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Abstract

The incentive power and statistical power of information are defined. In moral
hazard models with private monitoring improving the monitoring technology
by bringing in new information with strong incentive power but weak statistical
power can significantly reduce productivity and surplus. When monitoring is
sampling a stochastic process tracking cumulative productivity, reducing sam-
pling frequency – while information destroying – can reduce an imbalance be-
tween incentive and statistical power leading to better outcomes. These results,
that arise because of the monitor’s ability to abuse private information with
strong incentive power but weak statistical power, provide an argument for a
certain level of worker privacy and an arm’s-length management style.
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1 Introduction

Imagine you monitor a worker, generating information you then use to reward/punish
the worker and induce costly effort. You are given the chance to upgrade your mon-
itoring technology to one with greater incentive power – meaning given any target
effort level to be induced, the information generated by the new monitoring technol-
ogy requires the worker to be exposed to less variation in utility. Would you upgrade?

In general, the answer is not necessarily. And the reason, valid across a broad range
of games, is because what matters for surplus is a combination of the incentive power
of information and the statistical power of information – a measure of power based
on viewing the information generated by monitoring as a hypothesis test. Increasing
incentive power at the expense of statistical power can often be counterproductive.

To fix ideas, consider the following toy model: An agent has two hidden action
choices e ∈ {0, 1} labelled by their costs to the agent – think of them as shirking and
effort. e affects the distribution of a binary signal – g or b – where qe is the probability
of b given e and q0 > q1. There are no monetary transfers but the principal can choose
a punishment p (representing the amount of agent utility destroyed) that is inflicted
on the agent whenever b is realized. Clearly, as q0 − q1 increases the size of p needed
to induce effort decreases. Thus, q0− q1 measures the incentive power of information.
At the same time, the signal g or b can also be viewed as a hypothesis test where the
null is shirking and the alternative is effort. The statistical power of a hypothesis test
is one minus the probability of a type II error – in this case q1. The smaller is q1 the
greater the statistical power of information.

Notice inducing effort requires an expected destruction in utility q1 · p. This
implies, when effort is induced optimally, the surplus is a monotonic function of the
likelihood ratio q0

q1
or equivalently q0

q1
− 1 = q0−q1

q1
which is the “product” of incentive

power and statistical power. If an increase in incentive power is accompanied by an
increase in statistical power, then surplus unambiguously increases. But if an increase
in incentive power is accompanied by a sufficiently strong decline in statistical power,
then surplus will decrease. If the imbalance between incentive and statistical power
is severe enough, it may not even be efficient to induce effort anymore, in which case,
despite the greater incentive power, productivity declines as well.

This idea that increasing incentive power can be counterproductive if accompa-
nied by a significant reduction in statistical power is relevant across a broad range
of settings including various games featuring public monitoring. The present paper
explores the implications for moral hazard under private monitoring. When mon-
itoring is private, a commitment problem on the part of the principal/monitor to
truthfully report her private information arises, generating very sharp examples of
how increasing incentive power can nevertheless reduce surplus and productivity.

In particular, I show that surplus and productivity can decline significantly even if
the total amount of information – and therefore the incentive power of information –
generated by monitoring increases. Conventional wisdom suggests inundating a mon-
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itor with lots of noisy information about worker performance is counterproductive.
This result provides an explanation for why that is the case when the monitor has
discretion in the way information is used to provide incentives.

To demonstrate the intuition, I start with a bad news Poisson monitoring tech-
nology under which the optimal dynamic contract induces positive effort. Depending
on how the rest of the model is parameterized the induced effort under the optimal
contract can be made arbitrarily high. I then increase the total amount of information
generated by monitoring by adding a conditionally independent Brownian signal of
effort. I show that under the improved monitoring technology the optimal dynamic
contract collapses, inducing zero effort at all times.

Relative to the bad news Poisson monitoring technology already in place, Brow-
nian information has very strong incentive power but very weak statistical power.
Adding such imbalanced information to a well functioning monitoring technology
causes the information generated by the improved monitoring technology to also be
imbalanced, leading to a negative effect similar to the one described in the toy model
analysis above. Of course, if the principal could just commit to ignore the Brown-
ian information, then surplus and productivity would not decline much less collapse.
But such a commitment is tantamount to committing to a way to report unverifiable
information which is not credible. Although ex-ante surplus would increase under
such a commitment, ex-interim the principal is strictly better off exposing the agent’s
payoff to Brownian information’s very strong incentive power because this extracts
more effort from the agent. Anticipating this hold-up on the part of the principal, the
agent ex-ante demands a contract that restricts (in this case completely) the princi-
pal’s ability to punish, hindering efficient incentive provision. Consequently, despite
the better monitoring, surplus and productivity decline.

Conversely, surplus and productivity can increase despite a reduction in the amount
of information generated by monitoring if an imbalance between incentive power and
statistical power is also reduced. As an example, I consider a canonical model in which
the agent’s hidden efforts control the drift of a Brownian motion and monitoring con-
sists of the principal privately sampling the Brownian motion. Brownian information
has an extreme imbalance between incentive and statistical power. Consequently, if
the principal sampled continuously, the optimal contract would collapse. The im-
balance is substantially reduced and surplus and productivity increased by reducing
sampling frequency even though this leads to strictly less information generated by
monitoring.

The optimality of infrequent sampling suggests that it can often be better to
employ an arm’s-length management style where a worker is evaluated every once in
a while based on his overall performance rather than all the time based on his detailed
day-to-day activities.

Worth noting here is that what the literature calls infrequent monitoring – contin-
uously sampling but only occasionally observing the results of those samplings – does
not improve surplus or productivity and is in fact counterproductive in my model.
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Infrequent monitoring does not change the type of information observed by the prin-
cipal, just the timing of observation. If the information was imbalanced before, it is
still imbalanced after making monitoring infrequent. What makes infrequent sam-
pling useful is that it changes the very nature of the private information observed by
the monitor. This contrasts with well-known results about the benefits of infrequent
monitoring when monitoring is purely public. See, for example, Abreu, Milgrom and
Pearce (1991).

1.1 Related Literature

This paper studies how surplus and productivity change with respect to changes in
the monitoring technology in a moral hazard setting with optimal contracting. To put
this work in context, one can imagine a typical contracting paper as proceeding in two
steps. In the first step, the monitoring technology that will generate contract-relevant
information is determined. Then, in the second step, the contracting technology (i.e.
what can be conditioned on the information generated by monitoring) is determined
and the optimal contracting problem is solved. Much of the literature is focused on
the second step, exploring how various contracting technologies can help solve an
array of agency problems or explain certain real life contracts.

For example, papers have asked how should contracts split cash flow, leading to
a theory of capital structure and security design (e.g. Townsend, 1979); or how can
contracts overcome constraints on completeness, shedding light on the allocation of
control rights (e.g. Aghion and Bolton, 1992); or how should contracts set pay-to-
performance sensitivity, leading naturally to a theory of executive compensation. See,
for example, Sannikov (2008), Edmans et al (2012), or Zhu (2013, 2018a).

In contrast, for the first step, the monitoring technology is usually exogenously
fixed. This approach may be fine in situations where contracts are narrowly defined
only over objectively measurable performance measures like stock price. However, in
many real life contractual relationships the monitoring technology itself is, at least
partially, a choice variable, and the optimal contracting problem should include a
discussion of monitoring design (if not a full-blown optimal monitoring design prob-
lem). Questions regarding the frequency of performance evaluations, the degree of
organizational transparency, and the use of monitoring software are all issues of mon-
itoring design and are relevant to how a firm optimally contracts with its workers.
My paper with its insights about better monitoring/worse outcome and the bene-
fits of infrequent sampling sheds light on these issues. More broadly, I take a step
toward developing a theory of monitoring design by highlighting how the interplay
between the incentive and statistical power of information is important to under-
standing the equilibrium information content of monitoring in settings where private
forms of monitoring such as subjective evaluation are important.

Two other recent papers – Georgiadis and Szentes (2018) and Li and Yang (2018)
– also explore monitoring design in a principal-agent model, albeit from a different
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perspective emphasizing information costs. In those papers, better monitoring always
leads to a weakly better outcome and the information content of monitoring is deter-
mined by balancing the benefits of information against the costs of acquiring it. Also,
in those papers, complete optimal monitoring design problems are set up. In contrast,
my paper performs more of a comparative statics exercise, except in the last section
where I solve for the optimal sampling frequency in a setting where monitoring is
sampling a stochastic process tracking cumulative productivity.

