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Thermodynamics

The branch of science that describes the behavior of matter
and transformations between different forms of energy on the
macroscopic level.

Classical thermodynamics

— Describe the system in terms of bulk properties

— Aset of Laws of Thermodynamics

— Abstract, but generally applicable

— Does not make reference to the microscopic details
Statistical thermodynamics (statistical mechanics)

— Emphasize “bottom-up” approach

— Provide links between microscopic details (typically not measurable) to
macroscopic properties (measurable)

— Increasingly important, but do not replace classical thermodynamics
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Fundamental Concepts

* System (all materials involved in the process under study) and
surroundings (the rest of the universe)
— Open vs close (transfer of matter)
— Diathermal vs adiabatic (transfer of heat)
— Expandable or constant-volume (transfer of work)
— lIsolated (neither matter nor energy exchange)

* State of the system
— A thermodynamic state definable only for systems at equilibrium

* A condition in which equilibrium exists between the system and its
surroundings with respect to one or more system variables

— System variables: extensive and intensive
* pressure (P) and volume (V)
* temperature (T): an abstract quantity, measured indirectly (°C, F, K, ...)
— Ideal gas: PV = n RT, thus T = PV/nR (absolute temperature)
» concentration (C): an intensive variable (relative quantity)

(c) Jianhan Chen

First Law of Thermodynamics

Conservation of energy: heat (q), work(w), and (internal)
energy (E)

AE=g-w dE =06q -ow
Internal energy (E)

— Macroscopically: only definable on relative scale (see Eq above)

— Microscopically: multiple contributions including: kinetic, vibrational,
rotational, (chemical) bonding, non-bonded interaction, nuclei
(typically not relevant in chemistry/biochemistry) components

— A function of state
* Depends on the state only, regardless of the path of arrival

— Ifonly PdVwork, dE =dq - PdV
=dq if constant V
AE =q,
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Enthalpy

Internal energy is related to q,, what about q,,?
dE =6q - PdV
d(E +PV)=dE +PdV +VdP

=8q - PdV +PdV +VdP
=0q + VdP

dH = 8q + VdP
=dq if constant P

AH =g,

Enthalpy (H=E+PV): a state function that captures energy
change at constant P

For liquid phase processes (most biochemical processes), dV is
small and thus AE ~ AH
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Hess’s Law

Enthalpy is a state function. Thus, the enthalpy change of a
reaction is the same regardless of what pathway is taken to
achieve the products, i.e., only the start and end states matter
to the reaction, not the individual steps between.

Given:

B203(s) + 3H20(g) — 302(g) + B2H6(g) AH = +2035 kJ

H20(1) — H20(g) AH = +44 kJ
H2(g) + (1/2)02(g) — H20(l) AH = -286 kJ
2B(s) + 3H2(g) — B2H6(g) AH = +36 kJ

Find the AH of:
2B(s) + (3/2)02(g) — B203(s)

Answer: AH = -1273 kJ
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Boltzmann Distribution

A statistical view of the system at molecular level
— Molecules (of the same kind) within the system are indistinguishable

— At a given moment, each molecule might reside in one of the possible
discrete microscopic states i with corresponding energy level e,

— For very large system (remember Avogadro Number: 6.02x10%3) at
equilibrium, only most probably state is relevant.

Boltzmann distribution: specifies the most probable (i.e.,

equilibrium) probability of observing a certain energy state at

a specified temperature

—-e; [kgT
P e

— kg: Boltzmann constant (=1.3806503 x 10-23) K'); kz=R/N,

— The most fundamental relationship in statistical mechanics (or
statistical thermodynamics
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Derivations of Boltzmann Distribution (1)

Consider a three-state system (e,, e,, e;). At a given T, let's
write down the probability of finding the system in theses
states as p,, p, and ps.

Since energy is a relative quantity, p/p; = f(e;-e))

p3/p, = f(es-e,)= fle;-e,)/f(e,-e,)

... this means that f(x+y) = f(x) f(y)

What kind of functional form would give rise to such
property?

... exponential functions!

