BIOCH 755: Biochemistry I

Fall 2015

2. Water; Acid-base reactions

Office Hour: M 1:30-2:30PM, Chalmers 034

Email: jianhanc@ksu.edu
Office: 785-2518

2.1 Physical Properties of Water

Key Concepts 2.1

- Water molecules, which are polar, can form hydrogen bonds with other molecules.
- In ice, water molecules are hydrogen bonded in a crystalline array, but in liquid water, hydrogen bonds rapidly break and re-form in irregular networks.
- The attractive forces acting on biological molecules include ionic interactions, hydrogen bonds, and van der Waals interactions.
- Polar and ionic substances can dissolve in water.

2.1 Physical Properties of Water

Key Concepts 2.1

- The hydrophobic effect explains the exclusion of nonpolar groups as a way to maximize the entropy of water molecules.
- Amphiphilic substances form micelles or bilayers that hide their hydrophobic groups while exposing their hydrophilic groups to water.
- Molecules diffuse across membranes which are permeable to them from regions of higher concentration to regions of lower concentration.
- In dialysis, solutes diffuse across a semipermeable membrane from regions of higher concentration to regions of lower concentration.

Typical Bond Energ	gies
--------------------	------

TABLE 2-1 Bond Energies in Biomolecules

Type of Bond	Example	Bond Strength (kJ \cdot mol ⁻¹)
Covalent	0—н	460
	с—н	414
	cc	348
Noncovalent		
lonic interaction van der Waals forces	—coo-···+H ₃ N—	86
Hydrogen bond	-o-H…o<	20
Dipole-dipole interaction	$c = 0 \cdot \cdot \cdot c = 0$	9.3
London dispersion forces	H H 	0.3

(c) Jiaiiiiaii Ciieii

Dynamics of water hydrogen bonding network

/Users/jianhanc/teaching/bioch915/coursematerials/tip3p (512 waters, 200 ps simulation @ 300K, 1 ps per frame)

c) Jianhan Chen

9

Water

- · Solvent of life
- · Many unique properties
 - Maximum density at 4 °C
 - Ice is lighter than liquid water
 - Polar molecule
 - hydrogen bonding network
 - High specific heat capacity
- Hydrophobicity and hydrophilicity
 - Solute polarity (carry partial charges or not)
 - Salts (e.g. NaCl) dissolve in water readily
 - Hydrocarbons (oil) do not mix with water
- Amphipathic molecules
 - Self-assembly to micelles, biological membranes

(c) Jianhan Chen

Is this compound hydrophilic?

$$H - C - C = C - C - C = C - C - C - OH$$

$$OH OH$$

- A. Yes.
- B. No.
- C. What does "hydrophilic" mean?

Hydrophobic Effects: Aggregation and Phase Separation • Hydrophobic disrupt water HB network • Minimize expose hydrophobic surface leads to aggregation/phase separation (a) (b) (c) Jianhan Chen 13

Which of the following is true regarding the hydrophobic effect?

- A. Hydrophobic bonds are the association of nonpolar molecules or groups with other nonpolar molecules
- B. Nonpolar molecules interrupt the hydrogen-bonding pattern of water
- C. Water molecules that surround a less polar molecule are more restricted in their interactions with other water molecules
- D. B and C
- E. All of the above

2.2 Chemical Properties of Water

Key Concepts 2.2

- Water dissociates to form H⁺ and OH⁻ ions, with a dissociation constant of 10⁻¹⁴.
- The acidity of a solution is expressed as a pH value: pH = log [H⁺]
- An acid is a compound that can donate a proton, and a base is a compound that can accept a proton.
- A dissociation constant varies with the strength of an acid.
- The Henderson–Hasselbalch equation relates the pH of a solution of a weak acid to the pK and the concentrations of the acid and its conjugate base.
- A titration curve demonstrates that if the concentrations of an acid and its conjugate base are close, the solution is buffered against changes in pH when acid or base is added.
- Many biological molecules contain ionizable groups so that they are sensitive to changes in pH

(c) Jianhan Chen 18

Water Disassociation (Ionization)

$$\mathbf{K}_{\mathrm{w}} = \mathbf{K}_{\mathrm{eq}} \, [\mathbf{H}_2 \mathbf{O}] = [\mathbf{H} \mathbf{O}^{\boldsymbol{\cdot}}] [\mathbf{H}^{\boldsymbol{+}}] = 1 \times 10^{-14}$$

 No actual free proton: H₃O⁺ (hydronium ion), and other larger water clusters

(c) Jianhan Chen

19

Proton Transfer Between Waters

Figure 2-15

© 2013 John Wiley & Sons, Inc. All rights reserved.