Another way to position my better monitoring/worse outcome result, which is
established when monitoring is private, is to look at related results in the public mon-
itoring sphere. In an optimal contracting model with public monitoring, Holmstrom
(1979) shows that adding new information that makes monitoring more informative
of effort generically improves the optimal contract. In a repeated games setting with
public monitoring, Kandori (1992) shows that making monitoring more informative
in the sense of Blackwell (1950) causes the pure-strategy sequential equilibrium payoff
set to expand in the sense of set inclusion. Both of these results are better monitor-
ing/better outcome type results.

My paper explores how giving the principal too much information can be coun-
terproductive. Various related literatures, including those on intrinsic motivation,
mediation, and career concerns have also explored from different angles how giving
the principal and/or the agent(s) too much information can be counterproductive.
See, for example, Cremer (1995), Aghion and Tirole (1997), Burkart, Gromb and
Panunzi (1997), Holmstrom (1999), Benabou and Tirole (2003), and Prat (2005).
See also Hirshleifer (1971). My contribution to this literature is to take an informa-
tion design perspective and highlight the role played by information that is strong in
incentive power but weak in statistical power.

My work is also part of the literature looking at optimal contracting under private
monitoring. See, for example, Levin (2003), MacLeod (2003), and Fuchs (2007). In
those papers better monitoring always leads to a weakly better outcome. The techni-
cal reason why better monitoring/worse outcome does not appear in those papers is
because in those papers incentive compatibility means sequential equilibrium whereas
in my paper I use a refinement of sequential equilibrium to define incentive compat-
ibility. In a companion paper, Zhu (2018b), I argue that in the private monitoring
setting many sequential equilibria allow for a type of commitment behavior on the
part of the principal that is implausible. I then develop the refinement used in the
current paper that removes those implausible sequential equilibria.

2 Incentive Power and Statistical Power

Summary: The incentive power and statistical power of information are defined for
binary action models. The definitions are then generalized for models with a contin-
uum of actions. To achieve the generalization, a restriction needs to be imposed on
how actions affect information. The restriction is satisfied if, for example, a common
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MLRP condition holds.

There are two actions: a ∈ {0, 1} with costs h(1) > h(0). A piece of information is
defined to be a random variable X taking values in some measurable space Im(X)
controlled by a – that is, the distribution of X is determined by a. Let f denote
the Radon-Nikodym derivative of the measure induced by a = 1 with respect to the
measure induced by a = 0. I assume almost surely (a.s.) every signal is informative:
f 6= 1 a.s.

A reward function R(X) is a measurable mapping from X to R. R(X) induces 1
if

1 ∈ arg max
a

EaR(X)− h(a)

Define |R(X)| to be supx∈Im(X) R(x) − infx∈Im(X)R(x). Consider the set of non-
negative reals D such that there exists an R(X) inducing 1 with |R(X)| = D. Define
DX(1) to be the infimum of this set.

Definition. Given two pieces of information X and Y , Y is said to have weakly more
incentive power than X if DX(1) ≥ DY (1).

Lemma 1. There exist reward functions R(X) that induce 1 and |R(X)| = DX(1).
For any such R(X), there exists a real w such that R(X) = Rw(X) a.s. where

Rw(x) =

{
w if f(x) > 1

w −DX(1) if f(x) ≤ 1

The proof is obvious and now one can naturally view X as a hypothesis test and
define statistical power ΠX(1) := P(f ≤ 1|a = 1).

Definition. Given two pieces of information X and Y , Y is said to have weakly more
statistical power than X if ΠX(1) ≥ ΠY (1).

Comment: When the action space is binary, it is very simple to rank pieces of in-
formation by incentive power and statistical power. Almost no restrictions are placed
on how actions affect information and the rankings based on incentive and statistical
power are complete. The rest of the paper looks at moral hazard models in which the
agent has a continuum of effort choices. Thus, I need to generalize the ways pieces
of information are ranked based on incentive and statistical power. The generalized
rankings are no longer always complete (although within some special parametric
famliies they are) and I will also need to impose further restrictions on how actions
affect information so that a version of Lemma 1 holds which is required to have a
meaningful definition of statistical power.

A piece of information X is now smoothly controlled by an effort parameter a ∈ [0, 1)
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with smooth, strictly convex cost function h(a) where h′(0) = 0, and lima→1 h
′(a) =

∞. Smoothly controlled means that for any measurable set A ⊂ Im(X), P(X ⊂ A)
is a smooth function of a. For each D ≥ 0, consider the set of a such that there exists
an R(X) inducing a with |R(X)| ≤ D. Let aX(D) denote the supremum of this set.

Definition. Given two pieces of information X and Y , Y is said to have weakly more
incentive power than X if aY (D) ≥ aX(D) for all D ≥ 0.

A piece of information X can be viewed as a hypothesis test if the following con-
dition holds: For every D > 0 there exist R(X) inducing aX(D) with |R(X)| ≤ D,
and any such R(X) takes only two values a.s.

Some commonly used pieces of information can be viewed as hypothesis tests:

Example. If Im(X) = R, X satisfies strict MLRP with respect to a, and the distri-
bution given each a has a density, then X can be viewed as a hypothesis test. If X
is strictly monotone in the sense that Im(X) = Good ∪ Bad with P(X = x) strictly
increasing (decreasing) and continuous in a if x ∈ Good (Bad), then X can be viewed
as a hypothesis test.

From now on I restrict attention to information that can be viewed as hypothesis
tests. For each D > 0, consider the set of R(X) inducing aX(D) satisfying |R(X)| ≤
D. By assumption, each such R(X) is binary valued and can be associated with a
probability P(R(X) = minx∈Im(X) R(x)|aX(D)). Define ΠX(D) to be the infimum of
this set of probabilities.

Example. Suppose X is strictly monotone. Fix a D and suppose R(X) induces
aX(D) with |R(X)| ≤ D. Then R(X) = infx∈Im(X) R(x) (= supx∈Im(X) R(x)) if and
only if x ∈ Bad (∈ Good). Thus, ΠX(D) = P(X ∈ Bad|aX(D)).

Definition. Given two pieces of information X and Y , Y is said to have more sta-
tistical power than X if for each D there exists a D̂ such that aX(D) = aY (D̂) and
ΠX(D) ≥ ΠY (D̂).

3 Model and Optimal Contract

I consider a dynamic contracting model between a principal P (she) and an agent
A (he). The horizon is infinite and dates are of length ∆ > 0, denoted by t =
0,∆, 2∆, . . .. The discount factor is e−r∆ for some r > 0.

At the beginning of each date t, P pays A some amount wt ∈ R. Next, A
chooses effort at ∈ [0, 1). at costs h(at)∆ with h(0) = h′(0) = 0, h′′ > 0, and
limat→1 h(at) =∞. After A exerts effort, P monitors A: First, P observes a private
signal Xt smoothly controlled by at. I assume Xt is strictly monotone. Given at, P ’s
unobserved utility is u(at)∆. I assume u(at) is a strictly increasing, weakly concave
function of effort and u(0) > 0. Next, P reports a public message mt selected from
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a contractually pre-specified finite set of messages M; then, a public randomizing
device is realized; finally, A is randomly terminated at the beginning of date t+ ∆. If
A is terminated A and P exercise outside options worth 0 at date t+ ∆ and P makes
a final payment wt+∆ to A.

A contract game (M, w, τ) specifies a finite message space M, a payment plan
w, and a termination clause τ . Let ht denote the public history of messages and
public randomizing devices up to the end of date t. w consists of an ht−∆-measurable
payment wt to the agent for each t. τ is a stopping time where τ = t+∆ is measurable
with respect to ht.

Given (M, w, τ), an assessment (a,m) consists of an effort strategy a for A, a
report strategy m for P , and a system of beliefs. a consists of an effort choice at
for each t depending on ht−∆ and A’s private history HA

t−1 of prior effort choices. m
consists of a message choice mt for each t depending on ht−∆ and P ’s private history
HP
t of observations {Xs}s≤t. The system of beliefs consists of a belief about HP

t−∆ at
each decision node (HA

t−1, ht−∆) of A, and a belief about HA
t at each decision node

(HP
t , ht−∆) of P .
A contract (M, w, τ, a,m) is a contract game plus an assessment. Given a con-

tract, the date t continuation payoffs of A and P at the beginning of date t are

Wt(H
A
t−∆, ht−∆) = EA

t

[ ∑
t≤s<τ

e−r(s−t)(ws − h(as)∆) + e−r(τ−t)wτ

]
,

Vt(H
P
t−∆, ht−∆) = EP

t

[ ∑
t≤s<τ

e−r(s−t)(−ws + u(as)∆)− e−r(τ−t)wτ

]
.

