Semiparametric Models for Multivariate Panel Count Data

KyungMann Kim

University of Wisconsin-Madison kmkim@biostat.wisc.edu

2 April 2015

KSU Department of Statistics Models for Multivariate Panel Count Data

ヘロア 人間 アメヨア 人間 アー

E

Sac

Outline

Introduction

Semiparametric Models for Multivariate Panel Count data

3 Example: Skin Cancer Chemoprevention Trial

イロト イポト イヨト

Panel Count Data Motivation Previous Work

Observation of the cumulative event counts for an individual at a random number of time points; both the number and the time points may differ across individuals

<ロト < 回 > < 回 > < 回 > < 回 > <

= nar

Panel Count Data Motivation Previous Work

Observation of the cumulative event counts for an individual at a random number of time points; both the number and the time points may differ across individuals

・ロト ・ 同ト ・ ヨト・

3

Panel Count Data Motivation Previous Work

Observation of the cumulative event counts for an individual at a random number of time points; both the number and the time points may differ across individuals

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

= nar

Panel Count Data Motivation Previous Work

Observation of the cumulative event counts for an individual at a random number of time points; both the number and the time points may differ across individuals

KSU Department of Statistics Models for Multivariate Panel Count Data

Panel Count Data Motivation Previous Work

Skin Cancer Chemoprevention Trial: Design

- Randomized, placebo-controlled, double-blind clinical trial
- Objective: Is difluoromethylornithine (DFMO) effective in preventing recurrence of non-melanoma skin cancers (NMSCs)?
- 291 subjects with prior skin cancer randomized to either DFMO or placebo
- Subjects assessed every six months for the new skin cancers until the end of study
- Primary endpoint: NMSC recurrence rate

total number of new NMSCs

person-year follow-up

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Skin Cancer Chemoprevention Trial: Results

 Marginal DFMO effect on reducing the NMSC recurrence rate from 0.60 on placebo to 0.43 on DFMO based on a Poisson regression model (*p*-value=0.062)

<ロト < 回 > < 回 > < 回 > < 回 > <

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Deficiencies in the Analysis

Loss of information about longitudinal observations

- Correlation between basal and squamous cell carcinoma
- Significant DFMO effect on preventing basal cell carcinoma (BCC) (p-value=0.030)
- But not for squamous cell carcinoma (SCC) (*p*-value=0.565)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Deficiencies in the Analysis

Correlation between basal and squamous cell carcinoma

- Significant DFMO effect on preventing basal cell carcinoma (BCC) (p-value=0.030)
- But not for squamous cell carcinoma (SCC) (p-value=0.565)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Deficiencies in the Analysis

- Loss of information about longitudinal observations
- Correlation between basal and squamous cell carcinoma
- Significant DFMO effect on preventing basal cell carcinoma (BCC) (p-value=0.030)
- But not for squamous cell carcinoma (SCC) (*p*-value=0.565)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Deficiencies in the Analysis

- Loss of information about longitudinal observations
- Correlation between basal and squamous cell carcinoma
- Significant DFMO effect on preventing basal cell carcinoma (BCC) (p-value=0.030)
- But not for squamous cell carcinoma (SCC) (*p*-value=0.565)

・ロト ・ 同ト ・ ヨト ・ ヨト

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Poisson Analysis

<ロト < 団ト < 団ト < 団ト</p>

E

590

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Alternative Analysis

Panel count data structure + Possibly different effect of DFMO on different skin cancer types ↓ Data should be analyzed as the bivariate panel count data

KSU Department of Statistics Models for Multivariate Panel Count Data

・ ロ ト ・ 一日 ト ・ 日 ト

э

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Alternative Analysis

Panel count data structure + Possibly different effect of DFMO on different skin cancer types ↓ Data should be analyzed as the bivariate panel count data

・ ロ ト ・ 一日 ト ・ 日 ト

э

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion

Previous Work

Panel Count Data Motivation Previous Work

- Univariate panel count data
- Bivariate recurrent event time data

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Ξ 9 Q (P

Panel Count Data Motivation Previous Work

Notations

- N(t), the number of events observed between time 0 and t as a nonhomogeneous Poisson process
- Intensity function*

$$\lambda(t) = \lim_{h \to 0} \frac{1}{h} \Pr(N(t+h) - N(t) = 1)$$

Mean function[†]

$$\Lambda(t) = E[N(t)] = \int_0^t \lambda(s) ds$$

*Different from hazard function in survival analysis

[†]Different from cumulative hazard function in survival analysis 🗈 🖌 🚊 🗠 ૧૯

KSU Department of Statistics

Models for Multivariate Panel Count Data

Panel Count Data Motivation Previous Work

Univariate Panel Count Data

Inference on the intensity function $\lambda(t)$

- Parametric Poisson-Gamma frailty model (Thall, 1988)
- Nonparametric model (Thall and Lachin, 1988)
- Semiparametric Poisson-Gamma frailty model (Staniswalis et al., 1997)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

