BIOCH 755: Biochemistry I

Fall 2015

Quiz on Friday:

Need to know ALL amino acids and their basic properties No multiple choices question: all Q&As

3. Amino Acids (Chapter 4)

Jianhan Chen

Office Hour: M 1:30-2:30PM, Chalmers 034

Email: <u>jianhanc@ksu.edu</u> Office: 785-2518

Which of the following is NOT made of protein?

- A. rhino horn
- B. human toe nails
- C. sheep wool
- D. bacterial cell walls
- E. jello

Hierarchical Organization of Proteins

α-Amino Acids

 An *amino acid* is an organic compound that contains both an *amino* (—NH₂) group and a carboxyl (—COOH) group bound to the same carbon (α carbon).

4.1 Amino Acid (Chemical) Structure

• Key Concepts 4.1

- The 20 standard amino acids share a common structure but differ in their side chains.
- Peptide bonds link amino acid residues in a polypeptide.
- Some amino acid side chains contain ionizable groups whose pK values may vary.

(c) Jianhan Chen

Natural Amino Acids

- Nearly all polypeptides from animals and plants are constructed from the 20 standard α -amino acids
- All α -amino acids in L-configuration (except gly)
- Side chains vary
- Essential (10) vs non-essential ones
- Co-exist in two forms
 - Ionic (zwitterionic form) and unionized

(c) Jianhan Chen 8

7

Chirality of α-Amino Acids

- α-carbon is a tetrahedral stereocenter (except glycine)
 - Pair of enantiomers
- Only L-α-amino acids exist in the proteins of animals and plants (with very few exceptions)
 - Amino acids refer to L-α-enantiomers

9

11

Basic Chemical Reactions

- Backbone: common to all amino acids
 - Amines and carboxylic acids undergo dehydration to form amides
 - Peptides are polyamides formed by $\alpha\text{-amino}$ acids

- Side chains: amino acid specific
 - Often occurred as "post-translational" modifications (signaling, natural modification, oxidation/damage etc)
 - Disulfide bond formation: between cysteines, an important structural feature

Classification of α -Amino Acids

Classification of standard amino acids

12

Nonpolar α-Amino Acids

A *nonpolar amino acid* is an amino acid that contains one amino group, one carboxyl group, and a *nonpolar hydrophobic* side chain.

13

Polar Neutral α-Amino Acids

A *polar neutral amino acid* contains a side chain that is polar but neutral at physiological pH (side chain can form H-bonds).

14

Polar Acidic α-Amino Acids

A *polar acidic amino acid* is an amino acid that contains one amino group and 2 carboxyl groups, the second carboxyl group being part of the side chain.

Polar Basic α-Amino Acids

A *polar basic amino acid* is an amino acid that contains ≥ 2 amino groups and one carboxyl group, the second amino group being part of the side chain.

Three-Letter and Single-Letter Codes

Amino Acid	3-Letter	1-Letter	Amino Acid	3-Letter	1-Letter
Alanine	Ala	Α	Leucine	Leu	L
Arginine	Arg	R	Lysine	Lys	K
Asparagine	Asn	N	Methionine	Met	M
Aspartate	Asp	D	Phenylalanine	Phe	F
Cysteine	Cys	С	Proline	Pro	Р
Histidine	His	Н	Serine	Ser	S
Isoleucine	lle	1	Threonine	Thr	T
Glutamine	Gln	Q	Tryptophan	Trp	W
Glutamate	Glu	E	Tyrosine	Tyr	Υ
Glycine	Gly	G	Valine	Val	V

(c) Jianhan Chen

Isoelectric Point

- The pH at which the net charge is zero.
- For amino acids: pI = (pKi + pKj)/2
 - Ki and Kj are the dissociation constants of two charged species
- Slight side chain dependence; also dependent on structure

Disulfide Bonds

The small protein insulin has two polypeptide chains connected by two interchain disulfide bonds. There is also one intrachain disulfide.

- The amino acid cysteine contains a **thiol** group, -SH. Pairs of cysteine residues often link two peptide chains or two parts of one peptide chain through **disulfide bridges**.
- Formation of disulfide is an oxidation reaction and the reverse involves disulfide reduction.