3.1 The Optimal Contract

The optimal contracting problem is to find an incentive compatible contract that
maximizes V0 subject to the agent’s ex-ante participation constraint W0 ≥ 0 and
an interim participation constraint Wt + Vt ≥ 0 for all t. Intuitively, if the interim
participation constraint were violated then both parties could be made strictly better
off by separating under some severance pay.2

Incentive compatibility typically means that the principal’s report strategy and
the agent’s effort strategy comprise some sort of equilibrium behavior. A detailed
discussion of what is the right equilibrium concept is the subject of a companion paper
Zhu (2018b) which argues that a particular refinement of sequential equilibrium is
the right equilibrium concept.

The idea is this: Imagine a game in which after player 1 moves, player 2 is
indifferent between all of her actions. Dewatripont (1987) and Tranaes (1998) argue
that in such games, player 2 will credibly commit to a way to choose among her many

2It will be shown that for incentive compatible contracts Wt and Vt are both public, so violations
of the interim participation constraint are common knowledge.
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best-response actions before player 1 moves in an effort to induce player 1 to choose
an action that is more preferred by player 2 from an ex-ante perspective. Zhu (2018b)
applies this idea to the private monitoring model described above. Since monitoring
is private, to induce P to report truthfully at the end of date t she must be made
indifferent between all of her date t reports. This implies the higher is A’s date t
effort, the higher is P ’s payoff standing at the beginning of date t. Thus, applying
the logic of Dewatripont (1987) and Tranaes (1998), at the beginning of date t P
commits to the date t report strategy that maximizes the date t effort induced from
A. Given what we know about the incentive power of strictly monotonic information
from the previous section, it is now clear that in any incentive compatible contract
and at each date t the principal will report the message that leads to the highest
(lowest) possible agent continuation payoff if and only if Xt ∈ Good (Xt ∈ Bad). No
other messages will be reported. This characterization of P ’s report strategy in any
incentive compatible contract implies:

Theorem 1. The optimal contract has the following structure:

• M = {pass, fail}.

• mt = fail iff Xt ∈ Bad.

• w consists of a pair of constants wsalary, wseverance.

• If mt = pass then A is retained for date t+ ∆ and paid wsalary.

• If mt = fail then A is terminated at date t+ ∆ with probability p∗.

– If A is not terminated then it is as if P reported pass.

– If A is terminated then he is paid wseverance.

Proof. See appendix A.

A similar result holds more generally if information can be viewed as a hypothesis
test and any two R(X) that induce aX(D) with |R(X)| = D differ by a constant
a.s. This is satisfied if for example a linearly controls the mean of a normal random
variable: X ∼ N(b+ma, σ) for some constants b, m, and σ.

We already understand that P reports in a simple pass/fail way in order to take
full advantage of the incentive power of information. Let us now get a feel for the
other features of the optimal contract.

Notice, the optimal contract is a wage contract. At each date t, conditional on
still being employed, the agent is paid the same amount regardless of performance
history. There is a good reason for this. Suppose instead there was an additional
message that leads to A receiving a big bonus which P is supposed to report if she
observes some really positive information about A’s performance (i.e. a Good signal
whose probability increases sharply as a increases). The problem with this altered
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contract is that its strategy profile would not satisfy any reasonable notion of incentive
compatibility: Because monitoring is private, P can always claim she didn’t see the
really positive information even if she did and thereby avoid having to pay A the big
bonus. In general, P must be indifferent between reporting different messages that
occur on the equilibrium path, which means in the optimal contract

Vt+∆(pass) = Vt+∆(fail).

By definition, Vt+∆(fail) = −p∗wseverance + (1 − p∗)Vt+∆(pass). Let S∗ denote the
Pareto-optimal surplus. By self-similarity and the fact that A’s ex-ante participation
constraint binds, Vt+∆(pass) = V0 = S∗. Thus,

wseverance = −S∗.

Negative severance pay is just an artifact of how I normalized outside options.
Next, consider A’s effort incentives. Since the optimal contract is a wage contract,

one might wonder where are the effort incentives coming from? The answer is through
the threat of termination. In my model, termination destroys surplus – by assumption,
even zero effort generates positive surplus. Since P is completely insured against any
surplus destruction, this means it is A who bears the cost of inefficient termination,

Wt+∆(pass)−Wt+∆(fail) = p∗S∗.

Consequently, A is willing to put in effort to reduce the chances of getting failed and
terminated. The first-order condition that pins down A’s effort level each date is,

h′(a∗)∆ = −dP(Bad)

da
|a=a∗p

∗S∗.

If there are multiple efforts that maximize A’s utility, a∗ is the highest one as this is
the most preferred by P .

p∗ and S∗ are simultaneously determined by the following system of equations,

p∗ = arg max
p∈[0,1]

u(a∗(pS∗))∆− h(a∗(pS∗))∆ + e−r∆(1−P(Bad | a∗(pS∗))p∗)S∗

S∗ = u(a∗(p∗S∗))∆− h(a∗(p∗S∗))∆ + e−r∆(1−P(Bad | a∗(pS∗))p∗)S∗.

The solution can be recursively computed by setting S∗0 = u(0)∆ on the RHS of the
two equations and then computing p∗1 and S∗1 and so on and so forth. S∗i is strictly
increasing in i = 0, 1, 2 . . . and S∗ = S∗∞. Finally, wsalary is determined by A’s binding
ex-ante participation constraint W0 = 0,

wsalary = h(a∗(p∗S∗))∆ + e−r∆P(Bad | a∗(pS∗))p∗S∗.
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4 Better Monitoring Worse Outcome

As I discussed in the introduction, it is generally possible for an increase in the incen-
tive power of information to lead to lower surplus and productivity if it is accompa-
nied by a sufficient decline in statistical power. However, this result has limited scope
when players can ignore information. Such is the case in standard repeated games
and moral hazard models with public monitoring. In those settings if an increase in
incentive power is part of an overall increase in the quantity of information generated
by monitoring, then it is impossible for surplus and productivity to decline no matter
how much statistical power declines.

In contrast, when monitoring is private so that the principal always reports in
a way that maximizes effort incentives then better monitoring can lead to a worse
outcome.

Proposition 1. Fix a monitoring technology X satisfying P(X ⊂ Bad|a = 0) < 1.
Then there exist monitoring technologies Y that are strictly more informative and
have strictly more incentive power than X but generate strictly lower surpluses.

Proof. I will prove it in the case that X takes finitely many values. The proof can
be easily generalized to the case when Im(X) is infinite. By assumption there exists
a Good signal x with P(Xt = x|a = 0) = β > 0. Split x into two signals xg and
xb. Have it so that P(Xt = xg|a) = P(Xt = x|a)− β + f(a) where f(a) is a strictly
increasing nonnegative function with lima→1 f(a) “very close to 0” both in absolute
terms and compared to β. Call this new monitoring technology Y . Y is obviously
strictly more informative than X, and is strictly monotonic with xg a Good signal
and xb a Bad signal. Y has strictly more incentive power than X due to f strictly
increasing in a. Y has strictly less statistical power than X due to β > 0. Consider
the effort a∗Y induced by the optimal contract C Y under Y . Since X’s incentive power
is close to Y , it is possible to induce an effort level aX very close to a∗Y under X using a
contract with a pass/fail contract game similar to the contract game of C Y . However,
in this contract the fail message is employed much less often in the sense that the
surplus saved from reporting fail less outweighs the slight decline in effort induced
from a∗Y to aX . This comes from the fact that |f | is small compared to β. Thus, the
Pareto-optimal surplus under X must be strictly larger than that under Y .

The proposition while quite general does not give the reader a good sense of just
how much worse things can get when monitoring is improved. Moreover, in the proof
of the corollary it is hard to map the splitting of x into xg and xb to a real life way
in which monitoring might be improved. In the remainder of this section I address
both of these issues.

I now show how starting with a monitoring technology under which the optimal
contract induces arbitrarily high effort it is possible to add a conditionally independent
signal of effort and cause the optimal contract to collapse into a trivial arrangement
that induces zero effort from the agent at all times. Note such a collapse necessarily
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means surplus declines because inducing zero effort at all times with a trivial contract
is always an option for the contracting parties.

