (i.e., rank(Π0) ≥
k−1) unless k = 1. In addition, the existence of stochastic trend for Yt means that Φ0−Ik
is nonzero. Thus, testing for the existence of stochastic trend reduces to examining the

hypotheses (1) with r = 0. �

Cointegration is just one particular example of the more general notion of common

features (Engle and Kozicki, 1993). Our fourth example pertains to the existence of

general common features.

Example 2.4 (Common Features). Let {Yt} be a k×1 time series. According to Engle

and Kozicki (1993), a feature that is present in each component of Yt is said to be

common to Yt if there exists a nonzero linear combination of Yt that fails to have the

feature. Suppose that {Yt} is generated according to

Yt = Γᵀ0Zt + Ξᵀ0Wt + ut , (11)

where Wt can be thought of as control variables, and Zt is an m × 1 vector reflecting

the feature under consideration with m ≥ k. For example, testing for the existence of

common serial correlation would set Zt to be lags of Yt, and testing for the existence of

common conditionally heteroskedastic factors would set Zt to be relevant factors. We

refer to Engle and Kozicki (1993), Engle and Susmel (1993) and Dovonon and Renault

(2013) for details of these and other examples. By the definition of common feature and

the specification of (11), existence of common features means that Γ0 is not of full rank.

Thus, testing for the existence of common features reduces to examining the hypotheses

(1) with

Π0 = Γ0 and r = k − 1 . (12)

Since the number of common features is unknown a priori, we cannot restrict ourself to

examine the hypotheses (2) by assuming rank(Π0) ≥ k − 1 unless k = 1. �

The concerns in the remaining examples reduce to determining the true rank of a

matrix, which relies on examining a sequence of hypotheses (1) or (2). Our fifth example

is directly related to the rank of demand systems, a notion developed by Gorman (1981)

for exactly aggregable demand systems and generalized by Lewbel (1991) to all demand

systems.
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Example 2.5 (Consumer Demand). An Engel curve is the function describing the

allocation of an individual’s consumption expenditures with the prices of all goods fixed,

and the rank of a demand system is the dimension of the space spanned by the Engel

curves of the system (Lewbel, 1991). Suppose that there are k goods in the system and

the Engel curve is given by

Y = Γ0G(Z) + u , (13)

where Y is a k × 1 vector of budget shares on the k goods, Z is total expenditure, G(·)
is a r0× 1 vector of unknown function with r0 ≤ k, and u is a vector zero mean random

variables independent of Z. Assume Γ0 is of full rank, then the rank r0 of the demand

system is equal to the rank of Γ0. Let Q(·) be a m× 1 vector of known functions with

m ≥ k. Then the rank of Γ0 is equal to the rank of

Π0 = E[Q(Z)Y ᵀ] , (14)

if E[Q(Z)G(Z)ᵀ] is of full rank. Thus, determining the rank r0 of the demand system

reduces to determining the rank of Π0. The rank of the demand system provides evidence

on consistency of consumer behaviors with utility maximization, and has implications

for welfare comparisons and aggregation across goods and across consumers (Lewbel,

1991, 2006; Barnett and Serletis, 2008). �

Factor analysis has been widely used in modeling variations, covariance and dynamics

of time series (Anderson, 2003; Lam and Yao, 2012). Our next example shows the

importance of matrix rank determination in identifying the number of factors in factor

analysis.

Example 2.6 (Factor Analysis). Let Y ∈ Rp be generated by the following model

Y = µ0 + Λ0F + u , (15)

where F is a r0 × 1 vector of unobserved common factors with E[F ] = 0 and r0 ≤ p,

and u is an idiosyncratic error term with E[u] = 0. Assume Var(F ) is of full rank,

then the number r0 of common factors is equal to the rank of Var(F ). Let us write

Y = [Y ᵀ1 , Y
ᵀ

2 , Y
ᵀ

3 ]ᵀ for Y1 ∈ Rm, Y2 ∈ Rk and Y2 ∈ Rp−k−m for some r0 ≤ k ≤ m < p

and m + k ≤ p. Write Λ0 = [Λᵀ0,1,Λ
ᵀ
0,2,Λ

ᵀ
0,3]ᵀ with Λ0,1 and Λ0,2 having m and k rows.

Given the mild condition that u is independent of F and E[uu′] is diagonal, the rank of

Var(F ) is equal to the rank of

Π0 = Cov(Y1, Y2) , (16)

if Λ0,1 and Λ0,1 are of full rank. Thus, determining the number r0 of these common

factors reduces to determining the rank of Π0. Such a question also arises in the in-
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terbattery factor analysis (Gill and Lewbel, 1992), the dynamic analysis of time series

(Lam and Yao, 2012), and finance and macroeconomics (Bai and Ng, 2002, 2007). �

Our final example is taken from Gill and Lewbel (1992), and manifests how matrix

rank determination is useful in model selection for ARMA processes and state space

models.

Example 2.7 (Model Selection). Let {Yt} be a p × 1 weakly stationary time series,

which has the following state space representation:

Yt = Γ0Zt + ut , Zt = Λ0Zt−1 + εt , (17)

where Zt is a r0× 1 vector of state variables, and ut and εt are error terms. It turns out

that the number r0 of state variables is equal to the rank of the Hankel matrix

Π0 = E(


Yt+1

...

Yt+b

[
Y ᵀt · · · Y ᵀt−b+1

]
) , (18)

for b sufficiently large (Aoki, 1990, p.52). Consequently, determining the number of state

variables r0 to model Yt reduces to determining the rank of Π0. When Yt is a scalar

and follows an ARMA(p1, p2) model, then Yt has a state space representation with the

number r0 of state variables equal to max(p1, p2) (Aoki, 1990). Thus, determining the

rank of the Hankel matrix is crucial for model specification in these contexts. �

2.2 Motivation

To proceed, we let α ∈ (0, 1) be the nominal level and φ
(r)
n be any one of the existing

rank tests designed for the hypotheses (2), which are reviewed in the introduction.2 It

has been well established in the literature that limn→∞ P (φ
(r)
n = 1) = α under H

(r)
0 and

limn→∞ P (φ
(r)
n = 1) = 1 under H

(r)
1 .

When rank(Π0) < r, the asymptotic distributions of test statistics have not been

established and can be very different from those when rank(Π0) = r. On the one hand,

φ
(r)
n may fail to control the asymptotic rejection rate. In Appendix C, we prove that

this is true for the Kleibergen and Paap (2006) version of φ
(r)
n . Therefore, φ

(r)
n cannot

be directly applied to test for the hypotheses (1). On the other hand, the asymptotic

rejection rate of φ
(r)
n can be strictly below the nominal level, i.e, limn→∞ P (φ

(r)
n = 1) < α.

In Appendix C, we also prove that this is true for the Kleibergen and Paap (2006) version

of φ
(r)
n . By Theorem 2 of Cragg and Donald (1993), this is also true for the Cragg and

Donald (1997) version of φ
(r)
n . In view of this, φ

(r)
n may alternatively be conservative

2Rejection means φ
(r)
n = 1 and acceptance means φ

(r)
n = 0.
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when directly applied to the hypotheses (1). Thus, the critical value may be adjusted

to improve the power of φ
(r)
n for detecting H1 when Π0 is close to a matrix with rank

strictly less than r.

Given that H0 being false is equivalent to H
(q)
0 being false for all 0 ≤ q ≤ r, one may

then consider implementing multiple existing rank tests in order to obtain tests for the

hypotheses (1) such that the asymptotic null rejection rate is controlled. The multiple

testing method is based on the decision rule φn =
∏r
q=0 φ

(q)
n , which means that H0 is

rejected if and only if H
(q)
0 is rejected for all 0 ≤ q ≤ r. In VAR models (see, for instance,

Example 2.2), Johansen (1995, Chapter 12) used this method to test for inequality of

cointegration rank. In stochastic discount factor models, Kleibergen and Paap (2006)

employed this method to test for identification of the risk premia parameters. Indeed,

the asymptotic null rejection rate of this method is controlled, since under H0,

lim
n→∞

P (φn = 1) = lim
n→∞

P (φ(0)
n = 1, . . . , φ(r)

n = 1) ≤ lim
n→∞

P (φ(rank(Π0))
n = 1) = α , (19)

where the first inequality holds since P (A) ≤ P (B) for A ⊂ B. Moreover, this method

is consistent, since under H1,

lim
n→∞

P (φn = 1) = lim
n→∞

P (φ(0)
n = 1, . . . , φ(r)

n = 1) ≥ 1−
r∑
q=0

(1− lim
n→∞

P (φ(q)
n = 1)) = 1 ,

where the inequality holds by the Boole’s inequality.

Unfortunately, the multiple testing method can be conservative. When rank(Π0) < r,

the inequality of (19) becomes strict whenever limn→∞ P (φ
(r)
n = 1) < α. This is because

lim
n→∞

P (φn = 1) = lim
n→∞

P (φ(0)
n = 1, . . . , φ(r)

n = 1) ≤ lim
n→∞

P (φ(r)
n = 1) < α , (20)

where the first inequality holds since P (A) ≤ P (B) for A ⊂ B. As mentioned above,

this is true for the Cragg and Donald (1997) and Kleibergen and Paap (2006) version

of φ
(r)
n . Thus, the critical value of each φ

(q)
n may be adjusted to improve the power of

the multiple testing method for detecting H1 when Π0 is close to a matrix with rank

strictly less than r. Furthermore, due to the dependence among {φ(q)
n }rq=0 the inequality

in both (19) and (20) may become strict. In view of this, power loss may occur in a

complicated way.

To show the drawback of existing rank tests and the conservativeness of the multiple

testing method, we focus on the Kleibergen and Paap (2006) test and present some
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simulation evidence.3 We assume that

Zᵀi = W ᵀ
i Π0 + uᵀi , i = 1, . . . , n , (21)

with Wi
i.i.d.∼ N(0, I6), ui

i.i.d.∼ N(0, I6) and n = 1, 000. Let

Π0 = diag(16−d,0d) + δI6 for δ ≥ 0 and d = 1, . . . , 6 , (22)

where 16−d denotes a (6− d)× 1 vector of ones and 0d denotes a d× 1 vector of zeros.

We examine the hypotheses (1) with r = 5, that is, we test whether Π0 has full rank.

The design of Π0 implies H0 is true if and only if δ = 0. In particular, rank(Π0) = 6− d
under H0, so rank(Π0) < r when d 6= 1 and rank(Π0) = r when d = 1. Thus, d 6= 1

represents the case when Π0 is close to a matrix with rank strictly less than r, while

d = 1 represents the regular case. From the above argument, it shall be expected that

when d 6= 1, the Kleibergen and Paap (2006) test may over-reject H0 when δ = 0 or

may be inefficient in detecting H1 when δ > 0. Moreover, the multiple testing method

may be inefficient in detecting H1 when δ > 0. The value of δ represents how strong H1

deviates away from H0.

To implement the Kleibergen and Paap (2006) test and the multiple testing method,

we estimate Π0 by Π̂n = 1
n

∑n
i=1WiZ

ᵀ
i . See Appendix C for a review on the Kleibergen

and Paap (2006) test. By the central limit theorem, the asymptotic distribution of Π̂n

is zero mean Gaussian with convergence rate
√
n and all assumptions in Kleibergen and

Paap (2006) are satisfied. Let the nominal level be 5%. The rejection rates, which

are based on 10, 000 simulation replications, are plotted in Figures 1 and 2. We use

KP-D to denote the Kleibergen and Paap (2006) test when directly applied and KP-M

to denote the multiple testing method. First, as expected, the rejection rates of KP-M

are no greater than the 5% nominal level when δ = 0 and tend to one as δ increases for

all cases. When d = 1, the null rejection rate is close to the 5% nominal level. When

d 6= 1, however, the null rejection rates are far below the 5% nominal level. This suggests

that KP-M may be conservative when d 6= 1. Indeed, the power curve shifts to right

and more parts fall below the 5% nominal level as d increases. This hints a method of

power improvement by dragging the curves to the left such that all of them are above

the 5% nominal level. Similarly, as Figure 2 shows, KP-D has the same issue under

the considered model. Note that the difference between the two methods in Figure 2 is

negligible, despite the fact that KP-D is more powerful.

3Two main reasons for the focus are: the Kleibergen and Paap (2006) test is preferred in terms of
assumptions and computation, and has the most citations (over 1, 000) among the existing rank tests
according to Google Scholar.
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Figure 1: The rejection rate of the multiple testing method based on the Kleibergen and
Paap (2006) test with 5% nominal level

Figure 2: Comparison between the Kleibergen and Paap (2006) test and the multiple
testing method based on it with 5% nominal level
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3 Asymptotic Analysis

We can express the hypotheses (1) more tractably in terms of singular values. To see

this, let σ1(Π0) ≥ · · · ≥ σk(Π0) ≥ 0 be singular values of Π0.4 Then the rank of Π0 is

equal to the number of nonzero singular values of Π0; see, for example, Problem 3.1.2

in Horn and Johnson (1991). It follows that the hypotheses (1) can be equivalently

reformulated as

H0 :

k∑
j=r+1

σ2
j (Π0) = 0 v.s. H1 :

k∑
j=r+1

σ2
j (Π0) > 0 . (23)

Given the reformulation in (23), it is convenient to study the differential properties

of the map Π0 7→
∑k

j=r+1 σ
2
j (Π0). By leveraging the existing Delta method, we in

turn establish the asymptotic distributions of the plug-in statistic
∑k

j=r+1 σ
2
j (Π̂n) under

the null for a given estimator Π̂n of Π0. Since the resulting asymptotic distributions

are highly nonstandard, we resort to the resampling procedure developed by Fang and

Santos (2015) and Chen and Fang (2015) in order to obtain critical values.

3.1 Differential Properties

For ease of exposition, define φ : Mm×k → R by

φ(Π) ≡
k∑

j=r+1

σ2
j (Π) , (24)

where we recall that σj(Π) is the jth largest singular value of Π. To derive the differen-

tiability of φ, it shall prove useful to establish the following representation.

Lemma 3.1. Let Sk×q ≡ {U ∈Mk×q : UᵀU = Iq} for q = 1, . . . , k. Then we have

φ(Π) = min
U∈Sk×(k−r)

‖ΠU‖2 . (25)

Lemma 3.1 shows that φ(Π) can be represented as a quadratic minimum over the

space of orthonormal matrices in Mm×(k−r). The special case when r = k − 1 – a test

of Π having full rank – is a well known implication of the classical Courant-Fischer

theorem, i.e., σ2
k(Π) = min‖U‖=1 ‖ΠU‖2. Note that the minimum in (25) is achieved and

hence well defined.

We are now in a position to analyze the differential properties of φ. It turns out that

φ is not fully differentiable but belongs to a class of directionally differentiable maps.

For completeness, we next introduce the appropriate notions of differentiability.

4Recall that σ2
1(Π0), . . . , σ2

k(Π0) are numerically identical to eigenvalues of Πᵀ
0Π0.
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Definition 3.1. Let Mm×k be equipped with the norm ‖ · ‖ and ϕ : Mm×k → R.

(i) The map ϕ is said to be Hadamard directionally differentiable at Π ∈ Mm×k if

there is a map ϕ′Π : Mm×k → R such that:

lim
n→∞

ϕ(Π + tnMn)− ϕ(Π)

tn
= ϕ′Π(M) , (26)

for all sequences {Mn} ⊂Mm×k and {tn} ⊂ R+ such that tn ↓ 0, and Mn →M ∈
Mm×k as n→∞.

(ii) Suppose that ϕ : Mm×k → R is Hadamard directionally differentiable at Π ∈
Mm×k. We say that ϕ is second order Hadamard directionally differentiable at

Π ∈Mm×k if there is a map ϕ′′Π : Mm×k → R such that:

lim
n→∞

ϕ(Π + tnMn)− ϕ(Π)− tnφ′Π(Mn)

t2n
= ϕ′′Π(M) , (27)

for all sequences {Mn} ⊂Mm×k and {tn} ⊂ R+ such that tn ↓ 0, and Mn →M ∈
Mm×k as n→∞.

