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INTRODUCTION RESULTS: GLOBAL AND LOCAL CHOICE BEHAVIOR

* Risky choice paradigms present individuals with choices 1- g 1-
One-Loss Condition Two-Loss Condition

between a single certain outcome (e.g., 2 pellets) and a
variable risky outcome (e.g., 1 vs. 5, 0 vs. 4 pellets).

 Variable choice outcomes may be more ecologically valid.?

* Different procedures differentially affect how previous
outcomes influence subsequent choice,*3 which may be
due to the relationship between outcome magnitude and
the expected value of other outcomes in the environment.?

N
o
g
o

PROPORTION (RISKY)
X |

PROPORTION (RISKY)
2

* Hypothesis: Probabilistic presentation of differential risky 25+ 25+
o . _ _ _ _ @ Equal: Omission B Equal: One-Loss
outcome magnitudes may shift the encoding of risky gains Aﬁqual Variabilty %jjﬁjjjjjjjjjjjj’-f @ Equal: Two-Loss
. i i i nequal: Omisson : | N : U I: One-L
and losses, altering riskiness following these outcomes Unequal: Variabiity | | e O Ouzzgﬂzl Two Loss
* Goals: (1) Determine how risky loss magnitude/probability 2 4 6 8 10 12 14 16 18 20 C-2 C-4 R-0 R-1 R-11
affect risky choice; (2) Determine if common reinforcement SESSION PREVIOUS OUTCOME
learning (RL) models can account for such effects * Globally and locally, Group Equal-Risk was riskier than Group Unequal-Risk,

METHODS even when there were equivalent expected values in the Two-Loss conditions
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+ 24 experimentally-naive male Sprague Dawley rats The added 2" loss (Two-Loss) elicited greater post-outcome staying behavior

 Risky (R-0, R-1, R-11) vs. certain choice (C-2, C-4) RESULTS: RL MODELS
Risky Choice Task Phase

Rat E/O.1 Rat E/O. 2 Rat E/O.3 i 1 *Rat U/O.1 Rat U/O.2 Rat U/O.3

1 1 L T 1 r[ M 1 1
Risk One-Loss Two-Loss ' m | W
Paradigm Outcome Outcome r' bl i
e - L _ 0| : ol - 0 0!
(PrObablllty) (PrObablllty) 0 2000 0 2000 0 2000 i 0 2000 0 2000 0 2000
Risk- R-( (_5()) 4. RatE/O4 . RatE/O.5 . RatE/O.6 '1' . Ratu/O.4 . RatU/O.5 . RatU/O.6
. o S |
Equal-Risk | Omission R-11 (.50) 5
(n=12) Risk- R-1 (.50) R0 (33 z
: - - . >
Variability R-11 (.50) - X
_ R1(33) | I >yl R0 00 L0 20004000 2000 400002000 400
Risk- R-0 (.67) = 1
Unequal- o R-11 (.33) <
Risk Omission R-11 (.33) -
e 12) Risk- R-1 (.67) i
Il = C 1 s 0
Variability R-11 (.33)
iy
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* Three models: Simple,* Asymmetric,> Valence-Attentive RL® . y MH Im
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. . . . * Overall, Asymmetric RL provided best fit (median o-: . Asymmetric RL best fit 12 rats;
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