To get a sense of how this is possible, let us revisit Theorem 1. Recall, P fails
A at date t if and only if she observes a Bad signal at date t. This simple report
strategy is a consequence of P always wanting to maximize effort incentives. The
question is: Is this the efficient thing to do? Put another way, if P were a benevolent
social planner instead of a utility maximizer would she still report in this way or
something close given the contract game? The answer is it depends. If the monitoring
technology generates Bad signals that are really bad (of course, we will have to be
formal about what “really bad” means) then intuitively the answer is yes. Where
this strategy becomes inefficient is when the monitoring technology generates Bad
signals that are for the most part only marginally bad. In this case, one would like
to see P be a little more discriminating and fail A only if she sees a really Bad
signal, or at least wait until she has seen marginally Bad signals across many dates
before failing A. But we already know P is unable to be discriminating: Sure, at
the time of contracting, P would like to commit to be discriminating in the future.
The problem is, once the contract is written, P can’t help but change her report
strategy to an indiscriminate one that maximizes effort incentives by punishing A
maximally any time a Bad signal no matter how marginal occurs. Since changing a
report strategy amounts to changing a function over private, unverifiable information,
it is not something that can be contracted away.

Now at the time of contracting A understands that in the future, if the monitoring
technology will generate lots of marginally Bad signals, P will likely over-fail A.
To counteract this, the contracting parties then preemptively agree to an optimal
contract that reduces the pain of failure. That means setting p∗ to be a low value.
And in some cases when the typical Bad signal is extremely marginal, it might even
be optimal to lower p∗ all the way to zero. Of course, once p∗ hits zero failing becomes
equivalent to passing and A will exert zero effort.

Is it possible to take a monitoring technology that generates mostly really Bad
signals and improve it to the point where it generates mostly extremely marginal
Bad signals? Because if it is, then better monitoring can indeed lead to a complete
collapse in the optimal contract.

I now show that such an improvement can be achieved in a very simple way:
Introduce new information that is, relative to the old information, very strong in
incentive power but very weak in statistical power. Before establishing this result
at a reasonably general level, let us first work through an explicit example that
demonstrates the basic ideas.

4.1 An Example

In this example I will begin with a bad news Poisson monitoring technology. “Bad
news” means that the Poisson event is indicative of lower effort rather than higher
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effort. I show that the bad news Poisson monitoring technology generates a really Bad
signal in some formal sense and consequently the optimal contract induces positive
effort – depending on the intensity of the Poisson process this effort can be made to be
arbitrarily high. I then improve the monitoring technology by adding a conditionally
independent Brownian signal where the drift of the Brownian motion is controlled
by A’s effort. I explain that Brownian information has, relative to bad news Poisson
information, very strong incentive power but very weak statistical power. I then show
that in the improved monitoring technology that generates both bad news Poisson
information and Brownian information, the typical Bad signal suddenly becomes
extremely marginal. Consequently, the optimal contract collapses and P becomes
worse off.

In a bad news Poisson monitoring technology, each date the incremental informa-
tion Xt is

Xt =

{
no event with probability 1− (1− at)λ∆

event with probability (1− at)λ∆

Here, ∆ is understood to be small and it is evident that the Poisson event itself is
the Bad signal whereas no event is the Good signal. Just how bad (e.g. really bad
or marginally bad) is the Bad signal of bad news Poisson information? The formal
measure is the negative effort-elasticity of P(Bad):

−d log P(Bad)

da
. (1)

In the subsequent general analysis I will justify why this is the natural measure for
how bad is the typical Bad signal. For now let us take it as given. This elasticity
corresponds to the likelihood ratio discussed in the introduction. Just like the like-
lihood ratio, it is a barometer for how imbalanced are the incentive and statistical
power of information. Very strong incentive power plus very weak statistical power
will mean a very small negative effort-elasticity relative to medium incentive power
and statistical power. A simple computation shows that the negative effort-elasticity
of P(Bad) is

1

1− at
.

What matters about this quantity is that it remains bounded away from zero as ∆
becomes small no matter the effort level. This means bad news Poisson information
is not too imbalanced and features a really Bad signal. Thus, it is not too inefficient
to have a contract that lets P punish A nontrivially whenever she sees it, and the
optimal contract under bad news Poisson monitoring can induce positive effort. By
making λ sufficiently large, the induced optimal effort level can be made arbitrarily
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high. Later I generalize this result by showing that for a broad class of monitoring
technologies in the continuous time limit if the negative effort-elasticity of P(Bad) is
not vanishingly small then there exist parameterizations of the rest of the model such
that the optimal contract induces arbitrarily high effort.

Let us now see what happens when the bad news Poisson monitoring technology
is improved by including a conditionally independent Brownian signal Yt where effort
controls the drift:

Yt =

{√
∆ with probability 1

2
+ at

√
∆

2

−
√

∆ with probability 1
2
− at

√
∆

2

Each date the Brownian signal is a single step of an extremely fine random walk.
Whenever the random walk goes up it is a Good signal, whenever it goes down it is
a Bad signal. For Brownian information, the negative effort-elasticity of P(Bad) is

√
∆

1− at
√

∆
.

Unlike before, it is clear that this elasticity goes to zero as ∆ goes to zero no matter
the effort level. This means the Brownian Bad signal is an extremely marginal Bad
signal, and because it is extremely marginal, it is important that P be discriminating
when using Brownian information to justify punishing A. This basically means that
P needs to commit to be patient and wait until she has seen many extremely marginal
Brownian Bad signals before deciding to fail A based on Brownian information. But
as I explained earlier being patient is not something that is compatible with P ’s desire
to maximize effort incentives at all times.

But if P is unwilling to be patient when using Brownian information, then she
should not be using it at all. In other words, under the improved monitoring tech-
nology (Xt, Yt) that generates both bad news Poisson information and Brownian
information, it will be best if P simply ignores Yt.

Will P ignore Yt? Not if Yt has sufficiently strong incentive power. Recall, ulti-
mately what P cares about is maximizing effort incentives and so if a new piece of
information has strong incentive power – at least relative to the information already
in place – then it does not matter how noisy it is, P will not ignore it.

Is it possible for a piece of information to simultaneously have very strong incentive
power but feature extremely marginal Bad signals? As we shall see shortly, the
answer is yes, and a canonical example of such information is Brownian information.
We already know that Brownian information has a vanishingly small negative effort-
elasticity meaning its Bad signal is extremely marginal. A sufficient statistic for
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incentive power is the sensitivity of P(Bad) with respect to effort:

−dP(Bad)

da
. (2)

While the measure for incentive power looks like the measure of how bad is the Bad
signal, they are not the same, and it is very easy to come up with information such
that (1) is very small but (2) is very large.

Now to show that P will not ignore Yt let us compare the incentive power of Xt

and Yt. The sensitivity of P(Bad) with respect to effort under Xt is

λ∆.

The sensitivity of P(Bad) with respect to effort under Yt is

√
∆

2
� λ∆.

Thus, Yt has much greater incentive power than Xt which means when a bad news
Poisson monitoring technology is improved by adding a Brownian component, there
is no way P will ignore the Brownian component.3

In fact, an easy application of the product rule shows that, whereas before the
improvement, P would fail A whenever a bad news Poisson event occurred, after the
improvement, P now fails A whenever the bad news Poisson event occurs or whenever
the Brownian random walk goes down. In particular, even if the bad news Poisson
event doesn’t occur but the Brownian random walk goes down A is still failed. This
is noteworthy, because the combination of the bad news Poisson event not occurring
and the Brownian random walk going down is a combination of a Good bad news
Poisson signal and a Bad Brownian signal. A priori, it may not be clear how to
interpret such a combination – one could make the argument that seeing one good
signal and one bad signal should constitute a neutral signal overall. But that is
not the case here: The combination of the Good bad news Poisson signal and the
Bad Brownian signal is unambiguously a Bad signal overall because its likelihood of
occurring unambiguously decreases as effort increases – not by much – but it does
decrease. And the main reason for this decrease is due to the very strong incentive
power of Brownian information.

But now we have a problem: This composite Bad signal is quite common – occur-
ring about half the time no matter what effort A puts in. Consequently, punishing A
whenever this common, extremely marginal Bad signal occurs is extremely inefficient
and should be avoided at all costs. But as I’ve said before – there is nothing one

3In general, the new information does not need to have weakly stronger incentive power than
the old information in order for P not to ignore it. As I will show in the general analysis, the new
information’s incentive power just needs to be above a certain threshold that is increasing in the
incentive power of the old information.
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can do to avoid this inefficiency. Monitoring is private. When P fails A the whole
point is one cannot tell if it is because P saw the really bad bad news Poisson event
occur, in which case A “deserves” to get punished, or if the only thing P saw was
the marginally bad Brownian random walk go down. The only way to imperfectly
counteract P ’s inevitable over-failing of A is to make failing painless. That means
setting p∗ = 0.