Compared with Hadamard full differentiability (van der Vaart, 1998) which requires

continuity and linearity of the derivative, the directional derivative is generally nonlinear

though necessarily continuous. In fact, linearity is the exact gap between these two no-

tions of differentiability. Remarkably, the Delta method remains valid even if φ is only

Hadamard directionally differentiable. We refer the readers to Shapiro (1990, 1991),

Dümbgen (1993), and a recent review by Fang and Santos (2015) for further details.

Unfortunately, as shall be proved, the asymptotic distribution of our statistic φ(Π̂n)

implied by the Delta method is degenerate under the null, which creates substantial

challenges for inference. This motivates the second order Hadamard directional differ-

entiability. Compared with second order Hadamard full differentiability which requires a

quadratic form of the derivative corresponding to a bilinear map, the directional deriva-

tive φ′′θ is generally nonquadratic though continuous. In fact, quadratic form structure

is the exact gap between these two notions of differentiability. Similarly, the second

order Delta method remains valid even if φ is only second order Hadamard directionally

differentiable. We refer the readers to Shapiro (2000) and a recent review by Chen and

Fang (2015) for further details.

The following proposition establishes the differentiability of φ.

Proposition 3.1. Let φ : Mm×k → R be defined as in (24).

(i) φ is first order Hadamard directionally differentiable at any Π ∈ Mm×k with the
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derivative φ′Π : Mm×k → R given by

φ′Π(M) = min
U∈Ψ(Π)

2tr(UᵀΠᵀMU) , (28)

where Ψ(Π) ≡ arg minU∈Sk×(k−r) ‖ΠU‖2.

(ii) φ is second order Hadamard directionally differentiable at any Π ∈Mm×k satisfy-

ing φ(Π) = 0 with the derivative φ′′Π : Mm×k → R given by

φ′′Π(M) = min
U∈Ψ(Π)

min
V ∈Mk×(k−r)

‖MU + ΠV ‖2 . (29)

Proposition 3.1 implies that φ is Hadamard directionally differentiable at any Π ∈
Mm×k. In particular, when rank(Π) ≤ r, it exhibits a degenerate derivative, i.e.,

φ′Π(M) = 0 for all M ∈Mm×k. Moreover, Proposition 3.1 implies that φ is second order

Hadamard directionally differentiable at any Π ∈Mm×k with rank(Π) ≤ r. In general,

φ is not second order fully Hadamard differentiable at Π ∈ Mm×k with rank(Π) ≤ r

unless rank(Π) = r, see Lemma A.4. Thus, the accommodation of rank(Π) < r causes

the irregularity of φ.

To conclude this section, we provide a simplified analytical expression for φ′′Π. Let

Π = PΣQᵀ be a singular value decomposition of Π, where P ∈ Sm×m and Q ∈ Sk×k,
and Σ ∈Mm×k is diagonal with diagonal entries in descending order. Let r∗ ≡ rank(Π).

Write P = [P1, P2] and Q = [Q1, Q2] for P1 ∈ Mm×r∗ and Q1 ∈ Mk×r∗ , respectively.

Thus, the columns of P2 and Q2 are the left-singular vectors and right-singular vectors of

Π associated with the zero singular values, respectively. Then the following proposition

gives a simplified analytical expression of φ′′Π.

Proposition 3.2. Suppose r∗ ≤ r and let φ′′Π : Mm×k → R be given as in Proposition

3.1. Then for M ∈Mm×k,

φ′′Π(M) =
k−r∗∑

j=r−r∗+1

σ2
j (P

ᵀ
2MQ2) . (30)

Proposition 3.2 implies φ′′Π(M) is the sum of the k − r smallest squared singular

values of transformed matrix P ᵀ2MQ2. Observe that P2 and Q2 are from singular value

decomposition, so calculation of the derivative requires no more than calculation of

singular value decomposition as in the test statistic. As we will see later, this facilitates

the computation of our test statistic and makes our test procedure attractive. Note P2

and Q2 can be chosen up to postmultiplication by (m − r∗) × (m − r∗) and (k − r∗) ×
(k− r∗) orthonormal matrices, respectively, but the term on the right hand side of (30)

is invariant to the choice of P2 and Q2.
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3.2 The Asymptotic Distributions

Given the established differentiability of φ and null first order derivative, the asymptotic

distribution of φ(Π̂n) can be easily obtained by the second order Delta method (Shapiro,

2000), provided Π̂n converges weakly. Towards this end, we impose the following as-

sumption.

Assumption 3.1. Let Π0 ∈ Mm×k and there are Π̂n : {Xi}ni=1 → Mm×k such that

τn(Π̂n −Π0)
L→M for some τn ↑ ∞ and random matrix M∈Mm×k.

Assumption 3.1 imposes that the estimator Π̂n for Π0 admits a weak limit M ∈
Mm×k at a scalar rate τn. The estimator Π̂n is defined as a function of the data {Xi}ni=1

into Mm×k, and the weak convergence “
L→” is understood with respect to the joint law

of {Xi}ni=1, which need not be i.i.d.. In particular, τn is allowed to be any parametric

or nonparametric rate that covers all the above examples.

Let Π0 = P0Σ0Q
ᵀ
0 be a singular value decomposition of Π0, where P0 ∈ Sm×m and

Q0 ∈ Sk×k, and Σ0 ∈ Mm×k is diagonal with diagonal entries in descending order.

Let r0 ≡ rank(Π0). Write P0 = [P0,1, P0,2] and Q0 = [Q0,1, Q0,2] for P0,1 ∈ Mm×r0

and Q0,1 ∈ Mk×r0 , respectively. Thus, the columns of P0,2 and Q0,2 are the left-

singular vectors and right-singular vectors of Π0 associated with the zero singular values,

respectively. The following proposition delivers the asymptotic distributions of φ(Π̂n).

Proposition 3.3. Suppose Assumption 3.1 holds. Then we have

τn(φ(Π̂n)− φ(Π0))
L→ min

U∈Ψ(Π0)
2tr(UᵀΠᵀ0MU) , (31)

and under H0,

τ2
nφ(Π̂n)

L→
k−r0∑

j=r−r0+1

σ2
j (P

ᵀ
0,2MQ0,2) . (32)

Proposition 3.3 implies that τnφ(Π̂n) converges in distribution to a degenerate limit

at 0 under H0. This prevents us from making inference based on the first order frame-

work (Chen and Fang, 2015). Proposition 3.3 also implies that τ2
nφ(Π̂n) converges in

distribution to a generally nondegenerate limit under H0. This enables us to make in-

ference based on the second order framework. The limit is a nonlinear function of the

weak limit M and remarkably nonstandard especially when r0 < r. In general, an

analytical (pivotal) distribution is not available. Note that P0,2 and Q0,2 are identified

up to postmultiplication by (m − r0) × (m − r0) and (k − r0) × (k − r0) orthonormal

matrices, respectively, but the term on the right hand side of (32) is invariant to the

choice of P2,0 and Q2,0.
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In order to see how our results apply to various settings, we now turn to examples

introduced in Section 2.1. We shall focus on Examples 2.1 and 2.3 exclusively for

conciseness; Examples 2.2 and 2.4-2.7 will be treated in Appendix B. In particular,

Assumption 3.1 is not well satisfied in Example 2.2 since the convergence rates of Π̂n

are not homogenous across its columns, and we extend the result in Proposition 3.3 for

it.

Example 2.1 (Continued). Suppose {Wi, Zi}ni=1 is a sequence of data from Example

2.1. Let Π̂n be the method of moment estimator

Π̂n =
1

n

n∑
i=1

WiZ
ᵀ
i . (33)

Under certain weak dependence and moment condition, the central limit theorem implies

that Assumption 3.1 is satisfied with τn =
√
n and M being a zero mean Gaussian.

When r0 < k−1, the asymptotic distribution of nφ(Π̂n) can be highly nonstandard. �

Example 2.3 (Continued). Suppose {Yt}nt=1 is a sequence of data from Example

2.3. Let Π̂n be a kernel HAC estimator

Π̂n =

n−1∑
j=−n+1

k(
j

bn
)Γ̂n(j) , (34)

where Γ̂n(j) ≡ 1
n

∑n−j
t=1 ∆Yt∆Y

ᵀ
t+j for j ≥ 0, Γ̂n(j) = Γ̂n(−j)ᵀ for j < 0, k(·) is a kernel

function, and bn is a bandwidth parameter. Under certain weak dependence and moment

conditions, Π̂n is asymptotically normal at the rate
√
n/bn. For example, see Hannan

(1970), Brillinger (1981), Priestley (1981) and Berkes et al. (2016). So, Assumption 3.1

is satisfied with τn =
√
n/bn and M being a zero mean Gaussian. In testing for the

existence of cointegration, when r0 < k − 1, the asymptotic distribution of nφ(Π̂n)/bn

can be highly nonstandard. �

We now discuss the result of Proposition 3.3 when r0 = r and its relation to the

literature. In this case, P ᵀ0,2MQ0,2 has k − r columns and
∑k−r0

j=r−r0+1 σ
2
j (P

ᵀ
0,2MQ0,2) is

equal to the Frobenius norm of P ᵀ0,2MQ0,2. Thus, the asymptotic distribution in (32)

becomes

‖P ᵀ0,2MQ0,2‖2 = vec(P ᵀ0,2MQ0,2)ᵀvec(P ᵀ0,2MQ0,2) . (35)

When M is a zero mean Gaussian, the limit is a weighted sum of independent χ2(1)

random variables. Thus, Proposition 3.3 includes Robin and Smith (2000) as a special

case. If, in addition, the covariance matrix of vec(P ᵀ0,2MQ0,2) is nonsingular, Kleibergen

and Paap (2006) proved that a normalized version of τ2
nφ(Π̂n) has a χ2((m − r)(k −

r)) asymptotic distribution under H
(r)
0 . The asymptotic distribution is not a χ2-type
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distribution any more if r0 < r. This suggests that the Robin and Smith (2000) test

when directly applied to (1) may fail to control the asymptotic null rejection rate.

3.3 The Bootstrap

Given the nonstandard asymptotic distribution in Proposition 3.3, no analytical critical

values can be employed for inference. We may resort to the standard bootstrap method

(Efron, 1979) to consistently estimate the asymptotic distribution. Unfortunately, the

consistency of this method fails due to the degeneracy of φ′Π0
under the null (Chen

and Fang, 2015). Moreover, the recentered bootstrap does not necessarily correct the

inconsistency due to the nondifferentiability of φ. As such, we resort to the procedure

developed by Chen and Fang (2015) for construction of critical values. See the discussion

on m out of n bootstrap and subsampling in Remark 3.1.

Recall that the asymptotic distribution is a composition of M and φ′′Π0
. Our pro-

posed procedure consists of first estimating M by bootstrap and then estimating φ′′Π0
.

For the former, let Π̂∗n denote a “bootstrapped version” of Π̂n, which is defined as a func-

tion of the data {Xi}ni=1 and random weights {Wi}ni=1 that are independent of {Xi}ni=1

into Mm×k. This general definition allows us to include special cases such as nonpara-

metric, Bayesian, block, score, more generally multiplier and exchangeable bootstrap.

To accommodate diverse resampling schemes, we simply impose the following high level

condition.

Assumption 3.2. (i) Π̂∗n : {Xi,Wi}ni=1 →Mm×k with {Wi}ni=1 independent of {Xi}ni=1;

(ii) τn(Π̂∗n − Π̂n)
L∗→ M almost surely, where

L∗→ denotes weak convergence with respect

to the joint law of {Wi}ni=1 conditional on {Xi}ni=1.

Assumption 3.2(i) defines the bootstrap analog Π̂∗n of Π̂n, while Assumption 3.2(ii)

simply imposes the consistency of the law of τn(Π̂∗n−Π̂n) conditional on the data {Xi}ni=1

for the law of M, i.e., the bootstrap works for the estimator Π̂n.

Next we examine Assumption 3.2 in Examples 2.1 and 2.3; Examples 2.2 and 2.4-2.7

will be treated in Appendix B. In particular, Assumption 3.2 is not well satisfied in

Example 2.2, and we extend the result in Theorem 3.1 for it.

Example 2.1 (Continued). Let {Z∗i ,W ∗i }ni=1 be obtained by nonparametric boot-

strapping {Zi,Wi}ni=1 when {Zi,Wi}ni=1 is a sequence of i.i.d. data, and by block boot-

strapping {Zi,Wi}ni=1 when {Zi,Wi}ni=1 is a sequence of dependent data. Under certain

weak dependence and moment condition, Assumption 3.2 is satisfied with

Π̂∗n =
1

n

n∑
i=1

W ∗i Z
∗ᵀ
i . (36)

Multiplier and exchangeable bootstrap may also be employed for i.i.d. data. �
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Example 2.3 (Continued). Since Π̂n only depends on {∆Yt}nt=1, it suffices to re-

sample {∆Yt}nt=1. Note that {∆Yt}nt=1 is stationary. Let {∆Y ∗t }nt=1 be obtained by

block bootstrapping {∆Yt}nt=1. Under certain weak dependence and moment condition,

Assumption 3.2 is satisfied with

Π̂∗n =

n−1∑
j=−n+1

k(
j

bn
)Γ̂∗n(j) , (37)

where Γ̂∗n(j) ≡ 1
n

∑n−j
t=1 ∆Y ∗t ∆Y ∗ᵀt+j for j ≥ 0, Γ̂∗n(j) = Γ̂∗n(−j)ᵀ for j < 0, k(·) and bn

are the same kernel function and bandwidth parameter. See Politis and Romano (1992,

1993) and Politis et al. (1992) for other bootstrap procedures. �

There are two main methods for estimating φ′′Π0
: the structure-exploiting approach

and the numerical differentiation approach. For the former, we describe how to estimate

φ′′Π0
according to (30). Let Π̂n = P̂nΣ̂nQ̂

ᵀ
n be a singular value decomposition of Π̂n,

where P̂n ∈ Sm×m and Q̂n ∈ Sk×k, and Σ̂n ∈ Mm×k is diagonal with diagonal entries

in descending order. Let r̂n ≡ min{r,#{1 ≤ j ≤ k : σj(Π̂n) ≥ κn}}, where κn ↓ 0 is

a tuning parameter that is required to satisfy certain conditions below.5 Write P̂n =

[P̂1,n, P̂2,n] and Q̂n = [Q̂1,n, Q̂2,n] for P̂1,n ∈Mm×r̂n and Q̂1,n ∈Mk×r̂n , respectively. By

(30), we may estimate φ′′Π0
by

φ̂′′n(M) =

k−r̂n∑
j=r−r̂n+1

σ2
j (P̂

ᵀ
2,nMQ̂2,n) . (38)

Note that P̂2,n and Q̂2,n can be chosen up to postmultiplication by (m− r̂n)× (m− r̂n)

and (k − r̂n) × (k − r̂n) orthonormal matrices, respectively, but the term on the right

hand side of (38) is invariant to the choice of P̂2,n and Q̂2,n. For the latter, we estimate

φ′′Π0
by

φ̂′′n(M) =
φ(Π̂n + κnM)− φ(Π̂n)

κ2
n

. (39)

Remark 3.1. In effect, m out of n bootstrap and subsampling amounts to estimating

M based on subsamples (with and without replacement, respectively) and φ′′Π0
via the

numerical differentiation approach, in which case the tuning parameters for choosing

subsamples and estimation of the derivative coincide. Thus, our bootstrap procedure

can be more efficient in two ways. First, our bootstrap procedure makes efficient use of

the data in estimating M, since it is based on full samples. Second, our bootstrap pro-

cedure also provides alternative method of estimating φ′′Π0
by exploiting more structural

5We use #A to denote the cardinality of a set A. One can theoretically ignore r in the expression of
r̂n. However, taking minimum in the expression of r̂n is a way of imposing the information under the
null to ensure that the estimator in (38) is well defined and improve power.
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information of the data .

