

A mechanistic analysis of individual differences in impulsive choice

Kimberly Kirkpatrick Kansas State University

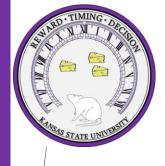
Talk delivered at the SEABA annual meeting, Roanoke, VA, October 24, 2015

The Marshmallow Test

"Impulsive"

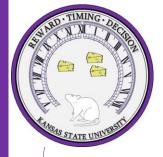
"Impulsive choice is a **bias** to choose SS, when doing so is disadvantageous"

Larger-Later (LL)

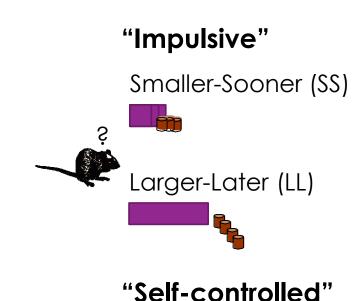

"Self-controlled"

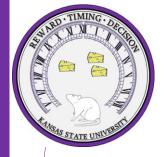
= higher SAT scores better social skills better coping skills

Mischel, Shoda & Rodriguez (1989)

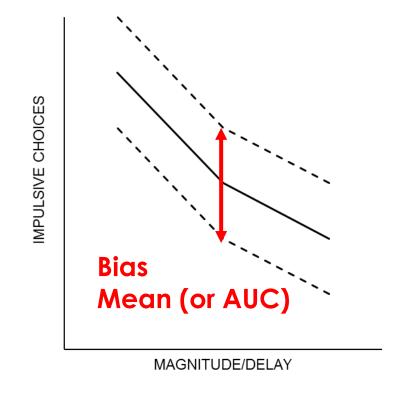


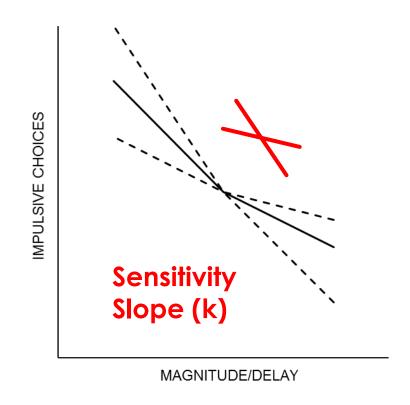
Individual differences in impulsive choice

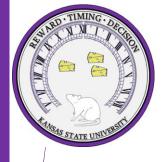

- Individual differences in impulsive choice are related to:
 - Substance abuse (e.g., Bickel & Marsch, 2001; Carroll et al., 2009; deWit, 2008)
 - Pathological gambling (e.g., Alessi & Petry, 2003; MacKillop et al., 2011; Reynolds et al., 2006)
 - Obesity (e.g., Davis et al., 2010)
 - ► ADHD (e.g., Barkley et al., 2001; Solanto et al., 2001; Sonuga-Barke, 2002)
- Impulsive choice is a trans-disease process (Bickel & Mueller, 2009)



Impulsive choice: Method

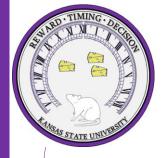

- Offer rats choices between smaller-sooner (SS) and larger-later (LL) rewards (based on Green & Estle, 2003)
 - SS = 1 pellet in 10 s
 - ► LL = 2 pellets in 30 s
 - \blacksquare |T| = 60 s
- Can manipulate delay to and/or magnitude of reward
- Choices of SS indicate impulsive choice in most cases as they earn fewer rewards





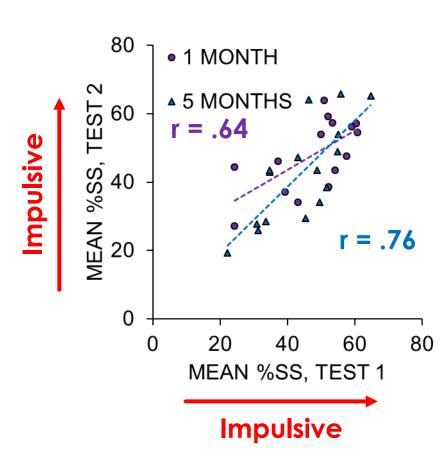
Bias versus sensitivity

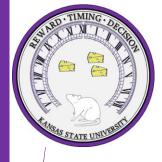
Mean/AUC and Slope/k have a non-linear relationship (Mitchell et al, 2015)