Thus, when bad news Poisson monitoring is improved by adding a Brownian
component, the optimal contract collapses into a trivial arrangement that always
pays A a flat wage wsalary and never terminates A. A best responds by putting in
zero effort, and P despite her better monitoring becomes worse off.

4.2 Continuous Monitoring

What aspects of Brownian information made adding it to a bad news Poisson moni-
toring technology so counterproductive?

One important property of Brownian information that emerged in the analysis is
that it features a marginally Bad signal:

1. New information has a marginally Bad signal.

Intuitively, the marginally Bad signal of the new information can help the improved
monitoring technology generate information that also features mostly marginally Bad
signals which, recall in the intuition sketched out in the beginning of this section, is
a precondition for the optimal contract to collapse.

Another important property that emerged from the analysis is that Brownian
information has strong incentive power:

2. New information has sufficiently strong incentive power.

Here, the idea is even if the new information has extremely marginal Bad signals, if
P ignores the new information, then introducing it makes no difference. To ensure P
does not ignore the new information, it must have sufficiently strong incentive power
since what P cares about is maximizing effort incentives.

Finally, recall the Brownian Bad signal is quite common, occurring about half the
time no matter A’s effort:

3. New information has sufficiently common Bad signals.

Intuitively, even if a new Bad signal is extremely marginal and even if P fails A based
off of it, if the signal almost never occurs then the inefficiency remains small and P
can afford to continue to punish A non-trivially, in which case the optimal contract
does not collapse.

Properties 1. and 3. together say that the statistical power of information is
sufficiently weak. Thus, a compact way to state these three properties is to say that
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relative to the information already in place new information has strong incentive
power but weak statistical power.

I will now establish a general result about how improving a well functioning mon-
itoring technology by adding new information strong in incentive power but weak in
statistical power can cause the optimal contract to completely collapse.

In this analysis I consider the set of all monitoring technologies in the continuous-
time limit satisfying the following regularity conditions: For all at,

lim
∆→0
− d

dat
P(Xt ∈ Bad | at) = Θ(∆α) for some α ≥ 0

lim
∆→0

P(Xt ∈ Bad | at) = Θ(∆γb) for some γb ≥ 0.

lim
∆→0

P(Xt ∈ Good | at > 0) = Θ(∆γg) for some γg ≥ 0.

This class of monitoring technologies includes bad news Poisson monitoring, Brow-
nian monitoring, as well as good news Poisson monitoring:

Xt =

{
g with probability atλ∆

b with probability 1− atλ∆

Here, α measures the incentive power of information – the lower is α the greater
is the incentive power. γb measure the statistical power of information – the higher
is γb the greater is the statistical power.

Theorem 2. Assume α ≤ 1. If α = γb then the model can be parameterized so that
the optimal contract induces non-zero effort. Otherwise the optimal contract induces
zero effort.

Proof. See appendix.

Recall, in the introduction I argued that an increase in incentive power can reduce
surplus and productivity if accompanied by a sufficiently strong decrease in statistical
power. Theorem 2 is a particularly strong manifestation of this result: Imagine one
starts with a monitoring technology where α = γb and positive effort is induced.
Now lower α (increase incentive power). If γb drops (statistical power decreases)
sufficiently so that γb < α then the optimal contract induces zero effort which means
both surplus and productivity strictly decline despite the greater incentive power.

Theorem 2 also justifies my use of the negative effort-elasticity of P(Bad) as a
measure of how “bad” is the typical Bad signal. Given my regularity assumptions, the
negative effort-elasticity of P(Bad) = Θ(∆α−γb). Thus, Theorem 2 can be reworded
as saying if the negative effort-elasticity is bounded away from zero then the optimal
contract induces positive effort. If it converges to zero as ∆ tends to zero then the
optimal contract induces zero effort.
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Corollary 1. If Xt is Brownian or good news Poisson, the optimal contract induces
zero effort. If Xt is bad news Poisson, there are parameterizations of the model under
which the optimal contract induces nonzero effort.

This corollary matches classic results from the literature on repeated games with
public monitoring. For example, Abreu, Milgrom, and Pearce (1991) shows that in
a continuous-time repeated prisoner’s dilemma game with public monitoring coop-
eration can be supported as an equilibrium if monitoring is bad news Poisson but
not good news Poisson. Sannikov and Skrzypacz (2007) shows that in a continuous-
time repeated Cournot oligopoly game with public monitoring collusion cannot be
supported if monitoring is Brownian. This common baseline allows me to better
highlight how my work, with its emphasis on the distinction between incentive and
statistical power, differs from related work in the repeated games literature. In par-
ticular, whereas better monitoring can lead to a worse outcome in my setting, im-
provements to the information content of monitoring in the models described above
always weakly improve the scope for cooperation.

Armed with Theorem 2 I can now investigate how improvements to the monitoring
technology affect optimality. I begin with a binary valued monitoring technology
X1t ∈ {b1, g1} with associated exponents (α1, γ

b
1, γ

g
1). I then improve it by adding a

conditionally independent binary valued monitoring technology X2t ∈ {b2, g2} with
associated exponents (α2, γ

b
2, γ

g
2). I show that it is generically the case that effort

has a strictly monotone effect on the vector valued information (X1t, X2t) generated
by the improved monitoring technology. Thus, (X1t, X2t) also has some associated
exponents (α, γb, γg). I derive the formulas for α, γb, and γg as a function of (α1, γ

b
1, γ

g
1)

and (α2, γ
b
2, γ

g
2). Then, by inverting the formulas and using Theorem 2, I can show,

given (α1, γ
b
1, γ

g
1), what kinds of improvements (α2, γ

b
2, γ

g
2) cause the optimal contract

to collapse.
The vector valued (X1t, X2t) can take one of four values: (g1, g2), (g1, b2), (b1, g2)

and (b1, b2). Holding ∆ fixed, P((X1t, X2t) = (g1, g2) | at,∆) is strictly increasing
in at and P((X1t, X2t) = (b1, b2) | at,∆) is strictly decreasing in at. The probability
that (X1t, X2t) = (g1, b2) is P(X1t = g1 | at,∆) ·P(X2t = b2 | at,∆). By the product
rule, as ∆ → 0, the derivative of P((X1t, X2t) = (g1, b2) | at,∆) with respect to at
is A(∆) − B(∆) where A(∆) = Θ(∆α1+γb2) and B(∆) = Θ(∆γg1 +α2). A sufficient
condition for P((X1t, X2t) = (g1, b2) | at,∆) to be a strictly monotonic function of at
in the continuous-time limit is α1 + γb2 6= γg1 + α2. Similarly, a sufficient condition
for P((X1t, X2t) = (b1, g2) | at,∆) to be a strictly monotonic function of at in the
continuous-time limit is α1 + γg2 6= γb1 + α2. Thus,

Lemma 2. If α1 − α2 6= γg1 − γb2 or γb1 − γ
g
2 then effort has a strictly monotone effect

on (X1t, X2t) as ∆→ 0.

Lemma 3. Given X1t and X2t with associated exponents (α1, γ
b
1, γ

g
1) and (α2, γ

b
2, γ

g
2),
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if α1 ≥ α2 then the associated exponents of the vector-valued (X1t, X2t) are

(α = α2, γ
b = min{γb1, γb2}, γg = γg2) if γg1 − γb2 < α1 − α2 < γb1 − γ

g
2

(α = α2, γ
b = γb2, γ

g = min{γg1 , γ
g
2}) if γb1 − γ

g
2 < α1 − α2 < γg1 − γb2

(α = α2, γ
b = γb2, γ

g = γg2) if γg1 − γb2, γb1 − γ
g
2 < α1 − α2

Proposition 3 only considers the case where α1 ≥ α2. The other case, α2 ≥ α1, is
implied by symmetry.

Proof. See appendix.

Lemma 3 yields an explicit characterization of counterproductive improvements
to the monitoring system.

Proposition 2. Suppose α1 = γb1. If α2 < α1 + γb2 and γb2 < min{γb1, α2}, then
α > γb. The result is tight in the sense that if either of the inequalities is reversed
then α = γb.

The two inequalities, α2 < α1 + γb2 and γb2 < min{γb1, α2}, of Proposition 2 formal-
ize how introducing new information that is, relative to the information already in
place, sufficiently strong in incentive power but sufficiently weak in statistical power
is counterproductive. The first inequality corresponds to property 2. from the begin-
ning of this subsection. If one breaks up γb2 < min{γb1, α2} into the two component
inequalities γ2

b < α2 and γ2
b < γ1

b one recovers properties 1. and 3. from the beginning
of this subsection.

Corollary 2. Improving a bad news Poisson monitoring technology by adding a condi-
tionally independent Brownian signal of effort causes the optimal contract to collapse.

