BIOCH 590: Biomacromolecules	Spring 2010				Overview		
		• Ba _ _ _	Sic prin Nuclea Throug Relaxa	nciples Ir spin, energy leve sh-bond and throu tion times	els, chemical shi gh space coupli	ft ngs	
Nuclear Magnetic Res	onance	_	2D and	l multi-dimensiona	al NMR experim	ents	
Basic Principles and Applications to I	Biomolecules	• Ap _ _ _	plicati High-re Dynam Transie Solid si	on to biomolec esolution structure nics: relaxation ana ent interactions: ex tate: membrane p	ules e determination lysis ccitation transfe roteins	r, spin-labeling	
Key References: Tinoco Chapter 10; van Holo	le Chapter 12;	-	In-cell Imagin	NMR g: MRI			
С	opyright: Jianhan Chen				(c) Jianhan Chen		2
NMR Fundament	als	• Sp _ • Nu _	in: fun Electro Icleus: (Net) n No nuc	N damental prop on: S = ½ consist of prot nucleus spin numb cleus spin if even n	uclear Spi erty of eleme ons and neut er: <i>I</i> = 0, ½, 1, umbers of neut	n entary particl rons crons <i>and</i> proto	les B _b x
		Isoton	e Snin	γ (Gyromag. Rat)	Natural	Relative	v/MHz at 11 7 T field
		¹ H	¹ / ₂	26.7522	99.98	1.00	500.0
		² H	1	4.1066	0.015	9.65x10 ⁻³	76.8
		¹³ C	1/2	6.7283	1.108	1.59x10 ⁻²	125.8
		19 E	1/2	-2./120	100	1.04X10 ⁻³	50.6
		31p	1/2	0.8394	100	6.63x10 ⁻²	202.6
(c) Jianhan Chen	3				(c) Jianhan Chen		4

Approximate Chemical Shifts

http://orgchem.colorado.edu/hndbksupport/nmrtheory/chemshift.html

Chemical Shift Indexing

- Chemical shifts further depend on (local) structures
 - For example, -0.35 ppm, on average, for Hα in helices, and +0.40 ppm, on average, for Hα in β-sheets (Jimenez et al. 1987)
- CSI: a powerful mean for obtaining protein secondary structures
 - Compared to random coil reference values

Residue	1 H α ± 0.1 ppm	$^{13}C\alpha \pm 0.7 \text{ ppm}$	$^{13}C\beta \pm 0.7 \text{ ppm}$	¹³ C' ± 0.5 ppm
Ala	4.4	52.5	19.0	177.1
Cys(red)	4.7	58.8	28.6	174.8
CYS(ox)		58.0	41.8	175.1

- averages assignments from multiple chemical shifts (${}^{1}H\alpha$, ${}^{13}C\alpha$, ${}^{13}C\beta$ and ${}^{13}C'$) to arrive at a consensus assignment.

• Latest extensions to reliable tertiary structure determination by combining CS and statistical knowledge! (e.g., see Bax PNAS 2008)

14

Mielke and Krishnan, Prog. NMR Spect (2009) (c) Jianhan Chen

NMR Peak Intensity

- The magnitude or intensity of NMR resonance is proportional to the molar concentration of the sample, which is most accurately measured as integrated intensity (commonly displayed on 1D NMR spectra)
- Integrated intensity is proportional to number of protons

Molecular Tumbling and Relaxation

- Both processes are mainly related to molecular tumbling times (τ_c)
 - Tumbling time ~ ns (or w/ frequency of GHz)
 - Larger molecules tumbles slower and thus more effective in inducing relaxation (shorter T1, T2)
 - Faster relaxation at higher fields

Relaxation

- Two types of relaxation processes
 - T1: Spin-lattice relaxation (longitudinal relaxation, enthalpic relaxation): recovery of equilibrium populations (and thus a loss of signal and energy)
 - T₂: Spin-spin relaxation (transverse relaxation, entropic relaxation): lost of "coherence" (without a loss of excited state population or energy)
- T₂ is always smaller than T₁ (~ 0.1 20 sec).
- NMR peak width is generally determined by T₂.