Given a suitable condition on κn ↓ 0, we are then able to prove that the law of the

weak limit in (32) is consistently estimated by the law of φ̂′′n(τn{Π̂∗n − Π̂n}) conditional

on the data. It in turn suggests employing the 1− α quantile ĉ1−α of φ̂′′n(τn{Π̂∗n − Π̂n})
conditional on the data:6

ĉ1−α ≡ inf{c ∈ R : PW (φ̂′′n(τn{Π̂∗n − Π̂n}) ≤ c) ≥ 1− α} . (40)

Note that ĉ1−α is generally infeasible in that it is constructed based on the “exact” dis-

tribution of φ̂′′n(τn{Π̂∗n− Π̂n}) conditional on the data. Nonetheless, it can be estimated

by Monte Carlo simulation and the estimation error can be made arbitrarily small by

choosing the number of bootstrap replications (Efron, 1979; Hall, 1992; Horowitz, 2001).

For each realization of τn{Π̂∗n − Π̂n}, the computation of φ̂′′n(τn{Π̂∗n − Π̂n}) requires

no more than calculating singular value decompositions with φ̂′′n in (38) and (39). When

φ̂′′n is given in (38), it is only necessary to calculate the singular value decomposition of

P̂ ᵀ2,nτn{Π̂∗n − Π̂n}Q̂2,n. When φ̂′′n is given in (39), it is only necessary to calculate the

singular value decomposition of Π̂n+κnτn{Π̂∗n−Π̂n}. Thus, the computation of simulated

critical values is as simple as the computation of the test statistic. Comparisons between

the estimators in (38) and (39) will be investigated in Monte Carlo studies.

The following theorem establishes that the test of rejecting H0 when τ2
nφ(Π̂n) > ĉ1−α

controls the asymptotic null rejection rate and is consistent.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold. Let κn ↓ 0 and τnκn →∞. Let

ĉ1−α be given in (40) with φ̂′′n in (38) or (39). If the cdf of the limit distribution in (32)

is continuous and strictly increasing at its 1− α quantile for α ∈ (0, 1), then under H0,

lim
n→∞

P (τ2
nφ(Π̂n) > ĉ1−α) = α .

Furthermore, under H1,

lim
n→∞

P (τ2
nφ(Π̂n) > ĉ1−α) = 1 .

Theorem 3.1 implies that our tests have the asymptotic null rejection rate that is

exactly equal to the nominal level, regardless of whether r0 = r or r0 < r. This stems

from the design of our bootstrap that estimates the asymptotic distribution pointwise

in Π0. In contrast to existing rank tests and the multiple testing method that may have

the asymptotic null rejection rate strictly below the nominal level when r0 < r, this

distinct feature shall make our tests more powerful. In particular, when Π0 is close to

a matrix with rank strictly less than r, our tests shall be more powerful in detecting

6PW denotes the probability with respect to the joint law of the random weights {Wi}ni=1.
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H1 than existing rank tests and the multiple testing method. In addition, in contrast

to existing rank tests that may fail to control the asymptotic null rejection rate when

r0 < r, our tests control the asymptotic null rejection rate regardless of whether r0 = r

or r0 < r. Theorem 3.1 also implies that our tests are consistent.

Several simple, new and powerful tests are immediate from Theorem 3.1. First,

applying Theorem 3.1 to Examples 2.1 yields tests for identification in linear IV models.

Second, applying Theorem 3.1 to Examples 2.2 and 2.3 yields tests for the existence of

stochastic trend and/or cointegration with or without VAR specification, respectively.

Third, applying Theorem 3.1 to Examples 2.4 yields tests for the existence of common

features.

We now discuss the quantile requirement on the limit distribution in (32) imposed

in Theorem 3.1. A necessary condition for that requirement to hold is P ᵀ0,2MQ0,2 6= 0

with positive probability, that is,

P (R(M) ∩N (Πᵀ0) 6= ∅) > 0 and P (R(Mᵀ) ∩N (Π0) 6= ∅) > 0 ,

where R(A) denotes the range of a matrix A and N (A) denotes the null space of a

matrix A. When M is zero mean Gaussian and r0 = r, the limit in (32) is a weighted

sum of independent χ2(1) random variables as shown in (35). This implies the limit

distribution is continuous, unless the covariance matrix of vec(P ᵀ0,2MQ0,2) is zero. Thus,

in this special case, the sufficient and necessary condition for the requirement to hold is

nonzero of the covariance matrix of vec(P ᵀ0,2MQ0,2). In contrast, Kleibergen and Paap

(2006) requires nonsingularity of the covariance matrix of vec(P ᵀ0,2MQ0,2). In view of

this, our tests rely on much weaker conditions than Kleibergen and Paap (2006).

Remark 3.2. The requirement on the limit distribution in (32) imposed in Theorem

3.1 may not be satisfied in testing for perfect multicollinearity in Example 2.1. When

Π̂n = 1
n

∑n
i=1 ZiZ

ᵀ
i , then the limit in (32) is degenerate at zero, which can be best seen

from (32) since MQ0,2 = 0. Heuristically, if the smallest singular value of Π0 is zero,

then λᵀZi is constantly zero for some constant λ ∈ Sk and the smallest singular value

of Π̂n is constantly zero. Nevertheless, one can easily prove that the properties of size

control and consistency continue to hold. �

4 Simulations and Applications

In this section, we first conduct Monte Carlo studies to examine the finite sample perfor-

mance of our tests, and show how existing rank tests when directly applied to (1) and the

multiple testing method may be conservative. We then apply our tests to study identi-

fication in stochastic discount factor models (Jagannathan and Wang, 1996). Lastly, we
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demonstrate how our tests can improve the accuracy of the sequential testing procedure

for rank determination.

4.1 Simulation Studies

We start with the performance of our tests for the problem in Section 2.2. To implement

our tests, we use the same estimator Π̂n as in Section 2.2 and the same nominal level

5%. The rejection rates, which are based on 10, 000 simulation replications with 500

nonparametric i.i.d. bootstrap replications for each Monte Carlo, are plotted in Figure

3. Clearly, Assumptions 3.1 and 3.2 are satisfied. The result is based on the derivative

estimator in (38) with κn = n−1/4, while the result for the derivative estimator in (38)

with κn = n−1/3 is similar and available upon request. For ease of comparison, we

combine Figures 1 and 3 to yield Figure 4, where CF denotes our tests and KP-M is

defined in Section 2.1. In contrast to KP-M, the null rejection rates of CF are close

to the 5% nominal level for all d as shown in Figure 3. As expected from Theorem

3.1, CF are more powerful than KP-M uniformly over d 6= 1 and all δ > 0 as shown

in Figure 4. In particular, in contrast to KP-M, all power curves of CF lie above the

5% nominal level line. Note the power curves do not coincide since the data generating

process (DGP) is varied for different d. Figure 4 also shows that the greater the value of

d is, the greater the power improvement is. In addition, when d = 1, CF are as powerful

as KP-M. Thus, these findings confirm that KP-M are too conservative, and CF provide

power improvement over KP-M. Given Figure 2, the comparison between CF and KP-D

is the same.

Figure 3: The rejection rate of our tests with 5% nominal level

We next investigate the finite sample performance of our tests, the Kleibergen and
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Figure 4: Comparison between our tests and the multiple testing method based on the
Kleibergen and Paap (2006) test with 5% nominal level

Paap (2006) test when directly applied, and the multiple testing method in more compli-

cated DGPs with heteroskedasticity, dependence and different sample sizes. We consider

two types of DGPs. For the first DGP (DGP1), we assume

Zᵀt = W ᵀ
t Π0 +W1,tu

ᵀ
t with ut = vt −

1

4
141

ᵀ
4vt−1, t = 1, . . . , T,

where vt
i.i.d.∼ N(0, I4), Wt

i.i.d.∼ N(0, I4) and W1,t is the first element of Wt. Note the

errors now are heteroskedastic and autocorrelated. Let

Π0 = diag(12,02) + ρI4 for ρ ≥ 0 .

For the second DGP (DGP2), following Kleibergen and Paap (2006) we assume

Rt = Π0Ft + εt with εt = vt + Γvt−1, t = 1, . . . , T,

where vt
i.i.d.∼ N(0,Σv) and Ft

i.i.d.∼ N(0,ΣF ) with Γ ∈ M10×10, Σv ∈ M10×10 and

ΣF ∈M4×4 given in Appendix D. Let

Π0 = βαᵀ + ρΠ1 for ρ ≥ 0 ,

where α ∈ R4, β ∈ R10 and Π1 ∈ M10×4 are given in Appendix D. These values are

estimates based on the real data used in Section 4.2. In view of this, we use DGP2 to

mimic possible scenarios in Section 4.2 as in Kleibergen and Paap (2006).

We examine the hypotheses (1) with r = 2 and r = 3 for DGP1, and the hypotheses
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(1) with r = 3 for DGP2. The design of Π0 implies that H0 is true if and only if δ = 0

for both cases. In particular, for DGP1 r0 = 2 under H0, and for DGP2 r0 = 1 under

H0. So r = 3 for both DGPs represents the case when Π0 is close to a matrix with rank

strictly less than r, while r = 2 for DGP1 represents the regular case. Given the findings

in Figure 4, for the hypotheses with r = 3 for both DGPs, it shall be expected that our

tests are more powerful than the Kleibergen and Paap (2006) test when directly applied

and the multiple testing method.

To implement all tests, we estimate Π0 by Π̂T = 1
T

∑T
t=1WtZ

ᵀ
t for DGP1 and by

Π̂T =
∑T

t=1RtF
ᵀ
t (

∑T
t=1 FtF

ᵀ
t )−1 for DGP2. It is clear that the asymptotic distribution

M of Π̂T is zero mean Gaussian with convergence rate
√
T , so Assumption 3.1 is satisfied.

As the data exhibits first order autocorrelation, we adopt the simple block bootstrap

(Lahiri, 2003) to resample the data with block size b = 2 for implementing our tests.

For derivative estimation in (38) and (39), we set the tuning parameter κT = T−1/4 and

T−1/3. It is also clear that all assumptions in Kleibergen and Paap (2006) are satisfied.

We use HACC matrix estimator with one lag (West, 1997) for the long run covariance

matrix estimator. See Appendix C for a review on the Kleibergen and Paap (2006) test.

We let ρ = 0, 0.1, · · · , 0.5 for DGP1 and ρ = 0, 0.01, · · · , 0.1 for DGP2, where ρ

represents how strong H1 deviates away from H0. We consider T = 50, 100, 300, 1000 for

DGP1 and T = 330 for DGP2. The rejection rates, which are based on 5, 000 simulation

replications with 500 bootstrap replications, are reported in Tables 1-3. We use CF1 and

CF2 to denote our tests using derivative estimator in (38) and (39), respectively, and

KP-D and KP-M to denote the Kleibergen and Paap (2006) test when directly applied

and the multiple testing method, respectively. The nominal level is 5% throughout.

The main findings are summarized as follows. First, CF1 exhibits good finite sample

performance for all cases, even when T = 50. Interestingly, as Tables 1 and 3 show, the

rejection rates of CF1 for r = 2 under DGP1 and r = 3 under DGP2 are invariant to the

choice of κT in most of cases. The rejection rates of CF1 for r = 3 under DGP1 are not

quite sensitive to the choice of κT . Second, the performance of CF2 is not as satisfactory

as that of CF1 in small samples. In particular, CF2 is over rejected for all cases with

ρ = 0 when T = 50 or 100. This indicates that good performance of CF2 may require a

larger T than CF1 does. This may be explained by the fact that the structural method

(CF1) exploits more information of the derivative. For large T , CF2 seems to be more

powerful than CF1 under DGP1 when T = 300 or 1, 000, while CF1 seems to be more

powerful than CF2 under DGP2. We leave a thorough comparison between these two

methods of derivative estimation for future study. Third, the performance of KP-M and

KP-D is less satisfactory than our tests. As Table 1 shows, KP-M and KP-D over-reject

the null for r = 2 under DGP1 with ρ = 0 when T = 50 or 100. This indicates that good

performance of KP-M and KP-D may require a large T . On other other hand, as Tables

2 and 3 show, KP-M and KP-D under-reject the null for r = 3 under DGP1 and DGP2
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with ρ = 0. This is consistent with the finding in Figure 1. Moreover, as expected, CF1

and CF2 are uniformly more powerful than KP-M and KP-D as shown in Tables 2 and

3.7 In addition, in our designed simulation, the rejection rates of KP-M and KP-D are

similar with insignificant difference, although the latter is slightly more powerful.

4.2 Testing for Identification in SDF Models

Following Jagannathan and Wang (1996), the stochastic discount factor (SDF) model

based on the conditional capital asset pricing model is specified as

E[Rt+1F
ᵀ
t+1γ0|It] = 1m , (41)

where Rt ∈ Rm is a vector of returns on m assets at time t, Ft ∈ Rk is a vector of

common factors at time t, It is the information set at time t, and γ0 ∈ Rk is a vector of

risk premia. The risk premia γ0 can be estimated by the generalized method of moments

(Hansen, 1982), see, for example, Jagannathan et al. (2002). The GMM estimator of γ0

is consistent if

E[Rt+1F
ᵀ
t+1|It] (42)

is of full rank at time t, see, for example, Hansen (1982) and Newey and McFadden

(1994). Therefore, it is of importance to test for the full rank of (42) to indicate whether

γ0 is identifiable.

When the conditional expectation of Rt+1F
ᵀ
t+1 does not depend on It and Rt satisfies

a linear factor model

Rt = Π0Ft + εt (43)

with E[Ftεt] = 0 and E[FtF
ᵀ
t ] being nonsingular, then testing for the full rank of (42)

is equivalent to testing for the full rank of Π0. Following Kleibergen and Paap (2006),

instead of testing for the full rank of (42), we opt to test whether Π0 is of full rank.

Thus, this amounts to examining the hypotheses (1) with r = k− 1. We cannot restrict

ourself to examine the hypotheses (2) since it is unrealistic to assume r0 ≥ k − 1 unless

k = 1.