~p=aexp(-pe)

... this is exactly what (not how) Boltzmann derived 150 years
ago! It turns out that § = 1/kgT
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Derivations of Boltzmann Distribution (2)

* Considering an isolated system of N with a total energy
restricted to E=Me where each particle might access energy
levels are ne, with n=0, 1, 2, ...

ng+n;+n,+ ..=N
en,+2en,+3en;+..=Me

* Boltzmann postulated that if one can observe such an
assembly over a long period of time, each microstate will
occur with equal probability and that one will find that the
number of occurrences for any particular set of distribution is
proportional to the number of corresponding microstates,
which is given by:

N!

nylnln,!..
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Derivations of Boltzmann Distribution (2)

* A case of N=7, E=7e, the total number of possible states: 1716

Table for the possible arrangements of 7 atoms and 7 allowed energy levels:

Case | ng m n ns ny ns N ny W, number of
microstates
1 6 1 7
2 5 1 1 42
3 5 1 1 42
4 5 1 1 42
5 4 2 1 105
6 4 1 1 1 210
7 4 1 2 105
8 4 2 1 105
9 3 3 1 140
10 3 2 1 1 420
11 3 1 3 140
12 2 4 1 105
13 2 3 2 210
14 1 5 1 42
15 7 1
| !
7500, Woo TS0
16! 720 1230 12
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Derivations of Boltzmann Distribution (2)

* Forvery large N, only the most probable microstate matters!
* Maximize W or equivalently In W with N and E restriction

InM'=NInN-N

Thus, In ¥ can be expressed asfollows:

InlV = Nln NV - Zni Inn, - [N—Znij

The term inside the parenthesis is zero since V = Zn,. .

i=0

Thus,

Il = NInN- n Inn,

Taking the differential (recal that N is constant):

d(Inw) = =3 (1+Inn, )dn, = - Inndn,

where the fact that Edni =dN = 0, has already been taken into account.
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Derivations of Boltzmann Distribution (2)

d(Inw) = -3 (1+1Inn, )dn, = - Inndn,
where the fact that > dn, = @V = 0, has already been taken into account.

The next step involves the use of Lagrange undetermined multipliers. It is known that:
dE=0=7 5dn,  and dN=0= Y dn,

Thus, we can add the above equations freely to &f In¥#’). For any constant & and f3
the following should be true:

d(IniW) == Inndn, —ay dn,— fy. gdn,
At maximum # or maximum InW¥, &f In}¥)=0.

0=->" (a+[3q. + lnn,.);z'ni
This equation is true only if each term in the summation is zero:
0= (a+ﬁg +lnnz)
Inn, =-a— fs
—a ,=fs,

n=e e




Does it make physical sense?

Given the two state system shown to the right
n, ~exp(-e/kT) n_~exp (e/kT)
. exp(-¢;/kT) 4
exp(-e/kT) + exp(e; /kT)
exp(e; /kT)
P =
exp(-e/kT) +exp(e, /kT)

When temperature is near zero (T->0), p, 2 0, p_.>1
When temperature approaches infinity, p,=p.=0.5
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Partition Function

Given the Boltzmann distribution, the probability of observing
any energy state is given as:
) —e kT
P = i M - iexp(—ej/kT)
N Eexp(—ei/kT) 0
Q is defined as the (canonical) partition function

If considering degeneracy of energy states

Q0= Egi exp(-¢, /kT)

Contains all information about the system (g, and e)! All
classical thermodynamics quantities can be derived from Q

How to compute Q?
— Theory and simulation
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Statistical Thermodynamics

Thermodynamic ensembles: a collection of identical units
(i.e., atoms or molecules) of a system

— Atheoretical concept that relate microscopic properties to
corresponding thermodynamics properties

— Equivalence of ensemble average and time average
Canonical ensemble: N, V and T are constant
(Internal) energy E = <E>=N<e>

J

1
<e> = Eeij = agejexp(—ﬁej)

=_dan _ kBTZ dInQ
ap dar

P = éexp(—qi /kT) = éexp(_ﬁej)
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Spontaneous Processes

Real-world processes have a natural direction of change.

— Heat transfers from high Tto low T

— (ldeal) gas spontaneously fills up all the accessible volume
Energy and enthalpy do not provide information such
directionality of change.

— Above processes occur naturally in isolated systems where energy

does not change (First Law of Thermodynamics)

What quantities would help us to predict the direction of
change in complex systems?

— Itis all about probability!

Concept of entropy and Second Law of Thermodynamics

— Original concept comes of studies of heat engine (conversion between
heat and work)

— Statistical derivation: provides entropy a tangible meaning
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Entropy

* A measure of internal heat content, or, the unavailability of a
system’s energy to do work (S=q,,,/T).