(c) Jianhan Chen

Nuclear Overhauser Effect (NOE)

- RF saturation of one spin causes perturbation of spin population of nearby nuclei via magnetic dipoledipole interactions. This changes the intensity of other spins.
- Difference spectrum with and without RF saturation of selected spin.
- Provide spatial distance info as dipolar coupling interacts throughout space.
- Generally an enhancement effect
- Magnitude further depends on molecular dynamics: slow motions (>ns) reduces NOE and might lead to negative NOE!
- NOE buildup rate~ 1/r⁶ (dipole-dipole)

Summary of Information from NMR

- Chemical shifts: local chemical and structural environment
- (Integrated) intensity: number of protons/concentration
- J-coupling: adjacent protons and local conformations
- Relaxation times: dynamics (tumbling, internal and exchange)
- NOE: short-range spatial distance (< 6 Å) & (slow) dynamics

All these quantities can be accurately measured, often, for all nuclei in the system. This is why NMR can be extremely powerful.

(c) Jianhan Chen

25

27

Advanced Theories for Describing **NMR**

Development of modern 2D and multidimensional NMR techniques was made possible with the aid of special QM representation known as density-matrix formalism.

Additional reading: Dr. James Keeler's Lectures (U of Cambridge) http://www-keeler.ch.cam.ac.uk/lectures/index.html

(c) Jianhan Chen

Vector Model

- Energy levels and selections severely limited in understanding advanced NMR techniques such as pulsed NMR and multidimensional NMR
- Vector model is the language of NMR: only rigorous in a few cases, but ٠ extremely useful even for the most sophisticated NMR experiments
- Bulk magnetization: net magnetization vector aligns with B_o ٠

Manipulation and Detection of M_a

- M_o might be "rotated" by a radiofrequency pulse.
- Once tilted away from the z axis, the magnetization vector rotates about the direction of the magnetic field sweeping out a cone with a constant angle at Larmor frequency (Larmor precession).
- NMR experiments detect the precession of the magnetization vector, such as by placing a small coil of wire round the sample, with the axis of the coil aligned in the xy-plane.
- Relaxations and free induction decay (FID)

(c) Jianhan Chen

field

magnetic

26

(only x coil shown)

Phase Cycling

- To eliminate unwanted signals/artifacts (and select desired coherence)
- By repeating the (1D) experiment with alternating pulse phases and averaging the FIDs, certain signals (and artifacts) will cancel. Another direct benefit is enhancement of selected signal-to-noise ratio.
- Example: **PAPS** (Phase Alternating Pulse Sequence)

These signals add up to zero! (unless receiver phase follows pulse

Artifacts that do not follow the phases will cancel out!

Multi-dimensional NMR is the work-horse in biomolecular studies.

(c) Jianhan Chen

42

2D NMR Spectroscopy

Correlation Spectroscopy (COSY)

Information from COSY

- Most rigorous way of assigning protons: presence of cross-peaks unambiguously reveal J-coupling connectivity
- Patterns of connectivity is characteristic of the molecule: once a single peak (e.g., methyl) is assigned, the rest follow the COSY connectivity.
- J-coupling constants also measured.

Coherence Selection

• Phase cycling and gradient pulses to select/eliminate certain types of coherence excitation for detection

How do one "select" I_{1z} for detection?

A simplified scheme (the actual phase cycling is more complicated):

Scan 1: apply 2^{nd} 90 pulse along x Scan 2: apply 2^{nd} 90 pulse along -x

At the end, subtract FIDs from two scans. Can you imagine what happens to the above two terms?

Heteronuclear Single Quantum Correlation (HSQC)

(c) Jianhan Chen

47

Triple Resonance Protein NMR

Labeling of a protein with both ¹⁵N & ¹³C causes almost all of the atoms in the protein to become observable in NMR spectroscopy. More importantly, all of the atoms also become scalar coupled to each other. These homonuclear and heteronuclear scalar couplings are relatively large compared to the linewidth of the resonance lines.