We use the same set of data as in Kleibergen and Paap (2006). There are returns Rt

on 10 portfolios and 4 factors in Ft with observations from July 1963 to December 1990,

so m = 10, k = 4 and T = 330. The factors in Ft consist of constant, the return on

a value-weighted portfolio, a corporate bond yield spread and a measure of per capita

7In Table 2, the rejection rates of KP-M and KP-D under the alternatives are size adjusted ones.
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Table 1: Rejection rates for r = 2 under DGP1

ρ = 0

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.0380 0.0374 0.2764 0.2078 0.1276 0.1658

T = 100 0.0402 0.0402 0.1958 0.1232 0.0930 0.0952

T = 300 0.0450 0.0450 0.1218 0.0512 0.0606 0.0606

T = 1000 0.0472 0.0472 0.0752 0.0368 0.0526 0.0526

ρ = 0.1

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.0812 0.0812 0.3520 0.2676 0.0720 0.0828

T = 100 0.1210 0.1210 0.3356 0.2314 0.1262 0.1316

T = 300 0.3458 0.3458 0.5144 0.3600 0.3961 0.3962

T = 1000 0.8976 0.8976 0.9238 0.8784 0.9784 0.9152

ρ = 0.2

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.2248 0.2248 0.5714 0.4880 0.1904 0.2078

T = 100 0.4254 0.4254 0.6950 0.5750 0.4410 0.4520

T = 300 0.9350 0.9350 0.9694 0.9366 0.9526 0.9526

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.3

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.4776 0.4776 0.7852 0.7208 0.3682 0.4142

T = 100 0.8044 0.8044 0.9348 0.8906 0.7964 0.8102

T = 300 0.9992 0.9992 0.9980 1.0000 1.0000 1.0000

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.4

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.7220 0.7220 0.9236 0.8896 0.5380 0.6212

T = 100 0.9618 0.9618 0.9954 0.9832 0.9456 0.9586

T = 300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.5

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.8872 0.8872 0.9786 0.9658 0.6696 0.7846

T = 100 0.9960 0.9960 0.9994 0.9992 0.9840 0.9946

T = 300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2: Rejection rates for r = 3 under DGP1

ρ = 0

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.0594 0.0388 0.1410 0.1248 0.0072 0.0156

T = 100 0.0556 0.0328 0.1156 0.0944 0.0066 0.0110

T = 300 0.0486 0.0324 0.0766 0.0564 0.0050 0.0062

T = 1000 0.0550 0.0484 0.0656 0.0544 0.0044 0.0056

ρ = 0.1

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.0874 0.0534 0.1770 0.1600 0.0168 0.0270

T = 100 0.1114 0.0626 0.1936 0.1624 0.0270 0.0344

T = 300 0.2926 0.1562 0.3628 0.3068 0.0926 0.0994

T = 1000 0.8070 0.5948 0.8226 0.7730 0.5396 0.5428

ρ = 0.2

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.1804 0.1182 0.3334 0.3030 0.0698 0.0910

T = 100 0.3162 0.2060 0.4882 0.4342 0.1692 0.1806

T = 300 0.7774 0.6724 0.8872 0.8426 0.6644 0.6666

T = 1000 0.9988 0.9986 0.9960 0.9994 0.9982 0.9982

ρ = 0.3

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.3254 0.2538 0.5566 0.5166 0.1906 0.2432

T = 100 0.5678 0.4986 0.7886 0.7414 0.4856 0.4962

T = 300 0.9602 0.9576 0.9940 0.9874 0.9602 0.9602

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.4

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.4916 0.4460 0.7488 0.7110 0.3544 0.4434

T = 100 0.7758 0.7626 0.9422 0.9120 0.7552 0.7656

T = 300 0.9972 0.9972 0.9998 0.9996 0.9974 0.9974

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.5

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.6432 0.6288 0.8798 0.8442 0.5182 0.6290

T = 100 0.9146 0.9138 0.9880 0.9766 0.9016 0.9116

T = 300 0.9998 0.9998 1.0000 1.0000 0.9998 0.9998

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 3: Rejection rates for r = 3 under DGP2 when T = 330

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

ρ = 0.00 0.0514 0.0514 0.0468 0.0406 0.0006 0.0008

ρ = 0.01 0.2834 0.2834 0.1770 0.1104 0.0460 0.0482

ρ = 0.02 0.4228 0.4228 0.1648 0.0864 0.0956 0.1018

ρ = 0.03 0.5850 0.5850 0.2192 0.1242 0.2044 0.2166

ρ = 0.04 0.7526 0.7526 0.3268 0.2388 0.3562 0.3768

ρ = 0.05 0.8706 0.8706 0.4944 0.4010 0.5314 0.5598

ρ = 0.06 0.9500 0.9500 0.6622 0.5796 0.6898 0.7294

ρ = 0.07 0.9822 0.9606 0.8064 0.7388 0.7994 0.8464

ρ = 0.08 0.9932 0.9852 0.9032 0.8628 0.8748 0.9276

ρ = 0.09 0.9982 0.9936 0.9582 0.9368 0.9144 0.9670

ρ = 0.10 0.9998 0.9984 0.9842 0.9754 0.9306 0.9852

labor income growth. We estimate Π0 by

Π̂T =

T∑
t=1

RtF
ᵀ
t (

T∑
t=1

FtF
ᵀ
t )−1 . (44)

As demonstrated in Kleibergen and Paap (2006), the data on returns Rt exhibits first

order autocorrelation. To compute the test statistics of Kleibergen and Paap (2006) test,

we use HACC matrix estimator with one lag (West, 1997) for the long run covariance

matrix estimator. To implement our tests, we adopt the simple block bootstrap (Lahiri,

2003) to resample the data with block size b = 1, 2, 3, 4. For derivative estimation in

(39) and (38), we set the tuning parameter κT = T−1/4 and T−1/3.

The results, which are based on 1, 000 bootstrap replications, are reported in Table

4. We use CF1 and CF2 to denote our tests using derivative estimator in (38) and

(39), respectively, and KP-D and KP-M to denote the Kleibergen and Paap (2006) test

when directly applied and the multiple testing method based on it, respectively. As

Panel A of Table 4 indicates, all our tests fail to reject the non-full rank of Π0 with

5% nominal level, which is consistent with the finding in Kleibergen and Paap (2006).

However, the p values of our tests are uniformly smaller than 15% with some smaller

than 10%, while the p values of the two conventional tests are larger than 90%. This

implies that our tests reject the non-full rank of Π0 in some cases at the 10% level,

while the conventional tests never reject the non-full rank of Π0 at any conventional

significance level. In this sense, the evidence for non-identification of γ0 from our tests

is very weak, while the evidence from the conventional tests is very strong. Given the

drawback of the conventional tests, the conclusion from our tests is more reliable.
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Table 4: p values for different tests

Panel A: our tests

CF1 CF2

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3

b = 1 0.079 0.079 0.118 0.121

b = 2 0.094 0.094 0.113 0.119

b = 3 0.103 0.103 0.128 0.140

b = 4 0.082 0.082 0.137 0.138

Panel B: conventional tests

KP-M KP-D

0.9063 0.9063

The p value for KP-M is given by the smallest significance level such that the null
hypothesis is rejected, which is equal to the maximum p value of all Kleibergen and
Paap (2006)’s tests implemented by the multiple testing method.

4.3 Rank Determination

Testing for the hypotheses (1) only tells whether r0 satisfies the inequality or not. In

many cases, however, we still want to know what r0 is. In addition to employing the

multiple testing method to test for inequality of cointegration rank, Johansen (1995,

Chapter 12) also proposed a sequential testing procedure to determine the rank of coin-

tegration in VAR models (see, for instance, Example 2.2). More examples that concern

the true rank of a matrix can be found in Examples 2.5-2.7. In this section, we demon-

strate how our tests can improve the accuracy of the sequential testing procedure for

rank determination.

We first characterize the sequential testing procedure for rank determination in our

general framework following Johansen (1995, Chapter 12). For α ∈ (0, 1), let ψ
(r)
n be a

test for the hypotheses (1) or (2) such that limn→∞ P (ψ
(r)
n = 1) = α when r0 = r, and

limn→∞ P (ψ
(r)
n = 1) = 1 when r0 > r. For example, it can be any one of existing rank

tests or our tests. The sequential testing procedure starts with q = 0 and carries out

ψ
(q)
n with progressively larger q. The rank estimator r̂∗n is defined as the threshold value

q∗ when ψ
(q∗)
n does not reject the null hypothesis for the first time, and r̂∗n = k if such

q∗ does not exist. Formally, r̂∗n = k if ψ
(q)
n = 1 for all 0 ≤ q ≤ k − 1 and otherwise

r̂∗n = min{0 ≤ q ≤ k − 1 : ψ(q)
n = 0} . (45)

Remark 4.1. Clearly, r̂∗n > r is equivalent to ψ
(q)
n = 1 for all 0 ≤ q ≤ r. Thus, for

given existing rank tests {ψ(q)
n }rq=1, rejecting H0 by the multiple testing method based

on {ψ(q)
n }rq=1 is equivalent to r̂∗n > r where r̂∗n is based on {ψ(q)

n }rq=1. In fact, Kleibergen

and Paap (2006) relied on this relation for r = k− 1 to test for identification of the risk

premia parameters in stochastic discount factor models. �
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The following theorem establishes that r̂∗n is a good estimator for r0.

Theorem 4.1. For α ∈ (0, 1), let ψ
(r)
n be a test for the hypotheses (1) or (2) such that

limn→∞ P (ψ
(r)
n = 1) = α when r0 = r, and limn→∞ P (ψ

(r)
n = 1) = 1 when r0 > r. Then

limn→∞ P (r̂∗n < r0) = 0,

lim
n→∞

P (r̂∗n = r0) = 1− α if r0 < k and 1 if r0 = k ,

and

lim
n→∞

P (r̂∗n > r0) = α if r0 < k and 0 if r0 = k .

Theorem 4.1 implies that the true rank is correctly chosen with probability no smaller

than 1− α asymptotically, a smaller rank is chosen with probability going to zero, and

a larger rank is chosen with probability no larger than α asymptotically. In short, {r̂∗n}
provides a confidence set for r0 with asymptotic coverage probability no smaller than

1 − α. Interestingly, Theorem 4.1 does not rely on the behavior of ψ
(q)
n when q > r0,

since the sequential testing procedure carries out ψ
(q)
n progressively from q = 0 to larger

q and terminates before q = r0 with probability no smaller than 1 − α asymptotically.

That is, efficient rank determination does not require the ability of detecting whether

rank(Π0) is strictly less than a hypothesized value. This explains why the hypotheses

(2) has become prevalent.

However, the procedure crucially depends on the behavior of ψ
(q)
n when q < r0,

that is, the power of detecting whether rank(Π0) is strictly greater than hypothesized

values. In particular, the probability of ensuring a no smaller rank crucially depends

on the probability of accepting r0 > q for q = 0, . . . , r0 − 1, which is the power of

ψ
(q)
n for q = 0, . . . , r0 − 1. This suggests that our tests may be leveraged for accuracy

improvement in the sequential testing procedure for rank determination, provided the

improved power property of our tests over existing rank tests as shown in Sections 2.2

and 4.1.

To show how the sequential testing procedure based on our tests can be more accurate

than that based on existing rank tests, we focus on the case of the Kleibergen and Paap

(2006) test and present some simulation evidence. We use the same DGP given in (21)

and (22) with δ = 0.1 and 0.12. The design of Π0 implies that r0 = 6 for both δ’s and

all d = 1, . . . , 6. The Kleibergen and Paap (2006) test and our tests are implemented

as in Section 2.1 and 4.1. The probability distributions of r̂∗n, which are based on 5, 000

simulation replications are reported in Figures 5 and 6. We use CF to denote the

sequential testing procedure based on our tests and KP to denote the one based on the

Kleibergen and Paap (2006) test. The result is based on κn = n−1/4 and the derivative

estimator in (38). The result for κn = n−1/3 is similar and is available upon request. As

shown in both figures, CF yields more accurate rank estimators than KP uniformly over

d = 1, . . . , 6 for both δ’s. In particular, KP tends to underestimate the true rank when d
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increases. The coverage probability of the resulting rank estimator is 5.46% when d = 6

and δ = 0.1, and 25.3% when d = 6 and δ = 0.12. The coverage probabilities of CF’s

rank estimator are greater than those of KP’s rank estimator.

Figure 5: Comparison between the sequential testing procedures based on our tests and
the Kleibergen and Paap (2006) test with α = 5% and δ = 0.1

Remark 4.2. To obtain a consistent estimator for r0, Cragg and Donald (1997) and

Robin and Smith (2000) make an adjustment dependent on n to the nominal level α.

The consistency of r̂∗n can be obtained when the adjusted nominal level αn → 0 as

n → ∞ and satisfies certain rate requirement. In fact, the estimator r̂n used in (38)

provides a simple and consistent estimator for r0, see Lemma A.6. �

5 Conclusion

In this paper, we developed a more powerful method for examining a “no greater than”

inequality of the rank of a matrix and a more accurate procedure for rank determination

in a general setup. We proved that our tests have the asymptotic null rejection rate

that is exactly equal to the nominal level regardless of whether the rank is less than

or equal to the hypothesized value. Our simulation results showed that our tests are

often more powerful than the multiple testing method, and improve the accuracy of

the sequential testing procedure for rank determination. We illustrated our methods

in several examples, including testing for identification and testing for the existence of

stochastic trend and/or cointegration, to show the wide applicability of our methods.
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Figure 6: Comparison between the sequential testing procedures based on our tests and
the Kleibergen and Paap (2006) test with α = 5% and δ = 0.12

Appendix A Proofs of Main Results

The following list includes notation and definitions that will be used in the appendix.

Mm×k The space of m× k real matrices for m, k ∈ N.
Aᵀ The transpose of a matrix A ∈Mm×k.

tr(A) The trace of a square matrix A ∈Mk×k.
vec(A) The column vectorization of A ∈Mm×k.
‖A‖ The Frobenius norm of a matrix A ∈Mm×k.
σj(A) The jth largest singular value of a matrix A ∈Mm×k.
Sm×k A subset of Mm×k: Sm×k ≡ {U ∈Mm×k : UᵀU = Ik}.
C(T ) The space of continuous functions on a (topological) space T .

ϕ : D� E A correspondence from a set D to another set E.

Proof of Lemma 3.1: The proof is based on a simple application of the representa-

tion of extremal partial trace. Recall that σ2
1(Π), . . . , σ2

k(Π) are eigenvalues of ΠᵀΠ in

descending order. Let d ≡ k − r. It follows by Proposition 1.3.4 in Tao (2012) that

φ(Π) =

k∑
j=r+1

σ2
j (Π) = inf

u1,...,ud

d∑
j=1

uᵀjΠ
ᵀΠuj , (A.1)

where the infimum is taken over all u1, . . . , ud ∈ Rk that are orthonormal. Let U ≡
[u1, . . . , ud]. Clearly, U ∈ Sk×d. By (A.1) and the definition of Frobenius norm, we
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further have

φ(Π) = inf
U∈Sk×d

tr(UᵀΠᵀΠU) = inf
U∈Sk×d

‖ΠU‖2 . (A.2)

The infimum in (A.2) is in fact achieved on Sk×d because U 7→ ‖ΠU‖2 is clearly contin-

uous, and Sk×d is compact since it is closed and bounded. This completes the proof of

the lemma. �

Proof of Proposition 3.1: Recall that d = k − r. Define φ1 : Mm×k → C(Sk×d) by

φ1(Π)(U) = ‖ΠU‖2, and φ2 : C(Sk×d) → R by φ2(f) = min{f(U) : U ∈ Sk×d}, thus

φ = φ2 ◦ φ1 by Lemma 3.1. For part (i), we proceed by verifying first order Hadamard

directional differentiability of φ1 and φ2, and then conclude by the chain rule.

Let {Mn} ⊂Mm×k be such that Mn →M ∈Mm×k and tn ↓ 0 as n→∞. For each

n ∈ N, define gn : Sk×d → R by

gn(U) =
‖(Π + tnMn)U‖2 − ‖ΠU‖2

tn
=
‖ΠU + tnMnU‖2 − ‖ΠU‖2

tn
,

and g : Sk×d → R by g(U) = 2tr((ΠU)ᵀMU). Then by simple algebra we have

sup
U∈Sk×d

|gn(U)− g(U)| = sup
U∈Sk×d

|2tr((ΠU)ᵀ(Mn −M)U) + tn‖MnU‖2|

≤ sup
U∈Sk×d

{2‖ΠU‖‖(Mn −M)U‖+ tn‖MnU‖2} , (A.3)

where the inequality follows by the triangle inequality and the Cauchy-Schwarz inequal-

ity for the trace operator. For the right hand side of (A.3), we have

sup
U∈Sk×d

{2‖ΠU‖‖(Mn −M)U‖+ tn‖MnU‖2}

≤ sup
U∈Sk×d

{2‖Π‖‖U‖‖Mn −M‖‖U‖+ tn‖Mn‖2‖U‖2} = o(1) , (A.4)

where we exploited the sub-multiplicativity of Frobenius norm and the fact that ‖U‖ =√
d and that Mn → M as well as tn ↓ 0 as n → ∞. We thus conclude from (A.3) and

(A.4) that gn → g uniformly in C(Sk×d), or equivalently φ1 is first order Hadamard

directionally differentiable at Π with derivative φ′1,Π : Mm×k → C(Sk×d) given by

φ′1,Π(M)(U) = 2tr((ΠU)ᵀMU) . (A.5)

On the other hand, Theorem 3.1 in Shapiro (1991) implies that φ2 : C(Sk×d) → R

is first order Hadamard directionally differentiable at any f ∈ C(Sk×d) with derivative
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φ′2,f : C(Sk×d)→ R given by

φ′2,f (h) = min
U∈Ψ(f)

h(U) , (A.6)

where, by abuse of notation, Ψ(f) ≡ arg minU∈Sk×d f(U). Combining (A.5), (A.6)

and the chain rule (Shapiro, 1990, Proposition 3.6), we may now conclude that φ :

Mm×k → R is first order Hadamard directionally differentiable at any Π ∈Mm×k with

the derivative φ′Π : Mm×k → R given by

φ′Π(M) = φ′2,φ1(Π) ◦ φ
′
1,Π(M) = min

U∈Ψ(Π)
2tr((ΠU)ᵀMU) .

