Gregory Finnigan, Ph.D., Assistant Professor
![]() Contact InformationOffice: Chalmers 173 EducationB.S. 2005, General Biology, Gonzaga University |
Areas of Specialty
- Yeast cytoskeleton, cell cycle regulation, cell signaling
- Molecular and cell biology, genetics, and biochemistry
- Evolution of biological complexity
- CRISPR/Cas9-mediated gene editing technology
My laboratory uses advanced molecular biology techniques, genetics, and live cell imaging to study a highly conserved cytoskeletal element in Eukaryotes—the septin proteins—in the model organism Saccharomyces cerevisiae. This GTP-binding protein family is central to numerous signaling pathways, cell division and cytokinesis, and serves as a molecular platform for the recruitment and exchange of information between different protein complexes during the cell cycle. We are interested in understanding (i) the basic assembly and regulation of the septin proteins, which can oligomerize into complex filaments and other cellular geometries, (ii) the evolution of the paralogous subunits and macromolecular machines across the tree of life, and (iii) how the septins mediate many scores of protein-protein interactions during different developmental programming (such as mitosis and meiosis). We utilize budding yeast as a genetically tractable model system to address these questions (and others) at a mechanistic level. Finally, my lab is interested in utilizing the CRISPR/Cas9 technology both to aid in our study of the septin proteins, but also to develop novel technologies and uses for Cas9-mediated gene editing that will be applicable to any biological system.
Selected Publications
*Authors contributed equally
Heffel, M.G., and Finnigan, G.C. (2019) Mathematical modeling of self-contained CRISPR gene drive reversal systems.Sci Rep 9, 20050 doi:10.1038/s41598-019-54805-8.
Basgall*, E.M., Goetting*, S.C., Goeckel*, M.E., Giersch, R.M., Roggenkamp, E., Schrock, M.N., Halloran, M., and Finnigan, G.C., (2018) Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology doi: 10.1099/mic.0.000635.
Roggenkamp*, E., Giersch*, R.M., Schrock*, M.N., Turnquist, E., Halloran, M., and Finnigan, G.C. (2018) Tuning CRISPR/Cas9 gene drives in Saccharomyces cerevisiae. G3 (Bethesda) January 18, 2018. doi.org/10.1534/g3.117.300557.
Giersch, R.M. and Finnigan, G.C. (2017) Yeast still a Beast: Diverse Application of CRISPR/Cas Editing Technology in S. cerevisiae. Yale J Biol Med 90(4): 643-651.
Giersch, R.M. and Finnigan, G.C. (2017) Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences. Bio-protocol 7(18): e2557. DOI: DOI: 10.21769/BioProtoc.2557.
Roggenkamp*, E., Giersch*, R.M., Wedeman*, E., Eaton*, M., Turnquist, E., Schrock, M.N., Alkotami, L., Jirakittisonthon, T., Schluter-Pascua, S.E., Bayne, G.H., Wasko, C., Halloran, M., and Finnigan, G.C. (2017) CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains. Front Microbiol 8, doi: 10.3389/fmicb.2017.01773. PMCID: PMC5611381..
Roelants, F.M., Leskoske, K.L., Pedersen, R.T.A., Muir, A., Liu, J., Finnigan, G.C., and Thorner, J. (2017) TOR Complex 2-regulated protein kinase Fpk1 stimulates endocytosis via inhibition of Ark1/Prk1-related protein kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol, 37: 1-22.
Perez, A.M., Finnigan, G.C., Roelants, F., and Thorner, J. (2016) Septin-associated protein kinases in the yeast Saccharomyces cerevisiae. Front Cell Dev Biol, 4:1-12.
Finnigan, G.C., Duvalyan, A., Liao, E.N., Sargsyan, A., and Thorner, J. (2016) Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol Biol Cell, 27: 2708-2725.
Finnigan, G.C., Sterling, S.M., Duvalyan, A., Liao, E.N., Sargsyan, A., Garcia III, G., Nogales, E., and Thorner, J. (2016) Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae. Mol Biol Cell, 27: 2213-2233.
Finnigan, G.C. and Thorner, J. (2016) mCAL: a new approach for versatile multiplex action of Cas9 using one sgRNA and loci flanked by a programmed target sequence. G3 (Bethesda), 6: 2147-2156.
Garcia III*, G., Finnigan*, G.C., Heasley*, L.R., Sterling, S.M., Aggarwal, A., Pearson, C.G., Nogales, E., McMurray, M.A., and Thorner, J. (2015) Assembly, molecular organization, and membrane-binding properties of development-specific septins. J. Cell Biol. 212: 515-529.
Finnigan, G.C., and Thorner, J. (2015) Complex in vivo ligation using homologous recombination and high-efficiency plasmid rescue from Saccharomyces cerevisiae. Bio Protoc. 5(13). pii: e1521.
Finnigan, G.C., Booth, E.A., Duvalyan, A., Liao, E.N., and Thorner, J. (2015) The carboxy-terminal tails of septins Cdc11 and Shs1 recruit myosin-II binding factor Bni5 to the bud neck in Saccharomyces cerevisiae. Genetics 200: 843-862.
Finnigan, G.C., Tagaki, J., Cho, C., and Thorner, J. (2015) Comprehensive genetic analysis of paralogous terminal septin subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 821-841.
Finnigan, G. C., Cronan, G., Park, H. J., Srinivasan, S., Quiocho, F. A., and Stevens, T. H. (2012) Sorting of the yeast V-ATPase: Identification of a necessary and sufficient Golgi/endosomal retention signal in Stv1p. J. Biol. Chem 287: 19487-500.
Finnigan*, G. C., Hanson-Smith*, V., Stevens, T. H., and Thornton, J. W. (2012) Evolution of increased complexity in a molecular machine. Nature 481: 360-364.
Finnigan*, G. C., Hanson-Smith*, V., Houser, B. D., Park, H. J., and Stevens, T. H. (2011) The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in S. cerevisiae. Mol Biol Cell 22: 3176-3191.
Finnigan, G. C., Ryan, M., and Stevens, T. H. (2011). A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187: 771-783.