53

Two key references:

- 1. Markley (1994) Methods in Enzymology Vol 239.
- 2. Bax & Grzesiek (1993), Accounts of Chemical Research, 26, 132.

http://www.intermnet.ua.es/inteRMNet/curs6Rule/doublelabel.html

Scalar Couplings in Proteins

HNCACB

54

http://www.intermnet.ua.es/inteRMNet/curs6Rule/doublelabel.html

HN(CO)CA

Multidimensional Protein NMR

Biomolecular NMR Applications

- 1. High-resolution structure determination
- 2. Dynamics: relaxation analysis
- 3. Transient interactions: excitation transfer, spin-labeling
- 4. Solid state: membrane proteins
- 5. In-cell NMR
- 6. Imaging: MRI

1. High-resolution NMR structure determination

- NMR is one of the only two methods for high-resolution structure determination besides X-ray crystallography
- Advantages of NMR
 - In solution: more physiologically relevant conditions
 - Provide information on protein dynamics
 - Room temperature or (almost) any temperatures of interest
 - Direct monitoring of biophysical and biochemical processes
- Limitations of NMR
 - Time consuming and labor intensive: difficult for high-throughput, prone to human errors, less precise
 - Need to be highly soluble: stable with near mM concentration
 - Sometimes "strange" NMR buffers have to be used
 - Limited to protein of moderate sizes: < 200 residues in general
- X-ray and NMR can be complementary

(c) Jianhan Chen

59

Basic Steps of NMR Structure Determination

- Sample preparation and data collection
- Chemical shift assignments: backbone and sidechain
 Chemical Shift Indexing and J-coupling constants: 2nd structures
- Distance and other structural restraints: NOESY
- · Structural calculations: restrained molecular dynamics
- Refinement and validation

Also see: http://en.wikipedia.org/wiki/Protein_nuclear_magnetic_resonance_spectroscopy (c) Jianhan Chen

Protein NMR Sample Requirements

- Efficient preparation of sufficient highly purified material with appropriate isotope labeling is increasingly the rate limiting step in NMR studies of biomacromolecules
 - typically expressing proteins in minimal medium with single C13 and N15 resources (glucose and ammonium salt)
- All typical NMR sample requirements apply: D2O, no paramagnetic ions, clean tube, degassing, reference, etc
- Buffer: pH, ions, and co-solvent: tricky, optimized (solubility, stability, structural properties, etc)
- Quick view of NMR suitability: HSQC (H/ C or H/N)

Marin

ВСН3

C00⁻

ĊH3

+H₃N−Ċ−H

MLEV-17

"spin lock period"

Alanine (Ala, A) A3X

αH 4.35

NH 8.25

TOCSY

(c) Jianhan Chen

Creates correlations between all protons within a given spin

÷

system, not just between close neighbors like in COSY. Particularly useful in identification of amino acids!

COSY peaks

TOCSY peaks

A2(T2)MPX

βH 1.79

CH2

, соо⁻ +н₁N-С-н

> ĊH2 CH2

> Ċн

Ń-н

 NH_2

 $C = NH_2^{+}$

-⊳f2

63

Arginine (Arg, R)

ENH

NH 8.27

(c) Jianhan Chen

The Spin-lock sequence makes all spins strongly coupled (differences in chemical shifts are less than coupling constants)

Larger Proteins

- CS assignment requires doubly-labeled proteins
- Automatic assignment often feasible: correct assignment a critical starting point!

High resolution ¹ H- ¹⁵ N HSQC	Side chain: 15N TOCSY-HSQC
High resolution ¹ H- ¹³ C HSQC (aliphatic)	C(CO)NH-TOCSY
High resolution ¹ H- ¹³ C HSQC (aromatic)	H(CCO)NH-TOCSY
• • • • •	CCH-TÓCSY
Backbone: HNCA	CCH-COSY
HN(CO)CA	HCCH-TOCSY
HNCO	HCCH-COSY
HCACO	Aromatic
HN(CA)CO	¹ H spectra (2QF COSY and 2Q) for resonances
CBCA(CO)NH	within aromatic rings
HNCACB	¹ H NOESY to connect Hd with Hb (marked high
HBHA(CBCACO)NH	intensity NOEs)
HN(CA)HA	(Hb)Cb(CgCd)Hd
	(Hb)Cb(CgCdCe)He
	(HC)C(C)CH-TOCSY
	Methionine
	HMBC to assign methyl group

Incomplete excerption from Wright/Dyson lab manual (The Scripps Research Institute).