5 Infrequent Sampling

The better monitoring/worse outcome result suggests that there is value to limiting
the information observed by P if such a limitation can reduce an imbalance between
incentive and statistical power. Such an imbalance can seriously impact surplus and
productivity, for example causing the optimal contract to induce zero effort under
a wide range of monitoring technologies in the continuous-time limit. How might
surplus and productivity be restored by limiting information? One obvious way, if
applicable, is to simply reverse the process that caused the optimal contract to collapse
in the previous section. However, there are other practical ways to beneficially limit
information by controlling when the principal monitors.

The repeated games literature has highlighted the benefits of infrequent monitor-
ing so that, say, every 10 units of time, P observes the information generated from
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the past 10 units of time all at once. Does this type of infrequent monitoring help
in my setting? Even though my model, as it is currently defined, does not allow the
contract to control when the principal sees Xt, my analysis has already indirectly
provided an answer to this question.

Releasing information in batches as suggested by infrequent monitoring is equiva-
lent to releasing information as it is generated but restricting the players to respond
to new information only every once in a while. Unlike the repeated games literature
where the game is taken as given, P and A in my model are doing optimal con-
tracting and can choose the structure of the contract game. In particular, they can
choose to use a contract game that only allows P to react to new information every
once in a while: For example, the contract game could be structured so that pay
and termination do not depend on any report made between t1 and t2 −∆. In this
case, the contract game does not allow P to react to new information between t1 and
t2 −∆ and it is equivalent to batching the information generated between t1 and t2
and releasing it all at once at date t2. Since Theorem 2 is a result about optimal
contracting, contract games that allow P to react to new information only every once
in a while are already folded into the analysis. Thus, my optimality result indirectly
implies that infrequent monitoring cannot increase surplus.

In fact, choosing a contract game that allows P to react to new information only
every once in a while is not only not helpful, it is usually hurtful. Suppose the contract
game does not allow P to react to new information between t1 and t2 −∆. On date
t2 when P finally has the opportunity to affect A’s continuation payoff through her
reports, all of A’s efforts before date t2 have been sunk. P ’s goal standing at the
beginning of date t2 is to choose a date t2 report strategy that maximizes date t2
effort incentives. As I explained earlier when discussing incentive compatibility, this
means P will report in a way so that A’s date t2 +∆ continuation payoff is maximized
(minimized) depending only on if Xt2 ∈ Good (∈ Bad). In particular, P ignores all
signals generated before date t2. Anticipating this, A best responds by exerting zero
effort from t1 to t2 −∆.

This discussion of infrequent monitoring in conjunction with the better monitor-
ing/worse outcome result shows how the relationship between the information content
of monitoring and surplus/productivity is fundamentally different in a moral hazard
model with private monitoring compared to most repeated games models with purely
public monitoring. In most of the repeated games literature, players have some abil-
ity to ignore or not ignore information ex-interim based on ex-ante considerations.
Consequently, the following two important comparative statics results concerning the
information content of monitoring emerge:

• Holding the frequency of monitoring fixed, increasing information content never
hurts.

• Holding the information content of monitoring fixed, decreasing frequency often
helps.
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In contrast, in my setting, the inability of P to commit to any behavior that devi-
ates from maximizing today’s effort incentives every day means that the above two
comparative statics get almost completely reversed:

• Holding the frequency of monitoring fixed, increasing information content often
hurts.

• Holding the information content of monitoring fixed, decreasing frequency never
helps.

Despite the ineffectiveness of the type of infrequent monitoring typically consid-
ered in the repeated games literature, there is another, arguably more natural, way
to infrequently monitor that can help improve outcomes in my model: In many situ-
ations, the relevant stochastic information process tracks some notion of cumulative
productivity and monitoring is sampling that process. Under this definition of mon-
itoring, when P infrequently monitors, not only is the release of information being
delayed as in the repeated games literature, but also the quantity of information gen-
erated declines unlike in the repeated games literature. To distinguish this type of
infrequent monitoring from the type that is typically referred to in the repeated games
literature, I will refer to this type of infrequent monitoring as infrequent sampling.

To explore the costs and benefits of infrequent sampling, I now consider a canonical
setting where the stochastic information process is Brownian motion with the drift
being controlled by effort. In this new model, the timing of events at each date t is
the same as in my original model except P may or may not monitor A. If P does
monitor A, she no longer observes Xt where

Xt =

{√
∆ with probability 1

2
+ at

√
∆

2

−
√

∆ with probability 1
2
− at

√
∆

2

but, rather, samples the process Yt =
∑

s≤tXs tracking cumulative productivity.
From now on I refer to monitoring as sampling.

In this new model, a contract game, in addition to specifying M, w, and τ , also
specifies a sequence of sampling times e1 < e2 < . . .. An assessment is defined simi-
larly to before except P ’s decision nodes only occur on sampling dates. Throughout
the analysis I will assume an infinitesimal ∆.

In this more flexible model, if one restricts attention to contracts that have P
sample every date, then the optimal contracting problem becomes identical to the
original one and Theorem 2 implies that A exerts zero effort due to Brownian infor-
mation’s extreme imbalance between incentive power and statistical power. However,
this imbalance can be mollified by sampling only every once. As a result, infrequent
sampling is optimal:

Theorem 3. There exist ∆∗ > 0, ρ∗, and p∗ such that the optimal contract has the
following structure:
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• P samples every ∆∗ units of time: e = {∆∗, 2∆∗, 3∆∗ . . .}

• M = {pass, fail}.

• For each k ∈ Z+, mk∆∗ = fail iff Yk∆∗ − Y(k−1)∆∗ ≤ ρ∗.

• w consists of a pair of constants wsalary, wseverance.

• For each k ∈ Z+, if mk∆∗ = pass then A is retained for the sampling period
(k∆∗, (k + 1)∆∗] and is paid a stream wsalarydt.

• For each k ∈ Z+, if mk∆∗ = fail then A is terminated with probability p∗.

– If A is not terminated then it is as if P reported pass.

– If A is terminated then he is paid a lump sum wseverance.

Most of the work in proving Theorem 3 has already been done. P report pass or
fail based on whether or not the threshold ρ∗ is reached is a consequence of maximizing
effort incentives when information satisfies MLRP with respect to effort. The evenly
spaced aspect of optimal sampling frequency is a consequence of the infinite time
horizon and the fact that the continuation contract after pass is itself Pareto-optimal.

The main difference between this optimal contract and the original optimal con-
tract is that in the original model the length of a sampling period was exogenously
fixed to be ∆ whereas in the new model it is endogenously determined.

The magnitude ∆∗ of this endogenously determined sampling period length is
pinned down by an intuitive tradeoff: The set of signal realizations Yk∆∗ −Y(k−1)∆∗ ≤
ρ∗ is similar in spirit to the Bad set of signal realizations for Xt in the original model.
As ∆∗ shrinks, this set of “Bad” signals becomes increasingly marginal meaning the
negative effort-elasticity of P(Bad) becomes vanishingly small – and consequently, in-
sisting on failing A whenever these marginal “Bad” signals occur becomes increasingly
inefficient. As we now understand, this type of over-failing of A is counterproductive
and will cause the optimal contract to collapse. On the other hand, as ∆∗ increases
away from zero discounting begins eroding the incentive power of information: In the
beginning of a sampling period, the threat of termination in the distant future when
the sampling period concludes has little effect on the continuation payoff of A today.
The optimal ∆∗ balances these two opposing forces: The desire for greater balance
between incentive and statistical power on the one hand versus the desire for greater
incentive power in absolute terms on the other.

6 Conclusion

This paper studied how changes to the information content of private monitoring in
a moral hazard setting impacts productivity and surplus. I showed that improving
the information content of monitoring by introducing new information that is weak
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in statistical power but strong in incentive power can backfire, leading to a decline in
productivity and surplus. In some cases, improvements to monitoring can cause the
optimal contract to collapse into a trivial contract that induces zero effort. Delaying
the monitor’s ability to react to the information generated by monitoring only makes
things worse. On the other hand, in settings where monitoring is sampling the cur-
rent value of a fixed stochastic process tracking cumulative productivity, infrequent
sampling can be beneficial. Optimal sampling is periodic with the period length de-
termined by an intuitive tradeoff between more incentive power versus more balance
between incentive and statistical power.

