#### 7.2 Muscle Proteins

Jianhan Chen

Office Hour: M 1:30-2:30PM, Chalmers 034

Email: <u>jianhanc@ksu.edu</u> Office: 785-2518

#### **Skeletal Muscle Organization**

- Muscle fibers: long multi-nucleated cells; run the length of muscle
- Myofibrils: bundles of alternating thick and thin filaments



(c) Jianhan Chen

#### 7.2 Muscle Contraction

#### Key Concepts 7.2

- Myosin is a motor protein that undergoes conformational changes as it hydrolyzes ATP.
- The sliding filament model of muscle contraction describes the movement of thick filaments relative to thin filaments.
- The globular protein actin can form structures such as microfilaments and the thin filaments of muscle.

(c) Jianhan Chen

## Myofibrils: Interdigitated Thick and Thin Filaments

- Repeating units of "sacromeres"
- Bundled by Z and M disks
- A band: thick filaments of ~150 Å in diameter
- I band: thin filament of ~70
   Å in diameter
- Contracting muscle: up to 1/3 shorter while becoming thicker (volume constant)
- Simultaneous reduction of H zone and I band (while A band remains constant)

=> "Sliding Filament Model"



#### Sliding Filament Model

- First observed and proposed by Hugh Huxley in 1954
- Explains ~1/3 maximal contraction



## Myosin: the Motor

(c) Jianhan Chen

- Myosin: main component of thick filament
  - ~500 myosin heads per thick filament (~250 myosin dimers)





Figure 7-26
© 2013 John Wiley & Sons, Inc. All rights reserved. Part (a) from Trinick, J. and Elliott, A., J. Mol. Biol. 131, 135 (1977).

(c) Jianhan Chen

7

#### Myosin: the Motor

- Myosin: main component of thick filament
  - 6 polypeptide chains
  - 2x 220KD heavy chain
  - 2 pairs of light chains: essential and regulatory light chains (ELC and RLC), ~ 15-22 KD
  - C-terminal coiled coil
  - N-terminal: ATPase activity







#### Model of Myosin-Actin Interaction





# Duchenne and Becker Muscular Dystrophy (DMD and BMD)

- Muscle wasting diseases
  - Muscle degeneration exceeds regeneration, leading to progressive muscle weakness and eventually lung/heart failure and death
  - DMD: onset age of 2-5 years, expected life span < 25 yr
  - BMD: onset age 5-10 years, less progressive and longer life expectancy
- Caused by mutations that lead to either degraded (in DMD) or semifunctional (in BMD) dystrophin
  - On X-chromosome, thus mostly affect men
  - BMD: 1 in every 3600 male birth
  - DMD: 3-6 incidence per 100K male birth
- Dystrophin (~0.002% of muscle tissue): helps to anchor F-actin to extracellular matrix and prevents membrane damage during muscle contraction
- · No treatment: ongoing research on stem cell or gene therapy

Other Components of Muscle

- Myosin and actin account (only) for about 60-70% and 20-25% of total muscle proteins
- Tropomyosin: line the groove of actin filament (blue ribbon in the right figure)
- Troponin: links tropomyosin, Ca<sup>2+</sup> sensing!
- Titin: longest known protein (34,350 residues), spanning ~1 μm between M and Z disks; thought to resist sacromere over extension
- Several other proteins that form Z and M disks and the linkages of other proteins to these junction points





e 7-30 esy of Ronald Milligan, The Scripps Research Institute, La J

(c) Jianhan Chen

© 2013 John Wiley & Shass Inc. All rights reserved

10

Mechanism of Force Generation in Muscle

YouTube animations: https://www.youtube.com/watch?v=oHDRIwRZRVI

 Muscle contraction involves myosin walking (literally!) on actin filament

- Driven by ATP hydrolysis
- The current model involves 6 steps (see diagram)
- Whole cycle ~ 0.2 second during a strong muscle contraction
- Contraction triggered by Ca<sup>2+</sup> pulse (from 10<sup>-7</sup> to 10<sup>-5</sup> M)
- Tropomyosin-troponin

ADP Actin Myosin head Thick flament

ATP binds to myosin head site Thick flament

ATP binds to myosin head; actin binding treleased.

ACTIN ADPIS

ACTIN ADPIS

ACTIN ATP binds to myosin head; actin binding in the actin binding of myosin head actin binding of myosin head releases actin.

ACTIV ATP binds to myosin head; actin binding of myosin head actin binding of myosin head actin binding of myosin head.

ACTIV ATP binds to myosin head; actin binding of myosin head actin binding of myosin head.

ACTIV ATP binds to myosin head; actin binding of myosin head actin binding of myosin head actin binding of myosin head.

(c) Jianhan Chen

12

# Ca<sup>2+</sup> Regulates Muscle Contraction by Altering Tropomyosin Position on Thin Filament



#### Actin Microfilaments in Nonmuscle Cells

- Actin the most abundant protein in eukaryotic cells: ~5-10% of total protein content!
- Forms microfilaments of ~70 Å in diameter: dynamic!
- Crucial for many functions: maintaining cell shapes, cell division, endocytosis, organelle transport etc
- Treadmilling: constant grow at the + end and dissociate at the end
   Directional growth and cell locomotion!





Figure 7-34 Courtesy of John Victor Small, Austrian Academy of Sciences, Salzburg

## **Microfilament Treadmilling**



# **Crawling Macrophage**



Figure 7-36

## Summary

- Muscle organization
- Key proteins: myosin and actin
  - Basic properties and major functional roles
  - Others proteins
- Force generation mechanism
- Calcium sensing
- Actin microfilaments

17