(c) Jianhan Chen

65

Distance Restraints from NOE

• Data Acquisition:

- . 3D ¹⁵N NOESY
- 3D ¹³C NOESY 4D ¹⁵N, ¹³C NOESY 4D ¹³C, ¹³C NOESY 3D ¹⁵N, ¹⁵N NOESY 3D ¹⁵N HSQC-NOESY-HSQC (take two NOESY spectra at 2 or more mixing times when possible)
- Calibration of NOE
 - NOE buildup ~ 1/r⁶
 - Actual slope also depends on dynamics, spin diffusion, strong coupling etc
 - NOESY is noisy!
 - Utilize known distances: intraresidue ones, 2nd structures

66

- NOE assignments: overlaps lead to ambiguous NOEs; iterative assignment assisted with structural feedbacks!
- Binning NOE intensities: large uncertainties and only qualitative!

<u>class</u>	<u>restraint</u>	description *for protein w/ M _r <20 kDa
strong medium weak	1.8-2.7 Å 1.8-3.3 Å 1.8-5.0 Å	strong intensity in short t_m (~50 ms*) NOESY weak intensity in short t_m (~50 ms*) NOESY only visible in longer mixing time NOESY

(c) Jianhan Chen

3D NOESY-HSQC

- 2D ¹H-¹H NOESY can be very crowded.
- Additional dimension helps to disperse the peaks and facilitate assignment
- NOESY followed by HSQC

Refinement & Validation

- NMR restraint violation statistics: self-consistency
- Convergence (precision): can be misleading
- PROCHECK: PDB statistics on general φ/ψ distributions
- Refinement using additional information from
 - Empirical protein force field: solvent effects

$$V = \sum V_{\rm MM} + \sum V_{\rm NMR} + \sum V_{\rm Other}$$

- Additional experimental data: NMR and non-NMR!
- Residual dipolar coupling (RDC)

	RPP29	RPP21
NMR constrains		
NOEs	2038	1407
Intraresidue $(i-j=0)$	833	606
Sequential $(i-j=1)$	475	364
Short range $(1 \le i - j \le 5)$	204	203
Long range $(i-j>5)$	526	234
Intermolecular (RPP29-RPP21)	472	
Ambiguous	376	328
Hydrogen bonds ^a	38	80
Dihedral angles	188	162
Structure statistics		
Violations		
Distance violations >0.5 Å	1.50±	±1.02
Dihedral angle violations >5°	1.63 ± 0.10	
Deviation from idealized geometry		
Bonds (Å)	0.0046 ± 0.00008	
Angles (°)	0.77±	±0.02
Impropers (°)	0.56 ± 0.01	
Ramachandran statistics (%) ^b		
Favored	7	7.0
Additionally allowed	2	1.1
Generously allowed		1.4
Disallowed	(0.5
Precision (RMSD form the mean struc	ture) ^c	
Backbone atoms (Å)	, í	0.58
All heavy atoms (Å)		0.87
PDB: 2KI7: Xu et al. IMB (2)	009)	
anhan Chen	000)	73

Table 1. Structural statistics for the RPP29-RPP21

complex

Refinement in implicit solvent can be used to obtain native-like models from limited NMR data.

Refinement of Maltose-Binding Protein (MBP)

- 370 residues, 42 kDa
- 1943 NOE, 45 hydrogen bonding and 555 dihedral angle restraints.
- Average backbone RMSD to X-ray structure is 5.5 Å (a).
- Improved to 3.3 Å with 940 additional dipolar coupling based restraints (b).

Ref. Mueller et al., JMB 300, 197 (2000)

Implicit Solvent Refinement Results

- All NOE and dihedral angle restraints were used.
- 48 replicas were simulated at 300 to 800 K until converged.
- Total of 1.0 ns REX/GB simulation.