(c) Jianhan Chen

Water Disassociation

$$K_{eq} = \frac{[HO'][H^+]}{[H_2O]}$$

$$K_w = K_{eq} [H_2O] = [HO^-][H^+] = 1 \times 10^{-14}$$

- No actual free proton: H₃O⁺ (hydronium ion), and other larger water clusters
- Ionization constant: $K_w = 10^{-14}$ (under standard conditions)
- Pure water: $[H^+] = [OH-] = 10^{-7}$
- Definition of pH: pH = log [H⁺] (= 7 for pure water @ 25°C)
 - One pH unit corresponds to 10 x change in [H⁺]
- Acidic: higher [H+] (lower pH)
- Basic: lower [H⁺] (higher pH)

(c) Jianhan Chen

What is the pH of a 0.01 M NaOH solution?

- A. 10
- B. 11
- C. 12
- D. 13
- E. 14

Acids and Bases

- Acid: donate protons (lower pH)
- Base: accept/sequester proton (higher pH)

$$HA + H_2O \longleftrightarrow A' + H_3O^+$$

$$K_k = \frac{[H_3O^+][A']}{[HA]}$$

- pKa = -log Ka
- Lower pKa means stronger acid: stronger tendency to donate proton

(c) Jianhan Chen

Acid	K	p <i>K</i>
Oxalic acid	5.37 × 10 ⁻²	1.27 (p <i>K</i> ₁)
H ₃ PO ₄	7.08×10^{-3}	2.15 (pK ₁)
Formic acid	1.78×10^{-4}	3.75
Succinic acid	6.17 × 10 ⁻⁵	4.21 (pK ₁)
Oxalate ⁻	5.37 × 10 ⁻⁵	4.27 (pK ₂)
Acetic acid	1.74×10^{-5}	4.76
Succinate ⁻	2.29×10^{-6}	5.64 (pK ₂)
2-(N-Morpholino)ethanesulfonic acid (MES)	8.13 × 10 ⁻⁷	6.09
H ₂ CO ₃	4.47×10^{-7}	6.35 (pK ₁) ^a
Piperazine- <i>N,N'</i> -bis(2-ethanesulfonic acid) (PIPES)	1.74×10^{-7}	6.76
H ₂ PO ₄	1.51×10^{-7}	6.82 (pK ₂)
3-(N-Morpholino)propanesulfonic acid (MOPS)	7.08×10^{-8}	7.15
N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)	3.39×10^{-8}	7.47
Tris(hydroxymethyl)aminomethane (Tris)	8.32×10^{-9}	8.08
Boric acid	5.75×10^{-10}	9.24
NH ⁺ ₄	5.62×10^{-10}	9.25
Glycine (amino group)	1.66×10^{-10}	9.78
HCO₃	4.68×10^{-11}	10.33 (pK ₂)
Piperidine	7.58×10^{-12}	11.12
HPO ₄ ²⁻	4.17×10^{-13}	12.38 (pK ₃)

°The pK for the overall reaction CO $_2$ + H $_2$ O \Longrightarrow H $_2$ CO $_3$ \Longrightarrow H $^+$ + HCO $_3$ '; see Box 2-2.

Source: Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research (3rd ed.), pp. 424–425, Oxford Science Publications (1986); and Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., and Singh, R.M.M., Biochemistry 5, 467 (1966).

Table 2-4 © 2013 John Wiley & Sons, Inc. All rights reserved.

25

Acids and Bases

- Acid: donate protons (lower pH)
- Base: accept/sequester proton (higher pH)

• Acid-base reaction:
$$K_{\mathbf{x}} = \frac{\left[H_{\mathbf{y}}O^{+}\right]\left[A^{\cdot}\right]}{\left[HA\right]}$$

- pKa = log Ka
 - Lower pKa means stronger acid: stronger tendency to donate proton
- The relative concentrations of acid and base determines the solution pH: Henderson-Hasselbalch equation

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

(c) Jianhan Chen

TABLE 2-3	oH Values o	of Some	Common	Substances
-----------	-------------	---------	--------	-------------------

Substance	рН
1 M NaOH	14
Household ammonia	12
Seawater	8
Blood	7.4
Milk	7
Saliva	6.6
Tomato juice	4.4
Vinegar	3
Gastric juice	1.5
1 M HCl	0

Table 2-3 © 2013 John Wiley & Sons, Inc. All rights reserved.

Buffers: Titration Curves of Weak Acids

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

"Buffering" capability: slow change in solution pH with addition or removal of proton

Buffering capacity is maximal near the pKa value of the weak acid/base

Buffers: Titration of a Polyprotic Acid

Summary

- Unique physical properties of water
- Hydrophilicity, hydrophobicity
- Water ionization: pH
- Acid-base reactions: buffers
- Coming up: Amino acids and proteins

(c) Jianhan Chen