= nar

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Univariate Panel Count Data

Inference on the mean function $\Lambda(t)$

 Nonparametric maximum pseudo-likelihood estimator (NPMPLE) (Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000)

$$\hat{\Lambda}_{\ell} = \hat{\Lambda}(\boldsymbol{s}_{\ell}) = \max_{r \leq \ell} \min_{\boldsymbol{u} \geq \ell} \frac{\sum_{v=r}^{u} w_{v} \bar{n}_{v}}{\sum_{v=r}^{u} w_{v}}$$

where $w_v = \sum_{i=1}^n \sum_{j=1}^{k_i} I\{t_{ij} = s_v\}$, $\bar{n_v} = \frac{1}{w_v} \sum_{i=1}^n \sum_{j=1}^{k_i} n_{ij} I\{t_{ij} = s_v\}$, $n_{ij} = N(t_{ij})$ is the cumulative event counts up to time t_{ij} of subject *i*, k_i is the number of follow-up visits, and $\{s_v\}_{v=1}^L$ is the unique, ordered $\{t_{ij}; j = 1, ..., k_i, i = 1, ..., n\}$

- Semiparametric model (Zhang, 2002) Assuming mean function $\Lambda(t) = \Lambda_0(t) \exp(\beta' Z(t))$

Models for Multivariate Panel Count Data

DQA

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Univariate Panel Count Data

Inference on the mean function $\Lambda(t)$

- Nonparametric maximum pseudo-likelihood estimator (NPMPLE) (Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000)
- Semiparametric model (Zhang, 2002) Assuming mean function $\Lambda(t) = \Lambda_0(t) \exp(\beta' Z(t))$
- Gamma frailty model (Zhang and Jamshidian, 2003) Assuming the conditional mean function $\Lambda(t|\gamma) = \gamma \Lambda_0(t)$
- Nonparametric test for univariate panel count data based on NPMPLE (Sun and Fang, 2003)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Semiparametric Models for Multivariate Panel Count data Example: Skin Cancer Chemoprevention Trial Discussion Panel Count Data Motivation Previous Work

Bivariate Recurrent Event Time Data

- Parametric model for bivariate recurrent event time data (Abu-Libdeh *et al.* 1990)
 - $N_1(t)$ and $N_2(t)$ are two counting processes
 - Two types of random effects: Subject level random effect $\gamma \sim Gamma(\alpha, \nu)$ Process random effects $\boldsymbol{\xi} = (\xi_1, \xi_2) \sim \text{Dirichlet}$ $(\upsilon = (\upsilon_1, \upsilon_2))$
 - Given (γ, ξ), N₁(t) and N₂(t) are independent nonhomogeneous Poisson processes

$$\lambda_{p}(t|\gamma,\xi_{p}) = \gamma\xi_{p}\delta t^{\delta-1}\exp(\beta'Z), \ p=1,2$$

- Obtain maximum likelihood estimators of $(\beta, \alpha, \nu, v_1, v_2)$
- Not applicable to the panel count data since event times are unknown

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

3

Semiparametric Frailty Models

Semiparametric Frailty Models

- Frailty models
- Estimation procedures
- Statistical inference on regression parameters

イロト イポト イヨト イヨト

Semiparametric Frailty Models

General Model Assumptions

- Frailty variable $\gamma \sim g(\eta)$
 - Subject heterogeneity
 - Dependence between processes comes from the common frailty variable
- Given γ, N₁(t) and N₂(t) are independent nonhomogeneous Poisson processes with conditional mean functions

 $\Lambda_1(t|\gamma) = \gamma \Lambda_{10}(t) \exp(\beta'_1 Z)$ and $\Lambda_2(t|\gamma) = \gamma \Lambda_{20}(t) \exp(\beta'_2 Z)$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Semiparametric Frailty Models

Likelihood Function

The complete log-likelihood function of (Λ₁₀, Λ₂₀, β₁, β₂, η) is simplified as

$$\ell_{n}(\Lambda_{10},\Lambda_{20},\eta) = \sum_{i=1}^{n} \sum_{j=1}^{k_{i}} \left\{ \sum_{\rho=1}^{2} [n_{ij\rho} \log \Lambda_{\rho 0 ij} + n_{ij\rho} \beta'_{\rho} Z - \gamma_{i} \Lambda_{\rho 0 ij} e^{\beta'_{\rho} Z}] \right\} + \sum_{i=1}^{n} h_{i}(\eta)$$