7 Appendix

Proof of Theorem 2. Let a∗t (∆) denote the effort induced by the optimal contract
at date t. Suppose lim∆→0 a

∗
t (∆) > 0. Since A is exerting an interior effort, the

first-order condition equating marginal cost, h′(a∗t (∆))∆ to marginal benefit,(
− d

da
P(Xt ∈ Bad | a∗t (∆),∆)

)
· p∗(∆) · e−r∆S∗(∆),

must hold. Since marginal cost = Θ(∆), therefore marginal benefit = Θ(∆). Since
e−r∆S∗(∆) = Θ(∆0) and, by assumption, − d

da
P(Xt ∈ Bad | a∗t (∆),∆) = Θ(∆α),

therefore p∗(∆) = Θ(∆1−α).
The contribution to surplus of a∗t (∆) relative to zero effort is = Θ(∆). The cost to

surplus of p∗(∆) relative to zero probability of termination is P(Xt ∈ Bad | a∗t (∆),∆)·
p∗(∆) = Θ(∆γb+(1−α)). For the contributions to exceed the costs it must be that
γb + 1− α ≥ 1⇒ α− γb = 0. Feasibility of p∗(∆) = Θ(∆1−α) implies α ≤ 1.

Proof of Proposition 3. Case 1a: γg1 − γb2 < α1 − α2 = 0 < γb1 − γ
g
2 .

It is easy to show γg1 = γg2 = 0. By the product rule, as ∆ → 0, the deriva-
tive of P(Xt = (g1, b2) | at,∆) with respect to at is A(∆) − B(∆) where A(∆) =
Θ(∆α1+γb2) and B(∆) = Θ(∆γg1 +α2). Since α1 + γb2 > γg1 + α2, B(∆) � A(∆)
and therefore (g1, b2) ∈ Bad. By the product rule, as ∆ → 0, the derivative of
P(Xt = (b1, g2) | at,∆) with respect to at is −A(∆)+B(∆) where A(∆) = Θ(∆α1+γg2 )
and B(∆) = Θ(∆γb1+α2). Since α1 + γg2 < γb1 + α2, A(∆) � B(∆) and therefore
(b1, g2) ∈ Bad.

Given the results above, γb = min{γb1 + γb2, γ
g
1 + γb2, γ

b
1 + γg2} = min{γb1, γb2}.

γg = γg1 + γg1 = 0. α = min{α1 + γg2 , γ
g
1 + α2} = α1 = α2.

Case 1b: γg1 − γb2 ≤ 0 < α1 − α2 < γb1 − γ
g
2 .

γg1 = 0, γb1 > 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Bad. γb = min{γb1+γb2, γ
g
1 +γb2, γ

b
1+γg2} =

min{γb1 + γg2 , γ
b
2} = min{γb1, γb2}. γg = γg2 . α = min{α1 + γg2 , γ

g
1 + α2} = α2.
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Case 2: γb1 − γ
g
2 ≤ 0 < α1 − α2 < γg1 − γb2.

γb1 = 0, γg1 > 0. (g1, b2) ∈ Good, (b1, g2) ∈ Good. γb = γb2. γg = min{γg1 + γg2 , γ
g
1 +

γb2, γ
b
1 + γg2} = min{γg1 + γb2, γ

g
2} = min{γg1 , γ

g
2}. α = min{α1 + γb2, γ

b
1 + α2} = α2.

Case 3a: γg1 − γb2 ≤ 0 ≤ γb1 − γ
g
2 < α1 − α2.

γg1 = 0 or γg2 = γb1 = 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Good. γb = min{γb1 + γb2, γ
g
1 +

γb2} = γb2. γg = min{γg1 + γg2 , γ
b
1 + γg2} = γg2 . α = min{α1 + γb2, γ

b
1 + α2, γ

g
1 + α2} = α2.

Case 3b: γb1 − γ
g
2 ≤ 0 ≤ γg1 − γb2 < α1 − α2.

γb1 = 0 or γg1 = γb2 = 0. (g1, b2) ∈ Bad, (b1, g2) ∈ Good. γb = min{γb1+γb2, γ
g
1+γb2} =

γb2. γg = min{γg1 + γg2 , γ
b
1 + γg2} = γg2 . α = min{α1 + γb2, γ

b
1 + α2, γ

g
1 + α2} = α2.

A Incentive Compatibility

The section generalizes the first half of Zhu (2018b). I begin with a generalization of
the class of monitoring systems considered:

Assumption 1. Let R be any non-empty, finite set of real numbers. Let ξ be any full-
support finite-valued random variable whose distribution does not depend on at. There
exists a unique function fR(Xt) taking values in R with the following two properties:

• The set arg maxat Eatf
R(Xt)− h(at)∆ contains a maximal element aR.

• For any function g(Xt, ξ) taking values in R, if it is not true that g(Xt, ξ) =
fR(Xt) for all Xt and ξ, then aR is strictly larger than any element of arg maxat Eat,ξg(Xt, ξ)−
h(at)∆.

One can think of R as a set of possible rewards for A, g as a performance-sensitive
reward function designed to induce effort from A, and ξ as noise. When Assumption
1 is used in the analysis below, R will correspond to the set of possible discounted
date t+ ∆ continuation payoffs for A, g will be P ’s date t report strategy, and ξ will
be P ’s private history leading up to date t. Assumption 1 says to maximize effort A’s
performance-sensitive reward cannot depend on noise.

Assumption 1 holds under many natural models of how effort affects the distribu-
tion of Xt, including the special case where effort has a strictly monotone effect on
Xt. In this case, fR takes at most two values, the maximal and minimal values of R,
with fR taking the minimal value of R if and only if Xt ∈ Bad.

I am now ready to discuss incentive compatibility in settings where the monitoring
technology satisfies Assumption 1. I assume that the model has a terminal date
T < ∞ unlike in the body of the paper. Once I define incentive compatibility and
characterize the optimal contract, I will then show that as T → ∞ the optimal
contract converges to the one in Theorem 1.

23



In most contracting models, incentive compatibility means the assessment is a
sequential equilibrium. However, in my setting, many sequential equilibria feature
implausible behavior by P : Pick an arbitrary date t < T and examine P ’s date t
payoff,

Vt = (−wt + u(at|mt)∆) + e−r∆Vt+∆. (3)

Vt is the sum of two components – her expected date t utility as a function of A’s
date t effort and her discounted date t + ∆ continuation payoff. It is without loss
of generality to assume the second component does not depend on mt – otherwise P
would only report the messages that maximized the second component. Thus, the
only thing mt affects is A’s date t effort. Looking at the first component, it is clear
the higher is at the higher is Vt. Thus, at the beginning of date t, P should want to
commit to mt that maximizes date t effort incentives.

However, the sequential equilibrium concept allows P to use mt that do not max-
imize at |mt. My strategy for refining sequential equilibrium is to be conservative
about using the idea of P wanting to maximize effort incentives to remove equilib-
ria. This way when I do remove an equilibrium, it is hard to object. Then I show
that given a contract game, the set of equilibria that survive my conservative re-
finement process all generate the same continuation payoff process. This means no
matter how my “minimal” refinement is strengthened, as long as the strengthening
does not remove all equilibria from a contract game then Pareto-optimal contracts are
unchanged. This “squeeze” argument implies that my refinement and the resulting
optimal contract are robust.

To operationalize my conservative approach to removing equilibria, I begin by
defining some restrictive conditions on assessments that will need to be satisfied for
there to be an opportunity for P to maximize effort incentives.

Definition. Wt(H
A+
t−∆, ht−∆) is belief-free if it does not depend on A’s beliefs at all

succeeding (HA
t , ht−∆). Wt is public given ht−∆ if Wt(H

A+
t−∆, ht−∆) is constant across

all HA+
t−∆, in which case I simplify Wt(H

A+
t−∆, ht−∆) to Wt(ht−∆). Define belief-free and

public for Vt similarly.
(a,m) is belief-free given ht if at every succeeding decision node the corresponding

player’s set of best-response continuation strategies does not depend on that player’s
belief.

See Ely, Hörner and Olszewski (2005) for a discussion of belief-free equilibria in
repeated games of private monitoring. To define when a sequential equilibrium is
removed, I suppose the set of all sequential equilibria has already been whittled down
to some subset E . I then provide restrictive conditions as a function of E under which
certain additional sequential equilibria can be removed.

Definition. Fix a set sequential equilibria E. P is said to have an opportunity to
maximize effort incentives at the beginning of date t given E and conditional on ht−∆
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if for every succeeding ht, all (a,m) ∈ E are belief-free given ht and share the same
belief-free, public continuation payoff process (Ws+∆(hs), Vs+∆(hs))s≥t.

When P has an opportunity, her set of best response messages is

M∗(ht−∆) := arg max
m′∈M

E[e−r∆Vt+∆(ht) | ht−∆m
′].