This completes the proof of part (i) of the proposition.

For part (ii), note that φ(Π) = 0 implies that ΠU = 0 for all U ∈ Ψ(Π) and hence

φ′Π(M) = 0 for all M ∈ Mm×k. Recall that {Mn} ⊂ Mm×k with Mn → M ∈ Mm×k

and tn ↓ 0 as n→∞. By Lemma 3.1 we have

|φ(Π + tnMn)− φ(Π + tnM)| ≤ | min
U∈Sk×d

‖(Π + tnMn)U‖ − min
U∈Sk×d

‖(Π + tnM)U‖|

× ( min
U∈Sk×d

‖(Π + tnMn)U‖+ min
U∈Sk×d

‖(Π + tnM)U‖) , (A.7)

where the inequality follows by the formula a2 − b2 = (a+ b)(a− b). For the first term

on the right hand side of (A.7), we have

| min
U∈Sk×d

‖(Π + tnMn)U‖ − min
U∈Sk×d

‖(Π + tnM)U‖| ≤ tn
√
d‖Mn −M‖ = o(tn) , (A.8)

where the inequality follows by the Lipschitz continuity of the infimum operator, the

triangle inequality, the sub-multiplicativity of Frobenius norm and ‖U‖ =
√
d for U ∈

Sk×d. For the second term on the right hand side of (A.7), we have

min
U∈Sk×d

‖(Π + tnMn)U‖+ min
U∈Sk×d

‖(Π + tnM)U‖ ≤ ‖(Π + tnMn)U∗‖

+ ‖(Π + tnM)U∗‖ ≤ tn‖Mn‖‖U∗‖+ tn‖M‖‖U∗‖ = O(tn) , (A.9)

where the first inequality follows by letting U∗ be an element from Ψ(Π), and the second

inequality follows by ΠU∗ = 0, the sub-multiplicativity of Frobenius norm and the fact

that ‖U∗‖ =
√
d and that Mn →M as n→∞. Combining (A.7)-(A.9), we thus obtain

|φ(Π + tnMn)− φ(Π + tnM)| = o(t2n) . (A.10)

Next, for ε > 0, let Ψ(Π)ε ≡ {U ∈ Sk×d : minU ′∈Ψ(Π) ‖U ′ − U‖ ≤ ε} and Ψ(Π)ε1 ≡
{U ∈ Sk×d : minU ′∈Ψ(Π) ‖U ′ − U‖ ≥ ε}. In what follows we consider the nontrivial case

Π 6= 0 and M 6= 0. In this case, Ψ(Π) $ Sk×d in view of Proposition 1.3.4 in Tao (2012)
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and hence Ψ(Π)ε1 6= ∅ for ε sufficiently small. Let σ+
min(Π) denote the smallest positive

singular value of Π which exists since Π 6= 0, and ∆ ≡ 3
√

2[σ+
min(Π)]−1 maxU∈Sk×d

‖MU‖ > 0 since M 6= 0. Then it follows that for all n sufficiently large

min
U∈Ψ(Π)tn∆

1

‖(Π + tnM)U‖ ≥ min
U∈Ψ(Π)tn∆

1

‖ΠU‖ − tn max
U∈Sk×d

‖MU‖

≥
√

2

2
tnσ

+
min(Π)∆− tn max

U∈Sk×d
‖MU‖ > tn max

U∈Sk×d
‖MU‖

≥ min
U∈Ψ(Π)

‖(Π + tnM)U‖ ≥
√
φ(Π + tnM) , (A.11)

where the first inequality follows by the Lipschitz continuity of the infimum operator, the

triangle inequality and the fact that Ψ(Π)tn∆
1 ⊂ Sk×d, the second inequality follows by

Lemma A.1, the third inequality follows by the definition of ∆, and the fourth inequality

holds by the fact that ΠU = 0 for U ∈ Ψ(Π). By (A.11), we thus obtain that for all n

sufficiently large

φ(Π + tnM) = min
U∈Ψ(Π)tn∆

‖(Π + tnM)U‖2 . (A.12)

Now, for fixed U ∈ Ψ(Π), ∆ > 0 and t ∈ R, let Γ∆ ≡ {V ∈Mk×d : ‖V ‖ ≤ ∆} and

Γ∆
U (t) ≡ {V ∈ Γ∆ : U + tV ∈ Sk×d} = {V ∈ Γ∆ : V ᵀU + UᵀV = −tV ᵀV }. Define a

correspondence ϕ : R � Sk×d × Γ∆ by ϕ(t) = {(U, V ) : U ∈ Ψ(Π), V ∈ Γ∆
U (t)}. Then

the right hand side of (A.12) can be written as

min
U∈Ψ(Π)tn∆

‖(Π + tnM)U‖2 = min
(U,V )∈ϕ(tn)

‖(Π + tnM)(U + tnV )‖2

= t2n min
(U,V )∈ϕ(tn)

‖ΠV +MU‖2 + o(t2n) , (A.13)

where the second equality follows by the fact that ΠU = 0 for all U ∈ Ψ(Π) and

‖MV ‖ ≤ ‖M‖∆ for all V ∈ Γ∆. By Lemma A.2, ϕ(t) is continuous at t = 0. Moreover,

ϕ is obviously compact-valued. We may then obtain by Theorem 17.31 in Aliprantis

and Border (2006) that

min
(U,V )∈ϕ(tn)

‖ΠV +MU‖2 = min
(U,V )∈ϕ(0)

‖ΠV +MU‖2 + o(1)

= min
U∈Ψ(Π)

min
V ∈Mk×d

‖ΠV +MU‖2 + o(1) , (A.14)

where the second equality holds by letting ∆ sufficiently large in view of Lemma A.3.

Combining (A.10), (A.12), (A.13) and (A.14) then yields part (ii) of the proposition. �

Proof of Proposition 3.2 Recall that d = k− r and let d∗ ≡ k− r∗. Noting that the

column vectors in Q2 form a orthonormal basis for the null space of Π0, we may rewrite
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Ψ(Π) as Ψ(Π) = {Q2V : V ∈ Sd∗×d}. This together with the projection theorem implies

φ′′Π(M) = min
V ∈Sd∗×d

‖(I −Π(ΠᵀΠ)−Πᵀ)MQ2V ‖2 , (A.15)

where A− denotes the Moore-Penrose inverse of a generic matrix A. By the singular

value decomposition of Π, we have

(I −Π(ΠᵀΠ)−Πᵀ)P = P − PΣQᵀ(QΣᵀP ᵀPΣQᵀ)−QΣᵀP ᵀP

= P − PΣQᵀQ(ΣᵀP ᵀPΣ)−QᵀQΣᵀP ᵀP = P − PΣ(ΣᵀΣ)−Σᵀ = [0, P2] , (A.16)

where the second equality exploited Theorem 20.5.6 in Harville (2008), the third equality

follows from P and Q being orthonormal, and the fourth equality is obtained by carrying

out the Moore-Penrose inverse by Exercise 2.7.4 in Magnus and Neudecker (2007) and

noting that Σ is diagonal. In view of (A.16), we have

min
V ∈Sd∗×d

‖(I −Π(ΠᵀΠ)−Πᵀ)MQ2V ‖2 = min
V ∈Sd∗×d

‖[0, P2]P ᵀMQ2V ‖2

= min
V ∈Sd∗×d

‖P2P
ᵀ
2MQ2V ‖2 = min

V ∈Sd∗×d
‖P ᵀ2MQ2V ‖2 =

k−r∗∑
j=r−r∗+1

σ2
j (P

ᵀ
2MQ2) , (A.17)

where the third equality follows from P ᵀ2 P2 = Im−r∗ and the final equality follows from

Lemma 3.1. Combining (A.15) and (A.17) concludes the proof of the proposition. �

Proof of Proposition 3.3: The first and second results are straightforward appli-

cation of Theorem 2.1 in Fang and Santos (2015) and Chen and Fang (2015) by noting

that φ′Π0
= 0 under H0, respectively. In particular, Assumptions 2.1(i)-(ii) are satisfied

in view of Proposition 3.1 and Assumption 2.2 is satisfied by Assumption 3.1. �

Proof of Theorem 3.1: By Lemma A.5 and the maintained assumptions, each of the

two derivative estimators are consistent for φ′′Π0
in the sense that they satisfy Assumption

3.4 in Chen and Fang (2015). This, together with Lemma A.2 in Chen and Fang (2015),

Assumption 3.2, Proposition 3.3, and the cdf of the limit distribution being strictly

increasing at its 1 − α quantile c1−α, implies that ĉ1−α
p−→ c1−α, following exactly the

same proof of Corollary 3.2 in Fang and Santos (2015). Then under H0, the first claim

of the theorem follows from combining Proposition 3.3, Slutsky’s lemma, c1−α being a

continuity point of the limit distribution and the portmanteau theorem.

For the second part of the theorem, let G∗n ≡ τn{Π̂∗n − Π̂n}. By the definition of

ĉ1−α, if PW (φ̂′′n(G∗n) ≤ τ2
nφ(Π̂n)) ≥ 1−α , then we must have ĉ1−α ≤ τ2

nφ(Π̂n) and hence

P (τ2
nφ(Π̂n) ≥ ĉ1−α) ≥ PX(PW (φ̂′′n(G∗n) ≤ τ2

nφ(Π̂n)) ≥ 1− α) . (A.18)

We shall show that the right side of (A.18) tends to one as n→∞ for each of the two
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derivative estimators. First, consider the numerical estimator (39). Note that

PW (φ̂′′n(G∗n) ≤ τ2
nφ(Π̂n)) = PW (

φ(Π̂n + κnτn{Π̂∗n − Π̂n})− φ(Π̂n)

κ2
n

≤ τ2
nφ(Π̂n))

≥ PW (
φ(Π̂n + κnτn{Π̂∗n − Π̂n})

κ2
n

≤ τ2
nφ(Π̂n))

= PW (φ(Π̂n + κnτn{Π̂∗n − Π̂n}) ≤ (κnτn)2φ(Π̂n)) . (A.19)

Since Π̂n
p−→ Π0 and φ is continuous at Π0, the continuous mapping theorem implies

that: under H1,

φ(Π̂n)
p−→ φ(Π0) > 0 . (A.20)

By Assumptions 3.1 and 3.2, together with the assumption that κn = o(1) as n→∞ and

continuity of φ, we have φ(Π̂n+κnτn{Π̂∗n−Π̂n}) = OPW (1) with probability approaching

one. Consequently, by κnτn →∞, with probability approaching one,

PW (φ(Π̂n + κnτn{Π̂∗n − Π̂n}) ≤ (κnτn)2φ(Π̂n))→ 1 > 1− α . (A.21)

By the dominated convergence theorem, we may conclude from results (A.19), (A.20)

and (A.21) that

PX(PW (φ̂′′n(G∗n) ≤ τ2
nφ(Π̂n)) ≥ 1− α)→ 1 . (A.22)

This implies the second claim of the theorem holds when φ̂′′n is the numerical derivative

estimator. Second, consider the derivative estimator (38). Recall that d̂n = k − r̂n and

d = k − r. By Lemma 3.1, we have

PW (φ̂′′n(G∗n)) ≤ τ2
nφ(Π̂n) = PW ( min

U∈Sd̂n×d
‖P̂ ᵀ2,nτn{Π̂

∗
n − Π̂n}Q̂2,nU‖2 ≤ τ2

nφ(Π̂n))

≥ PW (‖τn{Π̂∗n − Π̂n}‖2mkd ≤ τ2
nφ(Π̂n)) ,

where the second inequality exploited ‖P̂ ᵀ2,n‖2‖Q̂2,n‖2 ≤ mk and ‖U‖2 = d. The second

claim of the theorem then follows by analogous arguments as above. �

Proof of Theorem 4.1: We prove the results for three different cases: when r0 = k,

when 1 ≤ r0 ≤ k − 1 and when r0 = 0. It suffices to show the first two results. First,

we show the second result. When r0 = k, we have

lim
n→∞

P (r̂∗n = r0)= lim
n→∞

P (ψ(0)
n = 1, · · · , ψ(k−1)

n = 1) ≥ 1−
k−1∑
q=0

(1− lim
n→∞

P (ψ(q)
n = 1)) = 1 ,
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where the inequality follows by the Boole’s inequality. When 1 ≤ r0 ≤ k − 1, we have

lim
n→∞

P (r̂∗n = r0) = lim
n→∞

P (ψ(0)
n = 1, · · · , ψ(r0−1)

n = 1, ψ(r0)
n = 0)

≤ 1− lim
n→∞

P (ψ(r0)
n = 1) = 1− α , (A.23)

where the inequality follows by the fact that P (A) ≤ P (B) for A ⊂ B, and

lim
n→∞

P (r̂∗n = r0) = lim
n→∞

P (ψ(0)
n = 1, · · · , ψ(r0−1)

n = 1, ψ(r0)
n = 0)

≥ 1−
r0−1∑
q=0

(1− lim
n→∞

P (ψ(q)
n = 1))− lim

n→∞
P (ψ(r0)

n = 1) = 1− α , (A.24)

where the inequality follows by the Boole’s inequality. Combining results (A.23) and

(A.24) gives the result when 1 ≤ r0 ≤ k − 1. When r0 = 0, we have

lim
n→∞

P (r̂∗n = r0) = lim
n→∞

P (ψ(0)
n = 0) = 1− lim

n→∞
P (ψ(0)

n = 1) = 1− α .

Next, we show the first result. When r0 = k, we have

lim
n→∞

P (r̂∗n < r0) ≤
k−1∑
q=0

(1− lim
n→∞

P (ψ(q)
n = 1)) = 0 ,

where the inequality holds by the Boole’s inequality. When 1 ≤ r0 ≤ k − 1, we have

lim
n→∞

P (r̂∗n < r0) ≤
r0−1∑
q=0

(1− lim
n→∞

P (ψ(q)
n = 1)) = 0 ,

where the inequality holds by the Boole’s inequality. When r0 = 0, obviously P (r̂∗n <

r0) = 0. This completes the proof of the theorem. �

Lemma A.1. Suppose Π ∈Mm×k with Π 6= 0 and rank(Π) ≤ r. For ε > 0, let Ψ(Π)ε1
be given in the proof of Proposition 3.1. Let σ+

min(Π) be the smallest positive singular

value of Π. Then for all sufficiently small ε > 0, we have

min
U∈Ψ(Π)ε1

‖ΠU‖ ≥
√

2

2
σ+

min(Π)ε .