- $n_{ijp} = N_p(t_{ij})$, the cumulative type *p* event counts up to time t_{ij}
- $\Lambda_{p0ij} = \Lambda_{p0}(t_{ij})$, the baseline mean function of type *p* event at t_{ij}

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Semiparametric Frailty Models

Estimating Procedures EM algorithm to obtain the MLEs

- E-step: same as in the nonparametric models
- M-step: involves the profile-likelihood type estimators of $(\Lambda_{10}(t), \Lambda_{20}(t), \beta_1, \beta_2)$ and MLE of η step 1: Given $(\beta_1^{(0)}, \beta_2^{(0)})$, obtain $(\hat{\Lambda}_{10}^{(1)}, \hat{\Lambda}_{20}^{(1)})$ step 2: Given $(\hat{\Lambda}_{10}^{(k)}, \hat{\Lambda}_{20}^{(k)})$, obtain $(\beta_1^{(k)}, \beta_2^{(k)})$ step 3: Repeat steps 1 and 2 until convergence

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Semiparametric Frailty Models

Models Investigated

- Bivariate Poisson-Gamma frailty models
- Bivariate Poisson-lognormal frailty models

ヘロア 人間 アメヨア 人間 アー

Bivariate Poisson-Gamma Frailty Models EM algorithm: E-step

Posterior expectation of γ_i given current estimates (Λ̃₁₀, Λ̃₂₀, β̃₁, β̃₂, α̃) given by

$$\tilde{\gamma}_{i} = \frac{\sum_{j=1}^{k_{i}} (n_{ij1} + n_{ij2}) + \tilde{\alpha}}{\sum_{j=1}^{k_{i}} (\tilde{\Lambda}_{10ij} e^{\tilde{\beta}_{1}'Z} + \tilde{\Lambda}_{20ij} e^{\tilde{\beta}_{2}'Z}) + \tilde{\alpha}}$$

 Posterior expectation of log
 γ_i, log
 γ_i, is calculated by Monte-Carlo method

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Bivariate Poisson-Gamma Frailty Models EM algorithm: M-step (1)

Profile likelihood type estimators of $(\Lambda_{10}, \Lambda_{20}, \beta_1, \beta_2)$

• Step 1: Given
$$(\beta_{1}^{(0)}, \beta_{2}^{(0)}),$$

 $\hat{\Lambda}_{10}^{(1)}(s_{\ell}) = \hat{\Lambda}_{10\ell}^{(1)} = \max_{\substack{r \leq \ell \\ u \geq \ell}} \min_{\substack{r \leq v \leq u \\ r \leq v \\ r \leq v \leq u \\ r \leq v \\ r \leq v \leq u \\ r \leq v \\ r \leq v \leq u \\ r \leq v \\ r \leq v \leq u \\ r \leq v \\ r \leq$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - の Q ()

Bivariate Poisson-Gamma Frailty Models EM algorithm: M-step (2)

• step 2: Given $\hat{\Lambda}_{10\ell}^{(k)}, \hat{\Lambda}_{20\ell}^{(k)}$, obtain MLE of $(\beta_1^{(k)}, \beta_2^{(k)})$ by maximizing

$$\sum_{i=1}^{n} \sum_{j=1}^{k_{i}} [n_{ij1} \log \Lambda_{10ij}^{(1)} + n_{ij1}\beta_{1}'Z - \tilde{\gamma}_{i}\Lambda_{10ij}^{(1)}e^{\beta_{1}'Z}]$$

$$\sum_{i=1}^{n} \sum_{j=1}^{N_{1}} [n_{ij2} \log \Lambda_{20ij}^{(1)} + n_{ij2} \beta_{2}' Z - \tilde{\gamma}_{i} \Lambda_{20ij}^{(1)} e^{\beta_{2}' Z}]$$

• step 3: Solve $(\hat{\Lambda}_{10\ell}^{(k)}, \hat{\Lambda}_{20\ell}^{(k)}, \beta_1^{(k)}, \beta_2^{(k)})$ iteratively until convergence MLE of α :

$$\hat{\alpha} = \arg \max_{\alpha > 0} [\alpha \sum_{i=1}^{n} (\widetilde{\log \gamma_i} - \widetilde{\gamma}_i) + n\alpha \log \alpha - n \log \Gamma(\alpha)]$$