	Initial	Final
RMSD to X-ray (Å) a		
Global	4.3±4.1	2.3 ± 2.6
N-domain	2.5±2.1	2.2 ± 1.4
C-domain	3.0±3.2	$2.0{\pm}1.9$
φ/ψ space: residues (%)		
Most favored	72.2	84.3
Additionally allowed	22.8	13.3
Generously allowed	3.8 1.6	
Disallowed	1.2	0.8
Violation statistics		
RMSD of NOEs (Å)	0.0047	0.014
NOE violations (> 0.2 Å)	2.85	4.42
RMSD of angles (in degrees)	0.53	6.25

^a Backbone RMSD with respect to PDB:1dmb shown. Global: residues 6-235 and 241-370; N-domain: 6-109 and 264:309; C-domain: 114-235, 241-258 and 316-370.

Chen et al., JACS (2004).

RMSD values: from X-ray (PDB:1dm); backbone atoms of residues 6-235 and 241-370

Automatic/High Throughput NMR Structure Determination

"The automation of protein structure determination using NMR is coming of age. The tedious processes of resonance assignment, followed by assignment of NOE (nuclear Overhauser enhancement) interactions (now intertwined with structure calculation), assembly of input files for structure calculation, intermediate analyses of incorrect assignments and bad input data, and finally structure validation are all being automated with sophisticated software tools. The robustness of the different approaches continues to deal with problems of completeness and uniqueness; nevertheless, the future is very bright for automation of NMR structure generation to approach the levels found in X-ray crystallography. Currently, near completely automated structure determination is possible for small proteins, and the prospect for mediumsized and large proteins is good."

Program	References	MD engine	Utility
ARIA	[34,35,36*,37]	CNS XPLOR	Ambiguous NOE restraint generation, spin diffusion correction, iterative structure calculation, analysis
AutoStructure	[28,31*]	XPLOR CNS DYANA	NOE, torsion angle and hydrogen bond restraint generation, NOESY assignment, iterative structure calculation, analysis
BACUS/CLOUDS	[38**,39,40]		NOESY assignment, distance matrix calculation
CANDID/ATNOS	[41,42]	DYANA	NOESY peak analysis, NOESY peak assignment, restraint generation, iterative structure calculation
NOAH	[32,33]	DIAMOD DIANA	NOESY assignment, NOE restraint generation, torsion angle restraints, iterative structure calculation
SANE	[47]	AMBER DYANA	NOESY assignment, restraint generation, structure calculation
PASD	[43**]	XPLOR-NIH	Probability analysis of NOE restraints and simultaneous structure calculation

"Automation of NMR structure determination of proteins", Altieri and Byrd, Curr Opin Struct Biol (2004) (c) Jianhan Chen

78

2. Protein Dynamics from Relaxation Analysis

Relaxation parameters (T1, T2, NOE) determined mainly by molecular tumbling and also depends on internal dynamics They thus report on internal dynamics, even though not always in obvious ways!

Table 1

Villanueva et al., "Increase in the conformational flexibility of β_2 -microglobulin upon copper binding: A possible role for copper in dialysis-related amyloidosis", Prot. Sci (2009).

Quantitative Analysis of NMR Relaxation

- With (proton-proton) cross-relaxation suppressed, amide N15 relaxes primarily due to dipolar interaction with the directly attached 1H spin and through 15N Chemical Shift Anisotropy.
- Relaxation parameters determined by spectral densities:

$$R_{1} = \frac{d^{2}}{4} [3J(\omega_{\rm N}) + J(\omega_{\rm H} - \omega_{\rm N}) + 6J(\omega_{\rm H} + \omega_{\rm N})] + \frac{c^{2}}{3} J(\omega_{\rm N}) , \qquad (1)$$

$$R_{2} = \frac{d^{2}}{8} [4J(0) + 3J(\omega_{\rm N}) + J(\omega_{\rm H} - \omega_{\rm N}) + 6J(\omega_{\rm H}) + 6J(\omega_{\rm H} + \omega_{\rm N})]$$

$$+\frac{c}{18}[4J(0)+3J(\omega_{\rm N})]+R_{\rm ex}\,,\tag{2}$$

(3)

81

NOE =
$$1 + \frac{d^2}{4R_1} \frac{\gamma_{\rm H}}{\gamma_{\rm N}} [6J(\omega_{\rm H} + \omega_{\rm N}) - J(\omega_{\rm H} - \omega_{\rm N})],$$