Proof: Let Π = PΣQᵀ be a singular value decomposition of Π, where P ∈ Sm×m

and Q ∈ Sk×k are orthonormal, and Σ ∈ Mm×k is diagonal with diagonal entries in

descending order. Recall that d = k − r and let r∗ ≡ rank(Π). For U ∈ Sk×d, let

UQ ≡ QᵀU and write UᵀQ = [U
(1)ᵀ
Q , U

(2)ᵀ
Q ] such that U

(1)
Q ∈ Mr∗×d. Then we have that

for U ∈ Sk×d,

‖ΠU‖ = ‖PΣQᵀU‖ = ‖ΣUQ‖ ≥ σ+
min(Π)‖U (1)

Q ‖ , (A.25)
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where the second equality follows by P ᵀP = Im, and the inequality follows by the fact

that Σ is diagonal with diagonal entries in descending order and σ+
min(Π) = σr∗(Π) is the

smallest positive entry. Let U
(2)
Q = P

(2)
U Σ

(2)
U Q

(2)ᵀ

U be a singular value decomposition of

U
(2)
Q where Q

(2)
U ∈ Sd×d, P (2)

U ∈ S(k−r∗)×(k−r∗) and Σ
(2)
U ∈M(k−r∗)×d a diagonal matrix

with diagonal entries in descending order. Note that k − r∗ ≥ d since r∗ ≤ r. It follows

that for U ∈ Sk×d,

‖U (2)
Q ‖

2 =
d∑
j=1

σ2
j (U

(2)
Q ) ≤

d∑
j=1

σj(U
(2)
Q ) = tr([Id,0r−r∗ ]Σ

(2)
U ) , (A.26)

where the inequality follows by the fact that σj(U
(2)
Q ) ∈ [0, 1] as singular values of U

(2)
Q

due to U
(2)ᵀ
Q U

(2)
Q + U

(1)ᵀ
Q U

(1)
Q = Id, and the second equality follows by noting that the

diagonal entries of Σ
(2)
U are singular values of U

(2)
Q . Since ‖U (1)

Q ‖2+‖U (2)
Q ‖2 = ‖UQ‖2 = d,

thus combining (A.25) and (A.26) yields that for U ∈ Sk×d,

‖ΠU‖ ≥ σ+
min(Π)

√
d− tr([Id,0r−r∗ ]Σ

(2)
U ) . (A.27)

Since ‖U (1)
Q ‖2 + ‖Σ(2)

U ‖2 = ‖U (1)
Q ‖2 + ‖U (2)

Q ‖2 = d and ‖[Id,0r−r∗ ]ᵀ‖2 = d, then simple

algebra yields that for U ∈ Sk×d,

2(d− tr([Id,0d−r∗ ]Σ
(2)
U )) = ‖U (1)

Q ‖
2 + ‖Σ(2)

U − [Id,0r−r∗ ]
ᵀ‖2 . (A.28)

Write Q = [Q1, Q2] such that Q1 ∈ Mk×r∗ . Since Qᵀ1Q1 = Ir∗ , Q
ᵀ
2Q2 = Ik−r∗ and

Qᵀ1Q2 = 0 as well as P
(2)
U and Q

(2)
U are orthonormal, we then have that for U ∈ Sk×d,

‖U (1)
Q ‖

2 +‖Σ(2)
U − [Id,0r−r∗ ]

ᵀ‖2 =‖Q1U
(1)
Q +Q2P

(2)
U (Σ

(2)
U − [Id,0r−r∗ ]

ᵀ)Q
(2)ᵀ
U ‖2 . (A.29)

Since U
(1)
Q = Qᵀ1U and U

(2)
Q = Qᵀ2U by construction and Q1Q

ᵀ
1U + Q2Q

ᵀ
2U = U by

QQᵀ = Ik, we then have that for U ∈ Sk×d,

|Q1U
(1)
Q +Q2P

(2)
U (Σ2− [Id,0r−r∗ ]

ᵀ)Q
(2)ᵀ
U ‖2 = ‖U−Q2P

(2)
U [Id,0r−r∗ ]

ᵀQ
(2)ᵀ
U ‖2 . (A.30)

Clearly, Q2P
(2)
U [Id,0r−r∗ ]

ᵀQ
(2)ᵀ
U ∈ Ψ(Π), so combining (A.28)- (A.30) yields that for

U ∈ Sk×d,

2(d− tr([Id,0r−r∗ ]Σ
(2)
U )) ≥ min

U ′∈Ψ(Π)
‖U − U ′‖2 . (A.31)

Since Π 6= 0, then Ψ(Π)ε1 6= ∅ for all sufficiently small ε > 0 by Proposition 1.3.4 in Tao

(2012). Fix such an ε. By the definition of Ψ(Π)ε1, combining (A.27) and (A.31) yields
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that for all U ∈ Ψ(Π)ε1,

‖ΠU‖ ≥
√

2

2
σ+

min(Π) min
U ′∈Ψ(Π)

‖U − U ′‖ ≥
√

2

2
σ+

min(Π)ε . (A.32)

Then the lemma follows by applying minimum over Ψ(Π)ε1 to both sides of (A.32) and

noting that the result continues to hold for all sufficiently small ε > 0. �

Lemma A.2. Let the correspondence ϕ be as in the proof of Proposition 3.1. Then ϕ(t)

is continuous at t = 0.

Proof: Fix U0 ∈ Ψ(Π), and define the correspondence ϕ̄ : R � Γ∆ given by ϕ̄(t) =

Γ∆
U0

(t), where Ψ(Π), Γ∆ and Γ∆
U0

(t) are given in the proof of Proposition 3.1. Recall

that d = k− r. For each {tn} satisfying tn ↓ 0 and each V0 ∈ ϕ̄(0), consider the function

f : Γ∆ →Mk×d given by

f(V ) = V0 −
tn
2
U0V

ᵀV .

Since f is continuous and Γ∆ is compact, f is a compact map in the sense of Granas

and Dugundji (2003). It follows from Theorem 0.2.3 in Granas and Dugundji (2003)

that one of the following two cases must happen: i) f has a fixed point V1n ∈ Γ∆,

and ii) there exists some V2n ∈ Γ∆ such that ‖V2n‖ = ∆ and V2n = λnf(V2n) with

λn ≡ ∆
‖f(V2n)‖ ∈ (0, 1). In case i), since U0 ∈ Ψ(Π), V0 ∈ ϕ̄(0) and f(V1n) = V1n, then

by simple algebra we have

V ᵀ1nU0 + Uᵀ0V1n = (V0−
tn
2
U0V

ᵀ
1nV1n)ᵀU0 + Uᵀ0 (V0−

tn
2
U0V

ᵀ
1nV1n) = −tnV ᵀ1nV1n . (A.33)

This together with V1n ∈ Γ∆ implies that V1n ∈ ϕ̄(tn). Moreover, since f(V1n) = V1n,

‖U0‖ =
√
d and V1n ∈ Γ∆, then by the sub-multiplicativity of Frobenius norm we have

‖V1n − V0‖ = ‖ tn
2
U0V

ᵀ
1nV1n‖ ≤

tn
2

√
d∆2 . (A.34)

In case ii), since U0 ∈ Ψ(Π), λ2
nV0 ∈ ϕ̄(0) and λnV2n = λ2

nf(V2n), then by analogous

calculations as in (A.33), we have

(λnV2n)ᵀU0 + Uᵀ0 (λnV2n) = −tn(λnV2n)ᵀ(λnV2n) .

This together with λnV2n ∈ Γ∆ due to λn ∈ (0, 1) and V2n ∈ Γ∆ implies that λnV2n ∈
ϕ̄(tn). Moreover, since λnV2n = λ2

nf(V2n), then by analogous calculations as in (A.34),

we have

‖λnV2n − V0‖ ≤ ‖λ2
nf(V2n)− λ2

nV0‖+ |λ2
n − 1|‖V0‖ ≤

tn
2

√
d∆2 + |λ2

n − 1|∆ , (A.35)

where the first inequality follows the triangle inequality and the second inequality follows
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since λn ∈ (0, 1). Now, for each n ∈ N, define V ∗n to be V1n if case (i) happens and λnV2n

otherwise. Let δn ≡ 1 if case (i) happens and δn ≡ λn otherwise. Then V ∗n ∈ Γ∆
U0

(tn)

for all n ∈ N, and combination of (A.34) and (A.35) yields

‖V ∗n − V0‖ ≤
tn
2

√
d∆2 + |δ2

n − 1|∆→ 0 ,

where we exploited the fact that if V2n exists infinitely often, δn = λn = ∆
‖f(V2n)‖ → 1

due to f(V2n)→ V0 as n→∞ and ‖V0‖ ≤ ∆, and tn → 0 as n→∞. It follows that ϕ̄(t)

is lower hemicontinuous at t = 0 by Theorem 17.21 in Aliprantis and Border (2006).

The lower hemicontinuity of ϕ(t) at t = 0 follows easily from that of ϕ̄(t) again by

Theorem 17.21 in Aliprantis and Border (2006). To see this, let tn → 0 and (U0, V0) ∈
ϕ(0). Define (U∗n, V

∗
n ) to be U∗n = U0 and V ∗n be as in previous construction for all

n ∈ N. Clearly, (U∗n, V
∗
n ) → (U0, V0), implying that ϕ(t) is lower hemicontinuous at

t = 0. Since ϕ(t) is contained in the compact set Sk×d × Γ∆ for all t, ϕ(t) is upper

hemicontinuous at t = 0 by Theorem 17.20 in Aliprantis and Border (2006). We have

therefore showed that ϕ(t) is continuous at t = 0. �

Lemma A.3. Suppose Π ∈Mm×k with Π 6= 0 and rank(Π) ≤ r, and M ∈Mm×k with

M 6= 0. Let Ψ(Π) given in the proof of Proposition 3.1. For U ∈ Ψ(Π) and ∆ > 0, let

Γ∆
U (0) be as in the proof of Proposition 3.1. Recall that d = k−r. When ∆ is sufficiently

large, then for all U ∈ Ψ(Π),

min
V ∈Γ∆

U (0)
‖ΠV +MU‖2 = min

V ∈Mk×d
‖ΠV +MU‖2 .

Proof: Recall that Π = PΣQᵀ is a singular value decomposition of Π, where P ∈ Sm×m

and Q ∈ Sk×k are orthonormal, and Σ ∈ Mm×k is diagonal with diagonal entries in

descending order. Recall that r∗ = rank(Π) < r. We may write Σ = [Σ1, 0] such that

Σ1 ∈Mm×r∗ is of full rank with r∗ < r. It follows that

min
V ∈Mk×d

‖ΠV +MU‖2 = min
V ∈Mr∗×d

‖[PΣ1V +MU‖2 . (A.36)

By the projection theorem, the minimum on the right hand side of (A.36) is attained at

some point, say V ∗1 ∈Mr∗×d. Moreover, V ∗1 is uniformly bounded over U ∈ Ψ(Π). Let

V ∗ ≡ Q[V ∗ᵀ1 , 0]ᵀ ∈Mk×d, then the minimum on the left hand side of (A.36) is attained

at V ∗. Recall that Q = [Q1, Q2], where Q1 ∈Mk×r∗ . Then V ∗ = Q1V
∗

1 ∈ Γ∆
U (0) for all

U ∈ Ψ(Π), when ∆ is sufficiently large. It implies that the minimum on the right hand

side of (A.36) is attained within Γ∆
U (0) as well for all U ∈ Ψ(Π), when ∆ is sufficiently

large. This implies that when ∆ is sufficiently large,

min
V ∈Γ∆

U (0)
‖ΠV +MU‖2 ≤ min

V ∈Mk×d
‖ΠV +MU‖2
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for all U ∈ Ψ(Π). The reverse inequality is simply true since Γ∆
U (0) ⊂Mk×d all U ∈ Ψ(Π)

and all ∆ > 0. This completes the proof of the lemma. �

Lemma A.4. Suppose rank(Π) ≤ r and let φ′′Π : Mm×k → R be given in Proposition

3.1. If rank(Π) = r, there exists a bilinear map Φ′′Π : Mm×k ×Mm×k → R such that

φ′′Π(M) = Φ′′Π(M,M) for all M ∈Mm×k; if rank(Π) < r, such a Φ′′Π does not exist.

Proof: Recall that Π = PΣQᵀ is a singular value decomposition of Π, where P ∈ Sm×m

and Q ∈ Sk×k are orthonormal, and Σ ∈ Mm×k is diagonal with diagonal entries in

descending order. Recall that d = k − r. If rank(Π) = r, then Proposition 3.2 and

Lemma 3.1 imply

φ′′Π(M) = min
V ∈Sd×d

‖P ᵀ2MQ2V ‖2 = ‖P ᵀ2MQ2‖2 ,

for all M ∈ Mm×k, which is a quadratic form corresponding to the bilinear form

Φ′′Π(M1,M2) ≡ tr(Qᵀ2M
ᵀ
1P2P

ᵀ
2M2Q2) for M1 ∈Mm×k and M2 ∈Mm×k.

Next, suppose that rank(Π) < r0 and assume that there exists a bilinear map Φ′′Π
corresponding to φ′′Π. In turn, bilinearity of Φ′′Π implies that

φ′′Π(M1) + φ′′Π(M2) =
φ′′Π(M1 +M2) + φ′′Π(M1 −M2)

2
(A.37)

for all M1 ∈ Mm×k and M2 ∈ Mm×k. Recall that r∗ = rank(Π). If M = P2HQ
ᵀ
2 for

some H ∈M(m−r∗)×(k−r∗), then Proposition 3.2 and Lemma 3.1 imply

φ′′Π(M) = σ2
r−r∗+1(H) + · · ·+ σ2

k−r∗(H) . (A.38)

Now, let H1 ∈ M(m−r∗)×(k−r∗) be diagonal with the (j, j)th entry equal to 1 for j =

1, . . . , k − r∗ and H2 ∈M(m−r∗)×(k−r∗) be diagonal with the (j, j)th entry equal to −1

for j = 1 and 1 for j = 2, . . . , k− r∗. Set Mi = P2HiQ
ᵀ
2 for i = 1, 2, the result in (A.38)

implies φ′′Π(M1) = φ′′Π(M2) = k− r, φ′′Π(M1 +M2) = 4(k− r)− 4 and φ′′Π(M1−M2) = 0.

It follows that

2(k − r) = φ′′Π(M1) + φ′′Π(M2) 6=
φ′′Π(M1 +M2) + φ′′Π(M1 −M2)

2
= 2(k − r)− 2 ,

which contradicts the result (A.37). Thus, the second result of the lemma follows. �

Lemma A.5. Suppose Assumption 3.1 holds, κn ↓ 0 and τnκn → ∞. Let φ̂′′n be con-

structed as in (39) or (38). Then we have under H0,

φ̂′′n(Mn)
p−→ φ′′Π0

(M)

whenever Mn →M as n→∞ for {Mn} ⊂Mm×k and M ∈Mm×k.
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Proof: When φ̂′′n is constructed as in (39), the result of the lemma follows by Propo-

sition 3.1 of Chen and Fang (2015). Next we consider the derivative estimator (38).