* Based on the same logic that is used for deriving Boltzmann
distribution, equilibrium awe to lie where the probability is at
maximum.
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Entropy

* Statistical definition (1): S=kzIn W (1)
— Extensive:$S=S5; +S,
— A function of state (as W is)

* Statistical definition (2): § = _kBEpi Inp, (2)

* Two definitions are equivalent
N!
nyln!n,!l...

InW =(NInN-N)- E(nilnni —n)

=NInN - nlnn,
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Relation of Classical and Statistical Entropy

dS = kydInW =-k,d n,Inn,

=—k, Eln n,dn, (remember 2 dn; =0)

n, =n,exp(-e,/k;T) (in reference to e, =0)
Inn, =Inn, - S
k,T

e 1 dq
dS=k —dn.=— Y e.dn. = —=-
BZICBT i TE i i T

* The statistical definition of entropy thus provides a clearly
defined microscopic meaning of the classical entropy.
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Relation to Partition Function

S= _kBEpilnpi

—e; kT e—e,/kBT

e
=-k In
E 0 0
_ __dinQ _ ,dInQ
=ky(InQ+(E)/k,T) (E)= 2B kT =
J \
‘\ =E(kBT1nQ) ‘
dA
== A=—k,T1
oT s'InQ

A: Helmholtz free energy
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What does entropy capture?

* Correct interpretations: as given by the definitions

— A measure of internal heat content (the unavailability of a system’s
energy to do work)

— A statistical measure of the probability for a given macro state
— A measure of uncertainty (from information theory)
* Confusing/incorrect interpretations
— A measure of “disorder” or “randomness”
— A measure of “complexity”

S=kyln W S =~k Y pInp,
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Calculation of Entropy

* Example: isothermal expansion of ideal gas from V, to V,

1. Classical approach dE =dg—-dw =0

dq=dw=PdV =RTd7V

As = g [P AV _pig Y
T iV Vi
2. Statistical approach: V,=n,V, V,=n,V,

N N
Wl xn W20<n2

AS =k, InW, -k, InW,

= Rln(nz) = Rln(vz)
n Vi
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N

=k, ln(nzN

1

Second Law of Thermodynamics

* Inanisolated system, entropy reaches maximum at
equilibrium (the most probable distribution). In another word,
AS>0 provides a criterion for spontaneous change (only if in
an isolated system, i.e., without energy exchange in the form
of heat or work).

“Derivation”: at equilibrium, an infinitesimal change is
reversible.
dE =dq-dw =TdS - PdV

In addition, for isolated system, dE=0, dw=0. Thus,
ds=0

therefore, entropy is either at maximum or minimum.
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Free Energies

* AtconstantPand T (NPT):dP=dT=0
VdP-SdT=0 dE=TdS-PdV
(VdP—=SdT)+dE—(TdS—PdV)=0
dE+VdP+PdV—(SdT+TdS)=0
d(E+PV-TS)=0

* If we define a new quantity G=E+PV-TS=H-TS,
dG =0 forareversible process at NPT

* Gisreferred to as “Gibbs free energy”, which is at minimum at
equilibrium under NPT condition (most common).

* Similarly, Helmholtz free energy, A= E —TS, is at minimum at
equilibrium under NVT condition.

* The free energies provide the direction of spontaneous
changes under corresponding conditions.
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Free Energy and Probability
Remember, from the statistical mechanical point of view,
direction of spontaneous processes is given by the direction of

maximum probability.
— for isolated systems, the probability of a macro-state is given by

entropy. i.e., W = exp ( S/kg)

For a system coupled with NPT conditions,

P, xexp(-G,/RT) =exp(-H,/RT)exp(S;/R)

For a system coupled with NVT conditions,
P, xexp(-A,/RT) =exp(-E,;/RT)exp(S,/R)
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Statistical Meaning of Free Energies

Directly defined by the probability of a macro-state
Further related to the properties of microscopic states
through the partition function

For example:

dInQ _ kBTz dInQ
dap dT

S= %(kBTan) =k, InQ+ k,T

E=-—
dlnQ

A=E-TS
dinQ dlnQ

=k, T* -T(k,1 k,T—=
Bodar (ks InQ+ &, aT)

=—-k,TInQ
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Other Thermodynamic Properties

* Classical thermodynamics relationships can be used to
derived the statistical definitions of all properties

* For example:

P=_((9A) =kBT(&1nQ) L __dInQ
vV )nr vV Jnr dp
H=E+PV ;

_ S=—"(k,TIn
G=A+PV (9T< ;TInQ)

=(ﬁE)

" ar

Ny A=—-k,TInQ

oA
"oNOT yp
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Enthalpy and Entropy Compensation

* AG=AH-TAS
* Consider an example of protein folding:

denatured

Enthalpy

native

AH;<0 AT;<0

1. Low temperature, AG; = AH; —TAS; < 0 (folding)

(the favored state is not the more “random” denatured state!)