 $d = (\mu_0 h \gamma_{\mathrm{H}} \gamma_{\mathrm{N}} / 8 \pi^2) < r_{\mathrm{NH}}^{-3} > \mathrm{and} \ c = \Delta \sigma \omega_{\mathrm{N}};$

 r_{NH} is the length of the N-H bond; $\Delta\sigma$ is the CSA of 15N; ω_{H} and ω_{N} are the Larmor frequencies of 1H and 15N

Chen et al., JBNMR (2004) and references thereinanhan Chen

Model-Free Analysis

- Measure T1, T2 & NOE, typically at two fields (e.g., 500 MHz and 600 MHz)
- For each N15, fit (three or six) relaxation data points to to obtain generalized order parameters (S) and effective time constants (τ).
- These dynamics parameters quantify protein internal dynamics and can be use to understand the role of internal dynamics in folding and binding.

$$\begin{array}{c} D_{\parallel} & \tau_{e} \\ \theta_{i} & S^{2} \end{array} \quad J(\omega) = \frac{2}{5} \left[\frac{S^{2} \tau_{m}}{1 + (\omega \tau_{m})^{2}} + \frac{(1 - S_{f}^{2}) \tau'_{f}}{1 + (\omega \tau'_{f})^{2}} + \frac{(S_{f}^{2} - S^{2}) \tau'_{s}}{1 + (\omega \tau'_{s})^{2}} \right]$$
(4)

in which $\tau'_{\rm f} = \tau_{\rm f} \tau_{\rm m} / (\tau_{\rm f} + \tau_{\rm m})$, $\tau'_{\rm s} = \tau_{\rm s} \tau_{\rm m} / (\tau_{\rm s} + \tau_{\rm m})$, $\tau_{\rm m}$ is the isotropic rotational correlation time of the molecule, $\tau_{\rm f}$ is the effective correlation time for internal motions on a fast time scale defined by $\tau_{\rm f} < 100-200$ ps, $\tau_{\rm s}$ is the effective correlation time for internal motions on a slow time scale of ~ 1 ns defined by $\tau_{\rm f} < \tau_{\rm s} < \tau_{\rm m}$, $S^2 = S_{\rm f}^2 S_{\rm s}^2$ is the square of the generalized order parameter characterizing the amplitude

NMR PROBES OF MOLECULAR DYNAMICS: Overview and Comparison with Other Techniques, Palmer, Annul Rev Biophys Biomol Struct (2001).

Spectral Density and Internal Motions

• The spectral density function is the Fourier transform of the angular autocorrelation function, C(t), of the N-H bond vector,

$$J(\omega) = 2 \int_0^\infty C(t) \, \cos \omega t \, dt \, .$$

- The auto-correlation function depends on both overall tumbling and internal dynamics. Assuming $C(t) = C_o(t) C_i(t)$, if tumbling much slower.
- In so-called "model-free" analysis (Lipari and Szabo, 1982), internal dynamics characterized by (motion) model-free parameters, including
 - generalized order parameters (S): amplitudes of the internal motions
 - Effective time constants (τ): time-scales of the internal motions

Assumption of uncoupled tumbling and internal motions in model-free analysis likely leads to an underestimation of motions on ns timescales.

A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling 15N NMR relaxation, Tugarinov et al, JMB (2002). (c) Janhan Chen 84

Here we employ changes in conformational dynamics as a proxy for corresponding changes in conformational entropy. We find that the change in internal dynamics of the protein calmodulin varies significantly on binding a variety of target domains. Surprisingly, the apparent change in the corresponding conformational entropy is linearly related to the change in the overall binding entropy. This indicates that changes in protein conformational entropy can contribute significantly to the free energy of protein–ligand association.

Wand and coworkers, Nature (2001); Nature (2007)

Coupled Binding and Folding

6. MRI

- "magnetic resonance tomography"
- First MR image in 1973
- 2003 Nobel Prize
- Detect T1 or T2 relaxation of water protons in body
- Contrast agent to enhance the contrast (increase the spread of T1/T2 in tissues)
- B₀ ~ 1.5 T (60 MHz)
- Extensive use of magnetic field gradient for plane selection

Additional reading: http://www.cis.rit.edu/htbooks/mri/ (c) Jianhan Chen