Recall that d = k − r and let d̂n ≡ k − r̂n. By Lemma 3.1, we have

|φ̂′′n(Mn)− φ̂′′n(M)| ≤ | min
U∈Sd̂n×d

‖P̂ ᵀ2,nMnQ̂2,nU‖ − min
U∈Sd̂n×d

‖P̂ ᵀ2,nMQ̂2,nU‖|

× ( min
U∈Sd̂n×d

‖P̂ ᵀ2,nMnQ̂2,nU‖+ min
U∈Sd̂n×d

‖P̂ ᵀ2,nMQ̂2,nU‖) , (A.39)

where the inequality follows by the formula (a2− b2) = (a+ b)(a− b). For the first term

on the right hand side of (A.39), we have

| min
U∈Sd̂n×d

‖P̂ ᵀ2,nMnQ̂2,nU‖ − min
U∈Sd̂n×d

‖P̂ ᵀ2,nMQ̂2,nU‖| ≤
√
kmd‖Mn −M‖ = op(1) , (A.40)

where the inequality follows by the Lipschitz continuity of the infimum operator, the

triangle inequality and ‖P̂2,n‖ ≤
√
m, ‖Q̂2,n‖ ≤

√
k and ‖U‖ =

√
r for all U ∈ Sd̂n×d,

and the equality follows since Mn →M . For the second term on the right hand side of

(A.39), we have

min
U∈Sd̂n×d

‖P̂ ᵀ2,nMnQ̂2,nU‖+ min
U∈Sd̂n×d

‖P̂ ᵀ2,nMQ̂2,nU‖ ≤
√
kmd‖Mn‖+

√
kmd‖M‖ , (A.41)

where the inequality follows by the sub-multiplicability of the Frobenius norm, ‖P̂2,n‖ ≤√
m, ‖Q̂2,n‖ ≤

√
k and ‖U‖ =

√
r for all U ∈ Sd̂n×d. Combining (A.39)-(A.41), then we

obtain

|φ̂′′n(Mn)− φ̂′′n(M)| = op(1) . (A.42)

Recall that φ′′Π0
(M) =

∑k−r0
j=r−r0+1 σ

2
j (P

ᵀ
0,2MQ0,2). By (A.42), Lemma 3.1 and A.6, it

suffices to show that given r̂n = r0,

|
k−r̂n∑

j=r−r̂n+1

σ2
j (P̂

ᵀ
2,nMQ̂2,n)−

k−r0∑
j=r−r0+1

σ2
j (P

ᵀ
0,2MQ0,2)| = op(1) . (A.43)

Let r̂n = r0. Let q̂j be the jth column of Q̂2,n. Since Q0 ∈ Sk×k, we may write q̂j = Q0ûj

for some (random) ûj ∈ Sk×1. Noting that q̂j is the eigenvector of Π̂ᵀnΠ̂n associated with

the eigenvalue σ2
r0+j(Π̂n) due to r̂n = r0, we then have

[Π̂ᵀnΠ̂n −Πᵀ0Π0 − (σ2
r0+j(Π̂n)− σ2

r0+j(Π0))Ik + Πᵀ0Π0 − σ2
r0+j(Π0)Ik]Q0ûj

= [Π̂ᵀnΠ̂n − σ2
r0+j(Π̂n)Ik]q̂j = 0 . (A.44)

Noting that ‖Π̂ᵀnΠ̂n − Πᵀ0Π0‖ = op(1) and |σ2
r0+j(Π̂n) − σ2

r0+j(Π0)| = op(1) by the con-

tinuous mapping theorem, the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)) and
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Assumption 3.1, we then conclude from (A.44) that

op(1) = [Πᵀ0Π0 − σ2
r0+j(Π0)Ik]Q0ûj = Q0Σᵀ0Σ0ûj , (A.45)

where we exploited the singular value decomposition Π0 = P0Σ0Q
ᵀ
0, and the fact that

σ2
r0+j(Π0) = 0. Since the first r0 diagonal elements of the diagonal matrix Σᵀ0Σ0 are

positive and Q0 being nonsingular, we may conclude from result (A.45) that the first

r0 elements of ûj are op(1) and moreover by the definition of q̂j that for some random

U2 ∈ S(k−r0)×(k−r0),

Q̂2,n = Q0,2U2 + op(1) , (A.46)

By an analogous argument, we have that for some random V2 ∈ S(m−r0)×(m−r0),

P̂2,n = P0,2V2 + op(1) . (A.47)

Combining results (A.46) and (A.47) and the continuous mapping theorem yields that

given r̂n = r0,

‖P̂ ᵀ2,nMQ̂2,n − V ᵀ2 P
ᵀ
0,2MQ0,2U2‖ = op(1) . (A.48)

Thus, (A.43) is obtained by (A.48), the continuous mapping theorem and the fact that

the singular values of V ᵀ2 P
ᵀ
0,2MQ0,2U2 are equal to those of P ᵀ0,2MQ0,2. This completes

the proof of the lemma. �

Lemma A.6. Suppose Assumption 3.1 holds, κn ↓ 0 and τnκn → ∞. Let r̂n =

min{r,#{1 ≤ j ≤ k : σj(Π̂n) ≥ κn}}. Then we have under H0,

lim
n→∞

P (r̂n = r0) = 1 .

Proof: Noting that r̂n > r0 implies σr0+1(Π̂n) ≥ κn and that σr0+1(Π0) = 0, we then

have

lim sup
n→∞

P (r̂n > r0) ≤ lim sup
n→∞

P (|σr0+1(Π̂n)− σr0+1(Π0)| ≥ κn)

≤ lim sup
n→∞

P (‖τn(Π̂n −Π0)‖ ≥ τnκn) = 0 , (A.49)

where the first inequality follows by P (A) ≤ P (B) for A ⊂ B, the second inequality

follows by the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)), and the equality follows

by Assumption 3.1 and τnκn →∞. Noting that r̂n < r0 implies σr0(Π̂n) < κn, we then

have

lim sup
n→∞

P (r̂n < r0) ≤ lim sup
n→∞

P (|σr0(Π̂n)− σr0(Π0)| > −κn + σr0(Π0))
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≤ lim sup
n→∞

P (‖τn(Π̂n −Π0)‖ ≥ τnσr0(Π0)(1− κn/σr0(Π0)) = 0 , (A.50)

where the first inequality follows by P (A) ≤ P (B) for A ⊂ B, the second inequality

follows by the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)), and the equality follows

by Assumption 3.1, σr0(Π0) > 0, τn → ∞ and κn ↓ 0. Combining (A.49) and (A.50)

yields

lim sup
n→∞

P (r̂n 6= r0) ≤ lim sup
n→∞

P (r̂n < r0) + lim sup
n→∞

P (r̂n > r0) = 0 .

This completes the proof of the lemma by noting that limn→∞ P (r̂n = r0) = 1 −
limn→∞ P (r̂n 6= r0) = 1. �

Appendix B Results for Examples 2.1-2.7

Example 2.2 (Continued). Suppose {Yt}nt=1 is a sequence of data from Example

2.2. Let Π̂n be the least squares estimator

Π̂n =
1

n

n∑
t=2

∆YtY
ᵀ
t−1(

1

n

n∑
t=2

Yt−1Y
ᵀ
t−1)−1 . (B.1)

Let Dn ≡ diag(
√
n1r0 , n1k−r0) and B0 ≡ [Q0,1, P0,2]ᵀ, where r0, Q0,1 and P0,2 are given

in Proposition 3.3. By Lemma A.2 of Liao and Phillips (2015), if Φ0 has eigenvalues on

or inside the unit circle, then

(Π̂n −Π0)B−1
0 DnB0

L−→M =M1 +M2 , (B.2)

where M1 ∈ Mk×k with vec(M1) ∼ N(0,Σ ⊗ (Q0,1Σ−1
1 Qᵀ0,1)) and Σ1 ≡ Var(Qᵀ0,1Yt),

and M2 ∈Mk×k with

M2 ∼ Σ1/2

∫ 1

0
dBk(t)Bk(t)

ᵀΣ1/2P0,2(P ᵀ0,2Σ1/2

∫ 1

0
Bk(t)Bk(t)

ᵀdtΣ1/2P0,2)−1P ᵀ0,2

and Bk(t) is a k×1 Brownian motion defined on the unit interval with identity covariance

matrix at time t. Given that Assumption 3.1 is not satisfied since the rates in Dn are

not homogenous unless r0 = 0 or r0 = k, we extend Proposition 3.3 to accommodate

this case. Next we focus on the nontrivial case of testing for the existence of stochastic

trend. By Proposition B.2, the asymptotic distribution of n2φ(Π̂n) under H0 is given by

k−r0∑
j=r−r0+1

σ2
j (Σ

1/2
r0

∫ 1

0
dBk−r0(t)Bk−r0(t)ᵀ(

∫ 1

0
Bk−r0(t)Bk−r0(t)ᵀdt)−1Σ−1/2

r0 P ᵀ0,2Q0,2) , (B.3)

where Σr0 = P ᵀ0,2ΣP0,2 and Q0,2 is given in Proposition 3.3. When r0 < k − 1, the

asymptotic distribution can be highly nonstandard. Note that P0,2 and Q0,2 are identi-
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fied up to postmultiplication by (k − r0) × (k − r0) orthonormal matrices, so the weak

limits in (B.2) and (B.3) are invariant to the choice of P2,0 and Q2,0.

Another distinct feature of this example is thatM depends on Π0, in particular, on

r0. This presents a challenge for estimating M by bootstrap. We propose a residual

based bootstrap following Swensen (2006) and Cavaliere et al. (2012). To this end, we

need a consistent estimator for r0, that can be obtained by various methods, for example,

the estimator r̂n used in (38). We propose the following bootstrap algorithm.

1. Given the consistent estimator r̂n of r0, calculate the reduced rank estimate Π̂r,n

and the corresponding residuals ûr,t, for example, following Johansen (1991). Let

ûcr,t ≡ ûr,t − n−1
∑n

t=1 ûr,t, i.e., ûcr,t are recentered residuals of ûr,t.

2. Check that det|(1− z)Ik − Π̂r,nz| has k− r̂n roots equal to one and all other roots

outside the unit circle. If so, proceed to the next step.

3. Construct the bootstrap sample {Y ∗t }nt=1 recursively from (7) with the initial value

Y0, Π0 = Π̂r,n, and u∗t being generated from {ûcr,t}nt=1 by the nonparametric boot-

strap. Calculate the least squares estimator

Π̂∗n =
1

n

n∑
t=2

∆Y ∗t Y
∗ᵀ
t−1(

1

n

n∑
t=2

Y ∗t−1Y
∗ᵀ
t−1)−1 . (B.4)

Let B̂n is the analog of B0 and D̂n is the analog of Dn by letting Π0 = Π̂r,n. It then

can be proved that

(Π̂∗n − Π̂r,n)B̂−1
n D̂nB̂n

L∗→M (B.5)

almost surely, where
L∗→ denotes the weak convergence conditional on the data. That is,

the law of the weak limit M is consistently estimated by the proposed bootstrap. Note

that Assumption 3.2 is not satisfied.

Given that Assumptions 3.1 and 3.2 are not satisfied, we extend Theorem 3.1 to

accommodate this case. Let κn ↓ 0, nκn → ∞, and φ̂′′n be given in (38). We note that

the same argument in the proof of Theorem 3.2 of Fang and Santos (2015) and Theorem

3.3 of Chen and Fang (2015) can be applied to prove that the law of the weak limit in

(B.3) is consistently estimated by the law of

φ̂′′n((Π̂∗n − Π̂r,n)B̂−1
n D̂nB̂n) (B.6)

conditional on the data. Let ĉ1−α be the 1−α quantile of (B.6) conditional on the data.

Then the same argument in the proof of Theorem 3.1 can be applied to prove that the

test of rejecting H0 when n2φ(Π̂n) > ĉ1−α controls the asymptotic null rejection rate

and is consistent. �
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Example 2.4-2.7 (Continued). The analysis here is similar to Example 2.1. Suppose

the data is generated in Examples 2.4-2.7. In Example 2.4, let Π̂n be the least squares

estimator of Γ0 from regressing Yt on Zt and Wt based on (11). In Examples 2.5-2.7,

let Π̂n be the method of moment estimators based on (14), (16) and (18), respectively.

Then, under certain weak dependence and moment condition, Assumption 3.1 is satisfied

by all of four examples with τn =
√
n and M bing a zero mean Gaussian. Specifically,

in Example 2.4 the Gaussian limit follows by the standard result of linear regression,

and Examples 2.5-2.7 the Gaussian limit follows by the central limit theorem.

Let the resampled data be generated by the nonparametric bootstrap when the

original data is a sequnce of i.i.d. data, and by a block bootstrap when the original data

is a sequence of dependent data. Then, under certain weak dependence and moment

condition, in Example 2.4 Assumption 3.2 is satisfied with Π̂∗n being be the least squares

estimator of Γ0 from regressing Y ∗t on Z∗t and W ∗t based on (11), and in Examples 2.5-2.7

Assumption 3.2 is satisfied with Π̂∗n being the method of moment estimators based on

(14), (16) and (18), respectively. �

Proposition B.1. Let φ : Mk×k → R be defined as in (24). For Π ∈Mk×k satisfying

φ(Π) = 0, let r∗, P2, Q1 and Q2 be given in Proposition 3.2. Let B∗ ≡ [Q1, P2]ᵀ. Then

for Π ∈Mk×k satisfying φ(Π) = 0, we have

lim
n→∞

φ(Π +MnT
∗
nB
∗)

t4n
=

k−r∗∑
j=r−r∗+1

σ2
j (P

ᵀ
2MQ2) with T ∗n ≡ diag(tn1r∗ , t

2
n1k−r∗) ,

for all sequences {Mn} ⊂Mk×k and {tn} ⊂ R+ such that tn ↓ 0, MnB
∗ →M ∈Mm×k

as n→∞.

Proof: Let {Mn} ⊂ Mk×k be such that MnB
∗ → M ∈ Mk×k and tn ↓ 0 as n → ∞.

Write Mn = [Mn,1,Mn,2] such that Mn,1 ∈Mk×r∗ , and M = M1 +M2 with Mn,1Q
ᵀ
1 →

M1 and Mn,2P
ᵀ
2 →M2. Clearly, M1U = 0 for all U ∈ Ψ(Π). Recall that d = k − r. For

ε > 0, let Ψ(Π)ε and Ψ(Π)ε1 be given in the proof of Proposition 3.1. In what follows

we consider the nontrivial case with Π 6= 0 and M2 6= 0. In this case, Ψ(Π) $ Sk×d in

view of Proposition 1.3.4 in Tao (2012) and hence Ψ(Π)ε1 6= ∅ for ε sufficiently small.

