BIOCH 590: Biomacromolecules, Part I

Spring 2009

Introduction to Biological Macromolecules

General Principles and Key Concepts

Copyright: Jianhan Chen

Course Overview

- Scope: physical properties of biological macromolecules
 - Basic principles of structure at multiple levels
 - Focus on the quantitative aspects
 - Theoretical frameworks: thermodynamics, statistical mechanics
 - Physical biochemistry: molecular interactions and interactions of macromolecules with environments
 - Experimental techniques to measure certain properties, which can be then used to infer about the structural organizations
- For this course
 - Emphasize a qualitative understanding of the quantitative nature
 - Build an appreciation of structural complexity and principles of theoretical and experimental studies of molecular structures
 - In Part II, a survey of basic and practical principles of common spectroscopic techniques for studying molecular structures

General Introduction

- Course setup
 - Two parts: (I) physical biochemistry and (II) spectroscopy
 - Part I: from Jan 15 to Mar 6, by Jianhan Chen
- Lecture notes will be main study materials
- Textbooks:
 - two recommended
 - not required, but very useful resources for additional reading
 - Available from the Hale Library Reserve
- Two exams from Part I
 - Feb 9 and Mar 6 during lecture time (Mark these dates!)
- Grading
 - Both parts contribute equally
 - Part I: ~ 70% from exams and ~30% from homeworks

(c) Jianhan Chen

-

Tentative Topics

- Overview of macromolecular structure (1-2 lectures)
- Thermodynamics (4-5 lectures)
- Statistical Mechanics (3-4 lectures)
- Molecular interactions (3 lectures)
- Molecular motion and transport (3 lectures)
- Computer modeling (3 lectures)
- Inter-molecular interactions (3 lectures)

(c) Jianhan Chen

Topic 1

OVERVIEW OF BIOLOGICAL MACROMOLECULES

Reference: Chapter 1 of van Holde

(c) Jianhan Chen

Biological Macromolecules

- Atom: smallest unit of an element (C, N, O, H etc)
- Molecule: smallest unit of an composite (H₂O, CO₂, C₆H₆ etc)
- Macromolecule: a large molecule
 - Smallest molecule: H₂
 - Largest molecules: DNAs (tens of billions of atoms!)
- Biological macromolecule: a large and complex molecule with specific biological functions
 - Typically biopolymers: monomers, oligomers
 - Hierarchical structures
 - Primary (1°): sequence of monomers (sugar, amino acid, nuclei acid, etc)
 - Secondary (2°): local regular structures (alpha helix, ect)
 - Tertiary (3°): global 3D fold
 - Quaternary (4°): organization of multiple subunits (polymers) in a functional complex

(c) Jianhan Chen

occurs when certain attractions are presen

Stoichiometry and Geometry

- Stoichiometry: atomic composition
 - For biological macromolecules: compositions of (monomer) units
 - Relative easy to know
- Geometry: three-dimensional structure
 - More challenging to determine, especially for large, flexible ones
 - Protein folding problem

ethanol a.k.a. alcohol, biofuel

hemoglobin

 $\alpha_2\beta_2$

Configuration and Conformation

- Configuration: arrange of atoms around non-rotating bonds or around chiral centers
- · Conformation: spatial arrange around rotatable bonds

(a) The molecule 1,2-dibromoethane can rapidly interconvert between the two orientation shown, because a carbon-carbon single bond is not structurally rigid.

(b) The molecule 1,2-dibromoethene cannot interconvert between the two forms shown, because a carbon-carbon double bond is structurally rigid.

9

Conformation/Struture

- · Mainly defined by torsion angles
 - Also referred to as dihedral angle: the angle between two groups on either side of a freely rotating chemical bond
 - Defined by four consecutively linked atoms: φ(A-B-C-D)

- Right-hand rule: positive sense is clockwise

(c) Jianhan Chen

Chirality in Biology

- Most biomacromolecules consist of chiral monomers
- In biology, typically only one isomer is active
 - Virtually all sugars are D isomers
 - Most proteins are made of L amino acids

(c) Jianhan Chen

Determinant of Structure

- Probability of observing a particular structure (conformation) is determined by its stability (as defined by the free energy)
 - Thermodynamics and statistical mechanics!
- The stability depends on a range of factors
 - Intramolecular interactions
 - Bonded: chemical bonds, angles, dihedrals etc
 - Nonbonded: "weak" interactions
 - Charged-charged, van der Waals (dispersion and repulsion)
 - Intermolecular interactions: nonbonded/weak interactions
 - Cellular environment: solvent (water), membrane, salt, pH etc
 - · Association with other biomolecules, small molecules, ions, etc
- No single structure is the structure
 - It is all about probability (statistical mechanics!)
 - Motions and flexibility are important too

