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• 24 experimentally-naïve male Sprague Dawley rats

• Risky (R-0, R-1, R-11) vs. certain choice (C-2, C-4)

INTRODUCTION
• Risky choice paradigms present individuals with choices 

between a single certain outcome (e.g., 2 pellets) and a 
variable risky outcome (e.g., 1 vs. 5, 0 vs. 4 pellets).

• Variable choice outcomes may be more ecologically valid.1

• Different procedures differentially affect how previous 
outcomes influence subsequent choice,2,3 which may be 
due to the relationship between outcome magnitude and 
the expected value of other outcomes in the environment.2

• Hypothesis: Probabilistic presentation of differential risky 
outcome magnitudes may shift the encoding of risky gains 
and losses, altering riskiness following these outcomes

• Goals: (1) Determine how risky loss magnitude/probability 
affect risky choice; (2) Determine if common reinforcement 
learning (RL) models can account for such effects

METHODS
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RESULTS: GLOBAL AND LOCAL CHOICE BEHAVIOR
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• Globally and locally, Group Equal-Risk was riskier than Group Unequal-Risk, 
even when there were equivalent expected values in the Two-Loss conditions

• The added 2nd loss (Two-Loss) elicited greater post-outcome staying behavior
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REINFORCEMENT LEARNING (RL)
• Three models: Simple,4 Asymmetric,5 Valence-Attentive RL6

• Model Selection: Akaike Information Criterion (AIC)

RESULTS: RL MODELS

• Smoothed data (   ) vs. best-fitting model of data (   )

• Overall, Asymmetric RL provided best fit (median w2: 
Asymmetric = .30; Valence-Attentive = .26; Simple = .16)

DISCUSSION
• Loss frequency has distinct effects on global and local risky choice behavior.

• Asymmetric RL provided best overall account of data out of the models tested.

• The lack of convergence in the model fits suggest that basic RL models may not 
reflect dynamic decision making mechanisms in this task, warranting further 
model development and testing (e.g., model-based RL, Bayesian models)

▪ E: Equal-Risk; U: Unequal-Risk; 
O: Risk-Omission First; V: Risk-
Variability First

▪ Asymmetric RL best fit 12 rats; 
Valence-Attentive, 8; Simple, 3; 
*Rat U/0.1 not fit well by models
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