Let σ+
min(Π) be the smallest positive singular value of Π, which exists since Π 6= 0. Let

∆ ≡ 5
√

2[σ+
min(Π)]−1(maxU∈Sk×d ‖M2U‖ + maxU∈Sk×d ‖M1U‖) > 0, which holds since

M2 6= 0. Then it follows that for all n sufficiently large

min
U∈Ψ(Π)tn∆

1

‖(Π +MnT
∗
nB
∗)U‖ ≥ min

U∈Ψ(Π)tn∆
1

‖ΠU‖ − max
U∈Sk×d

‖MnT
∗
nB
∗U‖

≥
√

2

2
tnσ

+
min(Π)∆− tn max

U∈Sk×d
‖Mn,1Q

ᵀ
1U‖ − t

2
n max
U∈Sk×d

‖Mn,2P
ᵀ
2U‖

> t2n max
U∈Sk×d

‖Mn,2P
ᵀ
2U‖ ≥ min

U∈Ψ(Π)
‖(Π +MnT

∗
nB
∗)U‖ ≥

√
φ(Π +MnT ∗nB

∗) , (B.7)
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where the first inequality follows by the Lipschitz continuity of the infimum operator,

the triangle inequality and the fact that Ψ(Π)tn∆
1 ⊂ Sk×d, the second inequality follows

by Lemma A.1 and the triangle inequality, the third inequality follows by the definition

of ∆, tn ↓ 0, Mn,1Q
ᵀ
1 → M1 and Mn,2P

ᵀ
2 → M2 as n → ∞, the fourth inequality holds

by the fact that ΠU = 0 and Qᵀ1U = 0 for U ∈ Ψ(Π), and the last inequality follows by

Lemma 3.1. Let Γ∆ and the correspondence ϕ : R � Sk×d × Γ∆ be given in the proof

of Proposition 3.1. Then it follows that

max
U∈Ψ(Π)tn∆

‖MnT
∗
nB
∗U‖ ≤ tn max

(U,V )∈ϕ(tn)
‖(Mn,1Q

ᵀ
1)(U + tnV )‖+ t2n max

U∈Sk×d
‖Mn,2P

ᵀ
2U‖

≤ t2n max
V ∈Γ∆

‖Mn,1Q
ᵀ
1V ‖+ t2n max

U∈Sk×d
‖Mn,2P

ᵀ
2U‖ , (B.8)

where the first inequality follows by the triangle inequality and the fact that Ψ(Π)tn∆ ⊂
Sk×d, and the second inequality follows by the fact that Qᵀ1U = 0 for U ∈ Ψ(Π) and

ϕ(tn) ⊂ Ψ(Π) × Γ∆. By analogous arguments in (B.7), we have for all n sufficiently

large

min

U∈Ψ(Π)
t
3/2
n ∆

1 ∩Ψ(Π)tn∆

‖(Π +MnT
∗
nB
∗)U‖ ≥ min

U∈Ψ(Π)
t
3/2
n ∆

1

‖ΠU‖ − max
U∈Ψ(Π)tn∆

‖MnT
∗
nB
∗U‖

≥
√

2

2
t3/2n σ+

min(Π)∆− t2n max
V ∈Γ∆

‖Mn,1Q
ᵀ
1V ‖ − t

2
n max
U∈Sk×d

‖Mn,2P
ᵀ
2U‖

> t2n max
U∈Sk×d

‖Mn,2P
ᵀ
2U‖ ≥ min

U∈Ψ(Π)
‖(Π +MnT

∗
nB
∗)U‖ ≥

√
φ(Π +MnT ∗nB

∗) , (B.9)

where the first inequality follows by the Lipschitz continuity of the infimum operator, the

triangle inequality and the fact that Ψ(Π)t
3/2
n ∆

1 ∩Ψ(Π)tn∆ ⊂ Ψ(Π)t
3/2
n ∆

1 and Ψ(Π)t
3/2
n ∆

1 ∩
Ψ(Π)tn∆ ⊂ Ψ(Π)tn∆, the second inequality follows by (B.8) and Lemma A.1, the third

inequality follows by the definition of ∆ and Γ∆, tn ↓ 0, Mn,1Q
ᵀ
1 → M1 and Mn,2P

ᵀ
2 →

M2 as n → ∞, the fourth inequality holds by the fact that ΠU = 0 and Qᵀ1U = 0 for

U ∈ Ψ(Π), and the last inequality follows by Lemma 3.1. By analogous arguments in

(B.9), we have for all n sufficiently large

min
U∈Ψ(Π)

t2n∆
1 ∩Ψ(Π)t

3/2
n ∆

‖(Π +MnT
∗
nB
∗)U‖ >

√
φ(Π +MnT ∗nB

∗) . (B.10)

Combining (B.7), (B.9), (B.10) and Lemma 3.1, we thus obtain that for all n sufficiently

large

φ(Π +MnT
∗
nB
∗) = min

U∈Ψ(Π)t
2
n∆

‖(Π +MnT
∗
nB
∗)U‖2 . (B.11)
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Now, for the right hand side of (B.11), we have

| min
U∈Ψ(Π)t

2
n∆

‖(Π +MnT
∗
nB
∗)U‖2 − min

U∈Ψ(Π)t
2
n∆

‖(Π + tnM1 + t2nM2)U‖2|

≤ (O(t2n) +O(t2n)) max
U∈Ψ(Π)t

2
n∆

‖(tn(M1,nQ
ᵀ
1 −M1) + t2n(M2,nP

ᵀ
2 −M2))U‖ , (B.12)

where the inequality follows by the formula a2−b2 = (a+b)(a−b), the Lipschitz inequal-

ity of the infimum operator, the triangle inequality, and the fact that min
U∈Ψ(Π)t

2
n∆ ‖(Π+

MnT
∗
nB
∗)U‖ = O(t2n) and min

U∈Ψ(Π)t
2
n∆ ‖(Π+MT ∗nB

∗)U‖ = O(t2n). For the second term

on the right hand side of (B.12), we have

max
U∈Ψ(Π)t

2
n∆

‖(tn(M1,nQ
ᵀ
1 −M1) + t2n(M2,nP

ᵀ
2 −M2))U‖

≤ tn max
(U,V )∈ϕ(t2n)

‖(Mn,1Q
ᵀ
1 −M1)(U + t2nV )‖+ t2n max

U∈Ψ(Π)t
2
n∆

‖(Mn,2P
ᵀ
2 −M2)U‖

≤ max
V ∈Γ∆

t3n‖(Mn,1Q
ᵀ
1 −M1)V ‖+ t2n max

U∈Ψ(Π)t
2
n∆

‖(Mn,2P
ᵀ
2 −M2)U‖ = o(t2n) , (B.13)

where the first inequality follows by the triangle inequality and the definition of ϕ(t2n),

the second inequality follows by the fact that Qᵀ1U = 0 and M1U = 0 for U ∈ Ψ(Π)

and ϕ(t2n) ⊂ Ψ(Π) × Γ∆, and the equality follows by applying the sub-multiplicativity

of Frobenius norm and the fact that Mn,1Q
ᵀ
1 → M1 and Mn,2P

ᵀ
2 → M2 as n → ∞.

Combining (B.11), (B.12) and (B.13), we then obtain

φ(Π +MnT
∗
nB
∗) = min

U∈Ψ(Π)t
2
n∆

‖(Π + tnM1 + t2nM2)U‖2 + o(t4n) . (B.14)

Next, the first term on the right hand side of (B.14) can be written as

min
U∈Ψ(Π)t

2
n∆

‖(Π + tnM1 + t2nM2)U‖2 = min
(U,V )∈ϕ(t2n)

‖(Π + tnM1 + t2nM2)(U + t2nV )‖2

= t4n min
(U,V )∈ϕ(t2n)

‖ΠV +MU‖2 + o(t4n) , (B.15)

where the second equality follows by the fact that ΠU = 0 and M1U = 0 for U ∈ Ψ(Π)

and ‖V ‖ ≤ ∆ for all V ∈ Γ∆. By analogous arguments in (A.14), we have

min
(U,V )∈ϕ(t2n)

‖ΠV +MU‖2 = min
U∈Ψ(Π)

min
V ∈Mk×d

‖ΠV +MU‖2 + o(1) . (B.16)

Combining (B.14), (B.15) and (B.16), we may conclude that

lim
n→∞

φ(Π +MnT
∗
nB
∗)

t4n
= min

U∈Ψ(Π)
min

V ∈Mk×d
‖ΠV +MU‖ =

k−r∗∑
j=r−r∗+1

σ2
j (P

ᵀ
2MQ2) , (B.17)
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where the second equality follows by Proposition 3.2. This completes the proof of the

lemma. �

Proposition B.2. Suppose Π0 ∈Mk×k, and let r0, Q0,1 and P0,2 be given in Proposition

3.3. Suppose there are Π̂n : {Xi}ni=1 →Mk×k such that (Π̂n − Π0)B−1
0 DnB0

L→M for

some τn ↑ ∞ and random matrix M ∈ Mk×k, where Dn ≡ diag(τn1r0 , τ
2
n1k−r0) and

B0 ≡ [Q0,1, P0,2]ᵀ. Then we have under H0,

τ4
nφ(Π̂n)

L−→
k−r0∑

j=r−r0+1

σ2
j (P

ᵀ
0,2MQ0,2) .

Proof: For each n ∈ N, define gn : Mk×k → R by

gn(M) ≡ τ4
nφ(Π0 +MD−1

n B0) . (B.18)

By Proposition B.1, gn(Mn) →
∑k−r∗

j=r−r∗+1 σ
2
j (P

ᵀ
2MQ2) whenever MnB

∗ → M . Note

that τ4
nφ(Π̂n) = gn((Π̂n − Π0)B−1

0 Dn), then the result of the proposition follows by

Theorem 1.11.1(i) in van der Vaart and Wellner (1996). �

Appendix C Kleibergen and Paap (2006)’s Test

For ease of reference, we review the rank test by Kleibergen and Paap (2006). Let

Π̂n ∈ Mm×k be an estimator for Π0 ∈ Mm×k that satisfies Assumption 3.1 with τn =
√
n and vec(M) ∼ N(0,Ω) for some positive semidefinite matrix Ω. Let Ω̂n be a

consistent estimator of Ω. Let Π̂n = P̂nΣ̂nQ̂
ᵀ
n be a singular value decomposition of Π̂n,

where P̂n ∈ Sm×m and Q̂n ∈ Sk×k, and Σ̂n ∈ Mm×k is diagonal with diagonal entries

in descending order. Write P̂n = [Ân, B̂n] and Q̂n = [Ĉn, D̂n] for Ân ∈ Mm×r and

Ĉn ∈ Mk×r, and let Ŝn be the right bottom (m − r) × (k − r) block submatrix of Σ̂n.

Then the test statistic for the hypotheses (2) is given by

rk(r) = nvec(Ŝn)ᵀ[(D̂n ⊗ B̂n)ᵀΩ̂n(D̂n ⊗ B̂n)]−1vec(Ŝn) , (C.1)

where ⊗ denotes the kronecker product. Thus, the rank test with the nominal level α ∈
(0, 1) rejects the null H

(r)
0 in the hypotheses (2) whenever rk(r) > χ2((m−r)(k−r), 1−α).

Note that B̂n and D̂n can be chosen up to postmultiplication by (m− r)× (m− r) and

(k− r)× (k− r) orthonormal matrices, respectively, but rk(r) is invariant to the choice

of B̂n and D̂n.

In order to examine the asymptotic behavior of the rank test when rank(Π0) < r, we

consider the case with Π0 = 02×2, Ω is positive definite and r = 1. Let M = PWQ be

a singular value decomposition ofM, where P ∈ S2×2 and Q ∈ S2×2, and W ∈M2×2 is

diagonal with diagonal entries in descending order. Write P = [P1,P2] and Q = [Q1,Q2]
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for P1 ∈M2×1 and Q1 ∈M2×1, and let S be (2,2)th entry of W. Then by Lemma C.1,

the asymptotic distribution of rk(1) is given by

rk(1)
L−→ S2

(Q2 ⊗ P2)ᵀΩ(Q2 ⊗ P2)
. (C.2)

Note that P2 and Q2 can be chosen up to a sign, respectively, but the asymptotic

distribution is invariant to the choice of P2 and Q2.

We now plot the distribution function of the weak limit in (C.2) by simulation. We

consider two values of Ω:

Ω1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and Ω2 =


1 0 0 −0.9

√
5

0 1 0.9
√

5 0

0 0.9
√

5 5 0

−0.9
√

5 0 0 5

 .

The distribution functions based on 100,000 simulation replications are plotted in Figure

7. The weak limit when Ω = Ω1 is first order dominated by the χ2(1) random variable,

and the weak limit when Ω = Ω2 first order dominates the χ2(1) random variable. This

implies that directly applying the test to (1) will under-reject the null when Ω = Ω1,

and will over-reject the null when Ω = Ω2.

Figure 7: The distribution function of the weak limit of rk(1) when Π0 = 02×2

Lemma C.1. Let rk(r) be given in (C.1). Suppose Π0 = 02×2 and Ω is positive definite.

Then the asymptotic distribution of rk(1) is given in (C.2).

Proof: For x ∈ R, let sgn(x) ≡ 1{x ≥ 0} − 1{x < 0}. Note that D̂n and Q2 are the

eigenvalue of nΠ̂ᵀnΠ̂n and MᵀM associated with the smallest eigenvalue. By analogous
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arguments in Lemma 4.3 of Bosq (2000), we have

‖sgn(D̂ᵀnQ2)D̂n −Q2‖ ≤
2
√

2

σ2
1(M)− σ2

2(M)
‖nΠ̂ᵀnΠ̂n −MᵀM‖ . (C.3)

Similarly, we have

‖sgn(B̂ᵀnP2)B̂n − P2‖ ≤
2
√

2

σ2
1(M)− σ2

2(M)
‖nΠ̂nΠ̂ᵀn −MMᵀ‖ . (C.4)

Note that
√
nŜn = σ2(

√
nΠ̂n) and S = σ2(M). By the fact that singular values are

continuous, (C.3), (C.4) and the continuous mapping theorem, we thus obtain that

(
√
nŜn, sgn(B̂ᵀnP2)B̂ᵀn, sgn(D̂ᵀnQ2)D̂ᵀn)

L−→ (S,Pᵀ2 ,Q
ᵀ
2) . (C.5)

Note that rk(1) does not change by replacing B̂n and D̂n with sgn(B̂ᵀnP2)B̂n and

sgn(D̂ᵀnQ2)D̂n, respectively, so the result of the lemma follows by (C.5) together with

the continuous mapping theorem. �

Appendix D Parameters in Section 4.1

The values of parameters for DGP2 in the simulation studies in Section 4.1 are as follows:

• The value of ΣF is specified as the sample correlation matrix of {Ft}Tt=1, where

{Ft}Tt=1 is the real data in Section 4.2;

• The values of α and β are specified as α = (0.0813,−0.0271,−0.6203,−0.0460)ᵀ

and β = (−0.3411,−0.1277,−0.3838,−0.5312,−0.2728,−0.3527, −0.2188,−0.2934,

−0.2035,−0.3427)ᵀ;

• The value of Π1 is specified as Π1=Π̄T−βαᵀ, where Π̄T=
∑T

t=1RtF
ᵀ
t (
∑T

t=1FtF
ᵀ
t )−1

with {Ft, Rt}Tt=1 being the real data in Section 4.2;

• The value of Γ is specified as

Γ =



0.0312 0.0255−0.0185 0.0591 0.0389 0.0953−0.15150.2286−0.0806−0.1659

0.0346−0.0166−0.0608 0.0743 0.0794−0.0043−0.21940.2959−0.0043 0.0016

−0.0304 0.0624−0.1347 0.1054−0.0369−0.0187−0.09890.3571 0.0133−0.1731

−0.0414 0.0951 0.0029−0.0497−0.0586 0.0910−0.09030.1850 0.0616−0.0865

−0.0570−0.0845 0.0606−0.0143−0.1971 0.0528 0.04030.1935−0.0114 0.1141

−0.0649−0.0738 0.0030 0.0335 0.0346−0.0432−0.07870.2199−0.0266−0.0013

−0.0334−0.1163−0.0139−0.0218−0.0390 0.0128−0.06450.1299 0.1105 0.0097

−0.1029 0.0368 0.0737−0.0005−0.1686 0.0254 0.01840.0966−0.0176 0.0596

−0.1153 0.0008 0.0373 0.0185−0.0927 0.1029 0.05460.0529−0.1792 0.0798

−0.0737−0.0669 0.0500 0.1466−0.1359 0.0617 0.10900.0402−0.0659−0.0440



;
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• The value of Σv is specified as

Σv =
1

100



0.19 0.09 0.07 0.05 0.04 0.03 0.02 −0.01 0.00 −0.01

0.09 0.11 0.06 0.05 0.04 0.04 0.03 0.01 0.02 0.01

0.07 0.06 0.10 0.05 0.04 0.04 0.03 0.03 0.02 0.01

0.05 0.05 0.05 0.08 0.04 0.04 0.04 0.03 0.02 0.01

0.04 0.04 0.04 0.04 0.08 0.05 0.05 0.05 0.04 0.03

0.03 0.04 0.04 0.04 0.05 0.08 0.06 0.05 0.05 0.03

0.02 0.03 0.03 0.04 0.05 0.06 0.08 0.06 0.05 0.03

−0.01 0.01 0.03 0.03 0.05 0.05 0.06 0.10 0.07 0.05

0.00 0.02 0.02 0.02 0.04 0.05 0.05 0.07 0.09 0.04

−0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.05 0.04 0.07



.
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