BIOCH 765: Biochemistry II Spring 2014

Introduction to Amino Acids and Proteins

Jianhan Chen

Office Hour: MF 1:30-2:30PM, Chalmers 034

Email: <u>jianhanc@ksu.edu</u> Office: 785-2518

Section Overview

- "Nitrogen Metabolism"
- Feb 26 April 7 (spring break: March 17-21)
- Textbook "Fundamentals of Biochemistry" by Voet, Voet and Pratt, 4th Edition (3rd Edition works fine too).
- Metabolisms of Amino acids (Chapter 21) & nucleotides (Chapter 23)
- Redacted versions of the PowerPoint slides will be available on KSOL under: \Couse Content\Modules\Module II – Nitrogen Metabolism\Lecture Notes
 - Be prepared to take good notes during lectures
- Office hours: MF 1:30 2:30 PM, Chalmers 034
 - Or by appointment

Quizzes and Exam

- Quizzes: 10 point each
 - Three quizzes: Fridays of March 7, March 14, and March 28
 - Up to 10 minutes at the beginning of lectures
 - Cover materials since the first lecture (first quiz) or the previous quiz
 - Will reflect the emphasis of Section exam (below)
- Section final exam (70 points):
 - Monday of April 7: one hour
 - All materials of Section II
 - One A4 cheat sheet allowed
- No make-up: please plan your schedule accordingly
- Grading: overall course grade will be determined by adding the scores from the three sections and grading on a curve

(c) Jianhan Chen

BIOCH 765: Biochemistry II Spring 2014

Introduction to Amino Acids and Proteins

Jianhan Chen

Office Hour: MF 1:30-2:30PM, Chalmers 034

Hierarchical Organization of Proteins

Natural Amino Acids

- Nearly all polypeptides from animals and plants are constructed from the 20 standard α -amino acids
- All α-amino acids in L-configuration (except gly)
- Side chains vary
- Essential (10) vs non-essential ones
- Co-exist in two forms
 - Ionic (zwitterionic form) and unionized

(c) Jianhan Chen

7

α-Amino Acids

 An amino acid is an organic compound that contains both an amino (—NH₂) group and a carboxyl (—COOH) group bound to the same carbon (α carbon).

Classification of α -Amino Acids

Nonpolar Polar (neutral) (9) Neutral Acidic Basic (6) (2) (3)

9

Nonpolar α-Amino Acids

A *nonpolar amino acid* is an amino acid that contains one amino group, one carboxyl group, and a *nonpolar hydrophobic* side chain.

Polar Neutral α-Amino Acids

A *polar neutral amino acid* contains a side chain that is polar but neutral at physiological pH (side chain can form H-bonds).

11

Polar Acidic α-Amino Acids

A *polar acidic amino acid* is an amino acid that contains one amino group and 2 carboxyl groups, the second carboxyl group being part of the side chain.

Polar Basic α-Amino Acids

A *polar basic amino acid* is an amino acid that contains ≥ 2 amino groups and one carboxyl group, the second amino group being part of the side chain.

13

Three-Letter and Single-Letter Codes

Amino Acid	3-Letter	1-Letter	Amino Acid	3-Letter	1-Letter
Alanine	Ala	A	Leucine	Leu	L
Arginine	Arg	R	Lysine	Lys	K
Asparagine	Asn	N	Methionine	Met	M
Aspartate	Asp	D	Phenylalanine	Phe	F
Cysteine	Cys	C	Proline	Pro	P
Histidine	His	H	Serine	Ser	S
Isoleucine	lle	Q	Threonine	Thr	I
Glutamine	Gln		Tryptophan	Trp	W
Glutamate	Glu	E	Tyrosine	Tyr	Y
Glycine	Gly	G	Valine	Val	V

(c) Jianhan Chen

Chirality of α -Amino Acids

- α -carbon is a tetrahedral stereocenter (except glycine)
 - Pair of enantiomers
- Only L- α -amino acids exist in the proteins of animals and plants (with very few exceptions)
 - Amino acids refer to L-α-enantiomers

15

Electrophoresis

- Analyze a mixture of α -amino acids
- Identify substances in an electrical field by separation
 - Cations (1+) move to the negative electrode
 - Anions (1-) move to the positive electrode
 - Neutral α-amino acids does not migrate