2. At folding temperature T,,, AG;=0 (p; = p, = 0.5)
3. High temperature, AG; = AH; — TAS; > 0 (unfolding)
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Equilibrium Constant

* Remember that given a reaction:
A+B=C+D
the quantity: K = [C][D]/[A][B] is a constant that is commonly referred to as
an “equilibrium constant”. But why a constant?
* Proof:

* First, needs to define a “standard state” (commonly 298K, 1atm, 1M).
Then for a solution with a concentration [A],

G = G%+ RT In ([A]/[A]°) = GO+ RT In [A]
* Therefore,
AG = AG®+ RT In ([C][D]/[A][B])
e At equilibrium, AG = 0. Thus,
AG®+ RT In ([C][D]/[A][B]) = O
AG?=-RTInK
K= [C][D]/[A][B] = exp ( - AG%/RT)
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Thermochemistry

* Experimental determination of the thermodynamic
parameters such as AG, AH and AS.

* AG can be directly calculated from K.,
— Often done by fitting to a titration curve

— Require choosing a measurable that responds to binding or (bio-)
chemical reaction

* Determination of AH and AS
— Van’t Hoff Relationship
— Calorimetry
— Theory and simulation: not reliable at quantitative level
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Van’t Hoff Relationship

* The classical approach, require multiple measurements of Keq
at different temperatures and certain assumptions
0 0 0
k. __AG' _ AH" AS
§ RT RT R

6

* Assuming that AH and AS
are temperature a4
independent (often a
strong assumption in {’
biochemical/biophysical s
processes 2

* ‘“safer” to calculate AS= ' . ) ‘
( AH-AG ) / R 280 2585 2.90 295 300 3.05
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Calorimetry

* “the quantitative measurement of heat”

* Depending on the setup, either g, or g,
— Probe AE (bomb) or AH (constant pressure)
— Biochemical systems often require the ability to
study very small volumes (micorcalorimetry)
* A calorimeter measures the heat into or out of
the sample
» A differential calorimeter measures the heat of
the sample relative to a reference
» A differential scanning calorimeter (DSC) does
all the above and heats the sample with a
linear temperature ramp

* Alsothermal Titration Calorimetry (ITC) measures the heat
absorbed or released by a (bio)chemical reaction

(c) Jianhan Chen
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Differential Scanning Calorimetry (DSC)

* The difference in heat flow to the sample and a reference at the
same temperature, is recorded as a function of temperature.

sample reference

Lincar femperature scan

gtl =20°C/min

time

power

power

endotherm

exotham

* Aheat flux
(

meal/sec

time and T
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Analysis of DSC

Mostly for monitoring heat effects associated with phase
transitions and chemical reactions as a function of
temperature (such as protein folding)

Basic properties are:

C, =dq,/dT = dH |dT

Substantial complications (AH>
arise during the transition
range where a mixture of
potentially many (micro-)
states might contribute to
the observed C, and
deconvolution becomes
highly non-trivial

@ =)
1) 3

Heat capacity (kJ/deg.mol)
>
3

I
2

Temperature (K)
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Two-State Analysis of DSC

¢ Two-state reversible transition assumed

AH'(T,) ~(AH") mTf(C —C)dr AH'(T) = AH' (T, )+ [ AC,dT

T
AS’(T,)=AH"(T,)/T, AS’(T)=AS"(T,)+ [AC,/TdT
T

AC,=C,-C,
100+
o c(T)
g
=
o
el
S 80t
&
2
S AH(T) S -AH(T)
[=%
8 60+ Denatured
5
e 1
- Note: baseline correction
40-L Tm often needed.
280 a0 | a0 T340 360

Temperature (K)
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Relation to the van’t Hoff Enthalpy

Different assumptions involved in DSC analysis and van’t Hoff
relationship. Nonetheless, AH.(T) and AH., (T) can be related.