Notice P has an opportunity to maximize effort incentives at date t only when
the equilibrium property of all (a,m) ∈ E starting from date t+ ∆ do not depend on
what happens before date t + ∆ and the continuation payoff processes of A and P
starting from date t+∆ are uniquely determined and do not depend on what happens
before date t+ ∆. Thus, when P has an opportunity at date t one can think of date
t as the terminal date with the players receiving lump sum payments

(E[e−r∆Wt+∆(ht) | ht−∆mt],E[e−r∆Vt+∆(ht) | ht−∆mt])

at the end of date t after P makes her final report mt.

Definition. Suppose P has an opportunity to maximize effort incentives given E and
conditional on ht−∆. A commitment m̂t(ht−∆) is a choice of a message ∈ M∗(ht−∆)
for each (HP

t , ht−∆) that depends on HP
t only up to Xt.

Given a commitment, A’s best response effort does not depend on A’s belief about
P ’s private history and is, therefore, public. Consequently, P ’s date t continuation
payoff from making a commitment does not depend on P ’s belief about A’s private
history and is, therefore, belief-free and public:

Define at|m̂t(ht−∆) to be the largest element of

arg max
a′

Ea′,m̂t(ht−∆)

[
−h(a′)∆ + e−r∆Wt+∆(ht)

]
where the expectation is computed using the distribution over the set of ht compatible
with ht−∆ generated by a date t effort a′ and m̂t(ht−∆). Define

Vt(ht−∆)|m̂t(ht−∆) := Eat|m̂t(ht−∆),m̂t(ht−∆)

[
u(at|m̂t(ht−∆))∆ + e−r∆Vt+∆(ht)

]
.

I now implicitly define when an equilibrium can be removed by defining when a
set of equilibria can no longer be further refined:

Definition. A set E of sequential equilibria maximizes effort incentives if whenever
P has an opportunity to maximize effort incentives conditional on ht−∆, there does not
exist an (a,m) ∈ E, HP

t−∆, and a commitment m̂t(ht−∆) such that Vt(ht−∆)|m̂t(ht−∆) >
Vt(H

P
t−∆, ht−∆).

The order in which equilibria are removed under my conservative approach does
not matter:
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Lemma 4. If E1 and E2 are sets of sequential equilibria that maximizes effort incen-
tives, then so is E1∪E2. Thus, there is a unique maximal set E∗ of sequential equilibria
that maximizes effort incentives.

Proof. Suppose E1∪E2 does not maximize effort incentives. Then there exists an ht−∆,
(a,m) ∈ E1 ∪E2, HP

t−∆, and a commitment m̂t(ht−∆) such that P has an opportunity
conditional on ht−∆ and Vt(ht−∆)|m̂t(ht−∆) > Vt(H

P
t−∆, ht−∆).

Without loss of generality, assume (a,m) ∈ E1. Then P has an opportunity given
E1 and conditional on ht−∆. Given E1, m̂t(ht−∆) continues to be a commitment.
Moreover, the payoffs Vt(ht−∆)|m̂t(ht−∆) and Vt(H

P
t−∆, ht−∆) are the same given E1

and E1 ∪E2. This contradicts the assumption that E1 maximizes incentive power.

Definition. A sequential equilibrium maximizes effort incentives if it is an element
of E∗.

Proposition 3. Fix a contract game. All (a,m) ∈ E∗ are belief-free and generate the
same belief-free, public continuation payoff process that can be computed recursively:

When τ = t, all (a,m) ∈ E∗ generate the same belief-free, public continuation
payoff (Wt(ht−∆), Vt(ht−∆)) = (wt(ht−∆),−wt(ht−∆)). If τ > t, then by induction
suppose all (a,m) ∈ E∗ generate the same belief-free, public continuation payoff
(Wt+∆(ht), Vt+∆(ht)) for all ht. Define

R(ht−∆) := {E[e−r∆Wt+∆(ht) | ht−∆m
′] | m′ ∈M∗(ht−∆)}.

Then mt(H
P
t , ht−∆) = fR(ht−∆)(Xt), at(ht−∆) = aR(ht−∆), and

Wt(ht−∆) = wt(ht−∆)− h
(
aR(ht−∆)

)
∆ + e−r∆E

aR(ht−∆), fR(ht−∆)(Xt)
Wt+∆(ht),

Vt(ht−∆) = −wt(ht−∆) + E
aR(ht−∆), fR(ht−∆)(Xt)

[
u(aR(ht−∆))∆ + e−r∆Vt+∆(ht)

]
.

Proof. Begin with the set ET of all sequential equilibria. It is easy to verify that P
has an opportunity given ET and conditional on any public history of the form hT−2∆

satisfying τ(hT−2∆) > T−∆. Now, define a new set ET−∆ ⊂ ET of sequential equilibria
as follows: (a,m) ∈ ET−∆ if and only if for each hT−2∆ satisfying τ(hT−2∆) > T −∆
there is a fR(hT−2∆)(XT−∆) such that mT−∆(HP

T−∆, hT−2∆) = fR(hT−2∆)(XT−∆) for all
HP
T−∆ and aT−∆(HA

T−∆, hT−2∆) = aR(hT−2∆)) for all HA
T−∆. By construction, E∗ ⊂

ET−∆.
Now it is easy to verify that P has an opportunity given ET−∆ and conditional

on any public history of the form hT−3∆ satisfying τ(hT−3∆) > T − 2∆. Similar to
before, I can now define an ET−2∆ that contains E∗. Proceeding inductively, I can
define a nested sequence of sets of sequential equilibria E∗ ⊂ E0 ⊂ . . . ⊂ ET−∆ ⊂ ET .
All equilibria in the set E0 are belief-free and generate the same belief-free, public
continuation payoff process that is described in the proposition. It is easy to show E0

maximizes incentive power, which implies E∗ = E0.
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Despite my conservative approach to removing sequential equilibria, Proposition
3 implies that all the “complex” sequential equilibria involving P trying to keep A in
the dark about his own continuation payoff are removed.

Proposition 3 says that P ’s report strategy at date t is characterized by the func-
tion fR(ht−∆). Given the definition of fR in Assumption 1 and given that R(ht−∆) is
defined to be all the possible expected discounted date t+ ∆ continuation payoffs for
A as a function of P ’s date t report, Proposition 3 basically formalizes the claim that
P reports in a way that maximizes effort incentives at all times.

Definition. A contract is incentive compatible if the assessment is a sequential equi-
librium that maximizes effort incentives and Wt(ht−∆) + Vt(ht−∆) ≥ 0 for all ht−∆.

The second part of the definition is an interim participation constraint. If it is
violated both players are strictly better off terminating at the beginning of date t
under some severance pay ŵt.

The Optimal Contracting Problem: For each point on the Pareto-frontier, find
an incentive-compatible contract that achieves it.

Theorem 4. Every payoff on the Pareto-frontier can be achieved by a contract with
the following structure:

• M = Im(Xt) and mt(H
P
t , ht−∆) = Xt.

• For each t < T there is a pair of constants wsalaryt , wseverancet+∆ such that A is paid

wsalaryt at date t for working and is paid a severance wseverancet+∆ at date t + ∆
if he is terminated at the beginning of date t + ∆. Termination at date t + ∆
occurs with some probability p∗t (Xt).

Proof of Theorem 4. Proposition 3 implies there is an obvious correspondence be-
tween the portion of a contract after a history ht−∆ – call it the date t continuation
contract given ht−∆ – and a contract in the version of the model with timeframe
[0, T − t].

The proof is by induction on the length of the model timeframe. Fix a Pareto-
optimal contract. There is at least some realization of X0 such that for all h0 succeed-
ing m0(X0), the date ∆ continuation contract given h0 is a Pareto-optimal contract
in the model with timeframe [0, T − ∆]. Without loss of generality, it is the same
Pareto-optimal contract C ∆. Now for any realization of X0 change the contract so
that after P reports m0(X0) the contract randomizes between C ∆ and termination
using the date 0 public randomizing device. This can be done in a way so that
E[W∆(h0) | m0(X0)] and E[V∆(h0) | m0(X0)] remain the same. By construction, the
altered contract remains incentive-compatible. Relabelling m0(X0) as X0 (if two re-
alizations of X0 lead to the same m0(X0) then just create two separate messages –
it won’t affect anything), the contract now has the structure described in Theorem
1 at date 0. By induction, it has the structure described in Theorem 1 at all other
dates.
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Corollary 3. When at has a strictly monotone effect on Xt for all t, then the optimal
contract converges to the one characterized in Theorem 1 as T →∞.
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