Water

- · Solvent of life
- · Many unique properties
 - Maximum density at 4 °C
 - · Ice is lighter than liquid water
 - Polar molecule
 - hydrogen bonding network
 - · High specific heat capacity
- Hydrophobicity and hydrophilicity
 - Solute polarity (carry partial charges or not)
 - Salts (e.g. NaCl) dissolve in water readily
 - Hydrocarbons (oil) do not mix with water
- Amphipathic molecules
 - Self-assembly to micelles, biological membranes

(c) Jianhan Chen

Natural Amino Acids

- All α -amino acids in L-configuration
- Essential vs non-essential ones
- Co-exist in two forms
 - Ionic (zwitterionic form) and unionized
- Side chains vary

Hierarchical Organization of Proteins

Three-Letter and Single-Letter Codes

Amino Acid	3-Letter	1-Letter	Amino Acid	3-Letter	1-Lette
Alanine	Ala	Α	Leucine	Leu	L
Arginine	Arg	R	Lysine	Lys	K
Asparagine	Asn	N	Methionine	Met	M
Aspartate	Asp	D	Phenylalanine	Phe	F
Cysteine	Cys	С	Proline	Pro	Р
Histidine	His	Н	Serine	Ser	S
Isoleucine	lle	1	Threonine	Thr	T
Glutamine	Gln	Q	Tryptophan	Trp	W
Glutamate	Glu	E	Tyrosine	Tyr	Υ
Glycine	Gly	G	Valine	Val	V

(c) Jianhan Chen 18

Foldable Sequence Space is Limited

• Huge number of possible sequences: 20^N

- Only a small subset are explored in biology and most of them give rise to specific 3D structures under the proper conditions
 - Sequence determines structure (or lack or structure)
 - Protein structure-function paradigm: enzymes
 - Some sequences are "intrinsically disordered"! They play very important roles in signaling and regulation.

Important Torsions of Proteins

Backbone torsions

φ: C(O)-N-Cα-C(O))

 $- \ \psi \text{: N-C}\alpha\text{-C(O)-N}$

– ω : H-N-C(O)-O

• Mostly 180° (trans)

Ramachandran plot

- 2D plot of (ϕ,ψ) distribution
- Allow assignment of secondary structures
- Statistics of known protein structures reveal common regions of (ϕ,ψ) distributions
- An important way of structural evaluation

(c) Jianhan Chen

(c) Jianhan Chen

19

20

Secondary Structures of Proteins

• α -helix: (i,i+4) hydrogen bonds, 3.6 residues/1.8 Å per turn

(c) Jianhan Chen

Secondary Structures of Proteins

 \bullet β -strands: trans- backbone torsions, multiple hydrogen bonds

(c) Jianhan Chen 22

Tertiary and Quaternary Structures

(c) Jianhan Chen

Contact Map

• A simple way of representing protein folds

Nuclei Acids

- Polymer of nucleotides: highly flexible (compared to peptides)
- Deoxyribonucleic acid (DNA): A/G/C/T
- Ribonuclei acid (RNA): A/G/C/U

Watson-Crick Base Pairs

- G-C and A-T(U)
- DNA almost exclusively exist as duplex held together by forming Watson-Crick base pairs
- A robust mechanism for faithful replication and translation
- Other pairings possible but mostly in RNA to give rise to non-trivial structures

(c) Jianhan Chen

26

Helical Structures of DNA (RNA)

• Famous DNA double helix: stacking of base pairs, minor/major groves, polymorphic (hydration dependent)

Tertiary Structure of RNA

• Single-strand RNA often fold into tertiary structures

Ribosome: the Protein Factory

 Prokaryotic ribosome consists of 42 proteins (~35% weight) and 3 ribosomal RNAs (rRNA) (~65% weight) and measures about 200 Å across.

Homework Assignment 1

- 1. hand draw the backbone conformation of Alanine Dipeptide in (1) right-hand helx (phi,psi)=(-60,-60) and (2) left-hand helix (+60, 60)
- 2. hand draw a schematic contact map of the following betasheet protein fold.

(c) Jianhan Chen

Functional Motions of Ribosome

"This movie depicts a ratchet-like rearrangement of the 70S ribosome. The rotation of the 30S ribosomal subunit relative to the 50S subunit shows high correspondence to motion captured in cryo-EM maps of the ribosome and postulated to be a key mechanical step in the translocation of the mRNA•tRNAs complex. "

http://brooks.chem.lsa.umich.edu/

Tama et al. Proc Nat Acad Sci, 100 9319 (2003).