Electrophoresis

- Analyze a mixture of α -amino acids
- Identify substances in an electrical field by separation
 - Cations (1+) move to the negative electrode
 - Anions (1-) move to the positive electrode
 - Neutral α-amino acids does not migrate

Lys: positively charged

Glu: negatively charged

Phe: neutral

20

18

4.3 Amino Acid Derivatives

- Post-translational modifications
 - The side chains of amino acid residues in proteins are often modified.
 - Adding small groups: Hydroxylation, methylation, acetylation, corboxylation, phosphorylation
 - Attaching large tails: lipids, carbohydrates etc
- A key signaling and regulatory mechanism

Green Fluorescent Protein

The light emitting group: Ser-Tyr-Gly under go spontaneous cyclization and oxidation and form conjugated double bond system!

Green Fluorescent Protein

The light emitting group: Ser-Tyr-Gly under go spontaneous cyclization and oxidation and form conjugated double bond system!

Biological Active Amino Acid Derivatives

- Complex pathways of amino acid metabolic transformations
- Beyond AA synthesis and energy generation

(c) Jianhan Chen

Summary

- Proteins: overview
- · Amino acids
 - Chemical composition: backbone and side chain
 - Classification: side chain properties
 - Physical and chemical properties
 - zwitterionic form;
 - peptide bond formation
 - Post-translational modification
 - Derivatives
- Coming up: Peptides and proteins

Glycine has no R group

- A. True
- B. False

25

What is the name of the amino acid shown below?

Which of the amino acids shown below is SER?

Which amino acid is this?

- A. Phe
- B. His
- C. Tyr
- D. Trp

Which of the following pairs of amino acids might form a salt bridge?

- A. Thr, Glu
- B. Tyr, Ser
- C. Glu, Asp
- D. Lys, Arg
- E. Lys, Asp

Which of the following amino acid side chains is polar and uncharged?

- A. Glu
- B. Trp
- C. Tyr
- D. Phe
- E. Ile

How many charged functional groups are present on the peptide below at physiological pH?

- A. 1
- B. 2
- C. 3
- D. 4 Arg-Asp-Cys-Tyr-Gln-Val-Glu
- E. 5

Which of the following groups of amino acid side chains is MOST LIKELY to be positioned into the active site of an enzyme that binds glucose as a substrate?

- A. Gln, Asn, Ser
- B. Val, Leu, Ile
- C. Trp, Phe, Ile
- D. Val, Glu, Lys
- E. Cys, Met, Pro

Glucose

Which of the following amino acids has a side chain that can form covalent cross-links in proteins?

- A. Ser
- B. Met
- C. Trp
- D. Cys
- E. Thr

Which of the following statements regarding amino acids is/are false?

- A.Thr and Cys may be phosphorylated.
- B. The side chain of the amino acid histidine usually acts as a base at pH 7.0.
- C.Arg contains four nitrogens.
- D.A and B
- E.All of the above statements are false.

Which of the following statements regarding amino acids is/are false?

- A. Ala, Val, Leu and Ile play an important role in establishing and maintaining the 3-D structures of proteins.
- B. Every amino acid has at least two pKa values.
- C. When the pH of a solution is below the pKa value of an ionizable group, the unprotonated form of that group predominates.
- D. Statements A and B are false.
- E. All of the above statements are false.

Which of the following does NOT contain a carboxamide functional group? A. The amino acid Asn.

- B. The amino acid Asp.
- C. The dipeptide Gln-His.
- D. All of these contain a carboxamide group.
- E. None of these contain a carboxamide group.

How many chiral carbons does Thr contain?

A. 0

B. 1

C.2

D. 3

Which of the following net charge best represents aspartate at pH 12?

A. -2

B. -1

C. 0

D. +1

E. +2

There are several amino acid side chains that are always charged at physiological pH. These are:

A. Gln, Asn, Lys, and Arg.

B. Glu, Asp, Lys, and Arg.

C. Lys, His, and Arg.

D. Glu, Asp, Lys, Arg, and His.

Which L amino acid has the R- configuration for $C\alpha$?

A. C

B. A

C. R

D. T

E. S

Which of the following amino acids could form a hydrogen-bonding interaction between their sidechains?

A. Q and A

B. Q and V

C. Q and F

D. Q and I

E. Q and W

How many charged R groups are present on the peptide below at physiological pH?

A. 1

B. 2

C. 3

D. 4 Asn-Asp-Cys-Tyr-Lys-Val-Glu

E. 5

What is the <u>net</u> charge of the peptide below at physiological pH?

A. -2

B. -1

D. +1

Ala-Arg-Asn-Asp-Glu-Ser-Gly

D. +

E. +2