Lys: positively charged

Glu: negatively charged

Phe: neutral

17

α-Amino Acids

TABLE 20.1 α-Amino Acids									
			R O 						
Name	Abbreviations		Side group (R)	Isoelectric point (pI)					
NONPOLAR NEUTRAL									
glycine	Gly	G	н—	5.97					
alanine	Ala	А	CH ₃ —	6.01					
valine*	Val	V	(CH ₃) ₂ CH—	5.96					
leucine*	Leu	L	CH₃ I CH₃CHCH₂—	5.98					
isoleucine*	lle	I	CH₃ CH₃CH2CH—	6.02					
phenylalanine*	Phe	F		5.48					
methionine*	Met	М	CH ₃ SCH ₂ CH ₂ —	5.74					
proline [†]	Pro	Р	O C—OH	6.30					
tryptophan*	Trp	W	CH ₂ -	5.88					
			H	(Continued at the top of the following page.)					

α-Amino Acids

Name	Abbreviati			
	Abbreviau	ons	Side group (R)	Isoelectric point (pI)
POLAR NEUTRAL				
ysteine	Cys	С	HSCH ₂ —	5.05
erine	Ser	S	HOCH ₂ —	5.68
hreonine*	Thr	Т	CH₃CH—	5.60
sparagine	Asn	N	O # H ₂ NCCH ₂ —	5.41
lutamine	Gln	Q	O H ₂ NCCH ₂ CH ₂ —	5.65
yrosine	Tyr	Υ	HO—CH ₂ —	5.66
OLAR ACIDIC				
spartic acid	Asp	D	O.	2.77
lutamic acid	Glu	E	_ "	3.22
			HOCCH ₂ CH ₂ —	
POLAR BASIC				
ysine*	Lys	K	H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ —	9.74
rginine*	Arg	R	NH 	10.76
	U		H ₂ NCNHCH ₂ CH ₂ CH ₂ —	
nistidine*	His	Н	N CH_2	7.59
	ysteine erine hreonine* sparagine Jutamine POLAR ACIDIC spartic acid Jutamic acid POLAR BASIC ysine* reginine*	ysteine Cys erine Ser hreonine* Thr sparagine Asn Jutamine Gln yrosine Tyr POLAR ACIDIC spartic acid Asp Jutamic acid Glu POLAR BASIC ysine* Lys rginine* Arg	ysteine Cys C erine Ser S hreonine* Thr T sparagine Asn N Jutamine Gln Q yrosine Tyr Y POLAR ACIDIC spartic acid Asp D Jutamic acid Glu E POLAR BASIC Tyric Y Arg R	ysteine ysteine ysteine ysteine Ser S HSCH ₂ — HOCH ₂ — OH CH ₃ CH— Sparagine Asn N H ₂ NCCH ₂ — yrosine Tyr Y HO CH ₂ CH ₂ — HO CH ₂ CH CH ₂ CH CH ₂ CH Polar Acidic spartic acid Asp D OH HOCCH ₂ — HOCCH ₂ — Polar Acidic spartic acid Asp D OH HOCCH ₂ — Polar Acidic Spartic acid Asp D OH HOCCH ₂ — Polar Acidic Spartic acid Asp D OH HOCCH ₂ — Polar Acidic Spartic acid Asp D OH HOCCH ₂ — NOLAR BASIC Spartic acid Arg R NH H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ — NH H ₂ NCNHCH ₂ CH ₂ CH ₂ — NH H ₂ NCNHCH ₂ CH ₂ CH ₂ — NH H ₂ NCNHCH ₂ CH ₂ CH ₂ — Nistidine* His His His His His His His Hi

19

Basic Chemical Reactions

- Backbone: common to all amino acids
 - Amines and carboxylic acids undergo dehydration to form amides
 - Peptides are polyamides formed by α -amino acids

- Side chains: amino acid specific
 - Often occurred as "post-translational" modifications (signaling, natural modification, oxidation/damage etc)
 - Disulfide bond formation: between cysteines, an important structural feature

Disulfide Bonds

The small protein insulin has two polypeptide chains connected by two interchain disulfide bonds. There is also one intrachain disulfide.

- The amino acid cysteine contains a thiol group, -SH. Pairs of cysteine residues often link two peptide chains or two parts of one peptide chain through disulfide bridges.
- Formation of disulfide is an oxidation reaction and the reverse involves disulfide reduction.

21

Summary

- Proteins: overview
- Amino acids
 - Chemical composition: backbone and side chain
 - Classification: side chain properties
 - Physical and chemical properties
 - zwitterionic form;
 - peptide bond formation
- Peptides and proteins: polyamides (heteropolymers of amino acids)
- Next two+ weeks: amino acid metabolism (Chapter 21)