Assuming a reversible two-state system, the (base-line corrected)
calorimetry enthalpy change,
T, T,

=
—

AHY(T,) = [1C,(T) - C(D)T = [ AC(T)dT

m
3

~ f(AH) = £, [ AC,dT

Heat capacity (kJ/deg.mol)
3
3

T/
AH)(T) ~-f, [ C,dT
T,

»
2

AHT
K(T)=Lz_ g)( )
fi AH;(T) Temperature (K)
) AC (T
AH®,(T) = -RT? dInK(T) __pr2 ACB(T) ~ JU( )
dr AH)(T)  AH'(T)

Disagreement of AH ,.(T) and AH), (T) indicates non two - state behavior
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Major Sources of Errors Isothermal Titration Calorimetry

+ Calibration * Mostly used for - titrant
« Contamination understanding inter-
* Sample preparation — how sample is loaded into a pan molecular interactions
— Need to minimize thermal gradient * Incremental addition over JL
. . i i f le
* Residual solvents and moisture. t|‘me.ofa ligand (f”a = [ |\ \ i g
binding partner) into a
* Thermal lag . .
_ _ solution of a protein (or
~ Heating/Cooling rates another partner), until no 02
- 0
Sample mass excess heat measurable (no P
* Processing errors more free protein) 8 s
~ 06
* Measure the heat required S o8
. . = -
to maintain the e i
temperature 1.4 S ——
0 20 40 60 80 100 120 140
Time (minutes)
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Analysis Of ITC B the yeast exosome C D
® o]
* Much simpler compared to DSC P+ L<—PL
isf{p“ SS”;{"‘;&'X"“Q SsRrp41-Rrpé2-Rrpa
7 RNA .
q=AH"(T)n,, = AH(T)V[PL] , A, ANA
Ka [L] ) ime min - - m-e' min o ime nmﬂ
=AH0(T)V[P] K,[L] [PL]=[PT]m ez '.‘"CF.E.‘:.” - LI L W B L
gran : e [T 5 TR )2
g -0 -. $ 01 ! | inH ¢ o, ‘
K [L). K [L]. S 001 l S ‘ l|||‘IH g
ql=AH0(T)V[PT] a[ ]1 _ a[ ]1—1 e ‘ \’ l} ( 024 l ‘ ." "y
1+K,[L], 1+K,[L]., " '
0.08 03 1 . 0.8 41—
3 0.90 gi;; .-'". s ,.4"'.
@ . " < 1 2 o
(L), =0.5([L, 1~ [P, 1% (L 1= [P, 1= 1/K,)* - 4[L, ) Soml ", 52 5 g
:Z 1.00 . . * §—CG-‘ ot é 0 .'
. ) E-o7 ] .l £ .l
Define a ratio R = [L;]/[P,], fitting of g, vs R will yield both K, g :m PR o R }
and AHO(T). Free energy and entropy changes then follow. iy A APy e e e e e
Molar ratio Mclar ratic Molar ratio
Ky>300 uM Kp 39 pM+10 uM Ky 1.1 pM+0.08 uM
EMBO reports 8, 1, 63-69 (2007)
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Limitations of ITC

» Difficult for studying very strong binders

— Each incremental of ligand becomes completely bound until protein is
fully consumed; no transition to fit!

— Upper limit Ka ~ 10° M-?
— Might be overcome by so-called displacement titration

i

Ka ~ 108 M1 Ka ~ 102 M-
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dQ/dt
(ucal s™)

(kcal mol' of injectant)

Displacement ITC

Time (min) b Time (min)
0 30 60 9 120 150 0 30 60 90 120 150 180
09+ 403
08f {00
0.3+
4-0.3
0.0+
—03} 1-0.6
9.0+ 430
6.0+ 100
30+
4-3.0
0.0+
—30L Weak inhibitor strong inhibitor (K, ~ 10'2{MFY

0:0 05 1.0 1‘.5 20 25 30 00 05 10 15 20 25

[ac-pepstatin],/[HIV-1 protease]; [indinavir],/[HIV-1 protease];

Nature Protocols 1, - 186 - 191 (2006)
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Calorimetry for Drug Design

Both DSC and ITC are powerful tools for obtaining
thermodynamic data critical for drug design

* However, both are time-consuming and laborious and special
designs are necessary for the need of high-throughput

— e.g., ThermoFluor™ technology: less quantitative

Whether binding is enthalpy or entropy driven can provide
important insights for lead optimization (and such info can not
be obtained from structural data) e o o

* Replacement ITC for tight binders

Ref: “Calorimetry and Thermodynamics in 2
Drug Design” by J. B. Chaires, Annu. Rev.
Biophys. 2008. 37:135-51 .
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