Semiparametric Frailty Models

Bivariate Poisson-Lognormal Frailty Models EM algorithm: E-step

Posterior expectations of (γ_{1i}, γ_{2i}), denoted by (γ̃_{1i}, γ̃_{2i}), and (log γ_{1i}, log γ_{2i}), denoted by (log γ_{1i}, log γ_{2i}), are calculated by importance sampling method

- コット 全部 マンド・ 日マ

Bivariate Poisson-Lognormal Frailty Models EM algorithm: M-step

- Profile likelihood type estimates of $(\Lambda_{10}, \Lambda_{20}, \beta_1, \beta_2)$
- Similar procedures as in the Poisson-Gamma model
- MLE of $(\sigma_1^2, \sigma_2^2, \rho)$ Same estimators as mentioned in the nonparametric Poisson-lognormal frailty model

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

= nar

Semiparametric Frailty Models

Statistical Inference

- Bootstrap is used to obtain the estimated variance of the estimators
- Wald test for the regression parameters based on bootstrap estimated variance

ヘロア 人間 アメヨア 人間 アー

Univariate Analyais Nonparametric Methods Semiparametric Methods

Recall: Poisson Analysis

<ロト < 団ト < 団ト < 団ト</p>

E

590

Univariate Analyais Nonparametric Methods Semiparametric Methods

Univariate Models

There was marginal treatment effect of DFMO on prevention the recurrence of NMSC (*p*-value=0.098^{*})

*Based on the test for univariate panel count data (Sun and Fang, 2003) = 🔊 < 📀

KSU Department of Statistics

Models for Multivariate Panel Count Data

Univariate Analyais Nonparametric Methods Semiparametric Methods

Two Separate Univariate Models

There was significant treatment effect of DFMO on preventing the recurrence of BCC (*p*-value=0.034^{*}), but not for SCC (*p*-value=0.585^{*})

*Based on the test for univariate panel count data (Sun and Fang, 2003) = 🤊 < ୯

KSU Department of Statistics

Models for Multivariate Panel Count Data

Univariate Analyais Nonparametric Methods Semiparametric Methods

Mean Functions for BCC and SCC

KSU Department of Statistics

Models for Multivariate Panel Count Data

590

Univariate Analyais Nonparametric Methods Semiparametric Methods

Nonparametric Tests

	<i>p</i> -values				
Models	NMSC	Global	BCC	SCC	
Univariate	0.098*		0.033*	0.585*	
Gamma		0.130 [†]	0.044*	0.626*	
Lognormal		0.114^{\dagger}	0.190*	0.233*	
Mixed Gamma	0.130*				

**p*-values are calculated based on the univariate test (Sun and Fang, 2003)

KSU Department of Statistics M

Models for Multivariate Panel Count Data

Univariate Analyais Nonparametric Methods Semiparametric Methods

Bivariate Poisson-Gamma Frailty Models Mean Functions

> Let N₁(t) and N₂(t) represent the number of BCCs and SCCs, respectively, with marginal mean functions

$$E[N_{1}(t)|Z] = \Lambda_{10}(t) \exp(\beta_{11}Z_{1} + \beta_{12}Z_{2})$$

 $E[N_2(t)|Z] = \Lambda_{20}(t) \exp(\beta_{21}Z_1 + \beta_{22}Z_2)$

- Z₁, the treatment group (placebo/DFMO)
- Z₂, the logarithm of the previous tumor rate

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

= nar

Univariate Analyais Nonparametric Methods Semiparametric Methods

Bivaraite Poisson-Gamma Frailty Models Statistical Inference

Marginal treatment effect on decreasing recurrence of BCC and SCC after adjusting for the baseline tumor rates

Tumor type	Covariate	Estimate	Bootstrap SE	<i>p</i> -value
BCC	Z_1	-0.282	0.149	0.058
	Z_2	0.138	0.094	0.142
SCC	Z_1	-0.033	0.336	>0.5
	Z_2	0.218	0.160	0.173

<ロト < 回 > < 回 > < 回 > < 回 > <

3

Summary

Semiparametric models of the mean functions for a bivariate counting process are proposed

- Methods of analyzing bivariate panel count data
- No specific form of mean functions assumed
- Providing estimation of two mean functions simultaneously
- Correlation between processes can be derived
- Event-type specific covariate effects assumed in the semiparametric models

・ロト ・ 同ト ・ ヨト ・ ヨト

Poisson-Gamma vs. Poisson-Lognormal Frailty

Gamma frailty	Lognormal frailty		
One-variable model	Two-variable model		
	Frailty variables can be		
	negatively correlated		
Easier to implement	More complicate		
Shorter computing time	Longer computing time		
	Easier to genearlized		
	when there are mroe		
	than two event types of interest		

<ロト < 回 > < 回 > < 回 > < 回 > <

€ 990