Individual differences

- In humans, impulsive choice appears to be a stable trait variable
- Are the most impulsive individuals at Time 1 also the relatively most impulsive individuals at Time 2?
- Test-retest correlations for humans in the .6-.7 range over periods from 1 week to 1 year; comparable to other trait variables (e.g., Jimura et al., 2011; Johnson, Bickel, & Baker, 2007; Kirby, 2009; Matusiewicz et al., 2013; Ohmura et al., 2006)

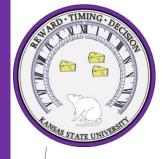

Test Impulsive Choice → Delay Re-test Impulsive Choice

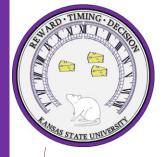

Individual differences in rats

- Individual differences in impulsive choice accounted for 22-55% of the variance in choice behavior (Galtress, Garcia, & Kirkpatrick, 2012; Garcia & Kirkpatrick 2013)
- Significant test-retest reliability at 1-month and 5-month delays (Peterson, Hill & Kirkpatrick, 2015)

Peterson et al. (2015)

Sources of individual differences


- Given that individual differences are stable traits, what are the sources of the individual differences?
 - Approach 1: Distal factors
 - Genetic differences may contribute to the formation of the impulsive phenotype
 - Rearing environment may contribute to the expression of the impulsive phenotype
 - Approach 2: Proximal factors
 - Timing Processes should be critical for processing the delay to reward
 - Reward Processes should be critical for processing the magnitude of reward


Strain differences: SHR vs. WKY

- Increased activity, impulsivity, and deficits in sustained attention, and alterations in the dopaminergic system (Davids, Zhang, Tarazi, & Baldessarini, 2003; Sagvolden, 2000)
- However, there are inconsistencies in the literature in reporting the cognitive and behavioral differences in the SHR strain (Adriani, Caprioli, Granstrem, Carli, & Laviola, 2003; Orduña, Garcia, & Hong, 2010)

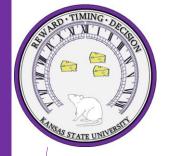
Strain differences: LEW vs. Wistar/F344

- Reduced reward system dopamine and serotonin function (Huskinson et al., 2012)
- Increased impulsive choice (e.g., Anderson & Diller, 2010; García-Lecumberri et al., 2010; Huskinson, Krebs, & Anderson, 2012; Stein et al., 2012)
- Increased self-administration of alcohol, cocaine, heroin, morphine, and nicotine (Brower, Fu, Matta, & Sharp, 2002; Kosten et al., 1997; Martin et al., 1999; Picetti, Caccavo, Ho, & Kreek, 2012; Suzuki, George, & Meisch, 1988)

Strain differences

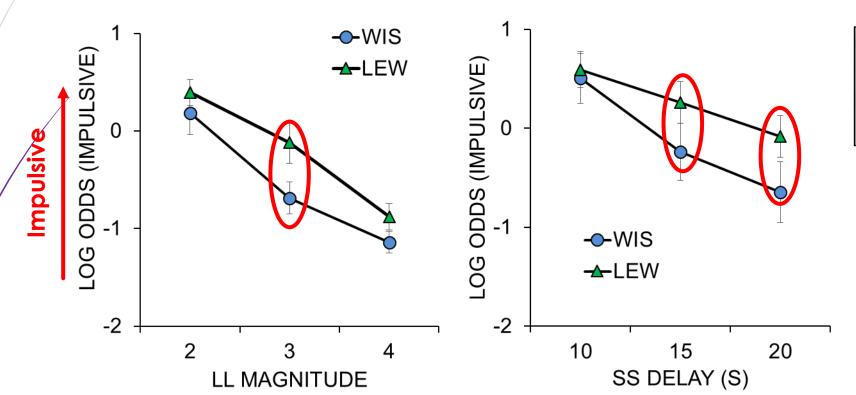
Impulsive Choice: Delay

$$\underline{SS} = 10 \rightarrow 15 \rightarrow 20 \text{ s, } 1 \text{ p}$$


Impulsive Choice: Magnitude

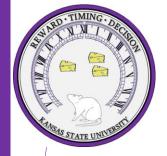
SS = 10 s, 1 p

LL = 30 s,
$$2 \rightarrow 3 \rightarrow 4$$
 p

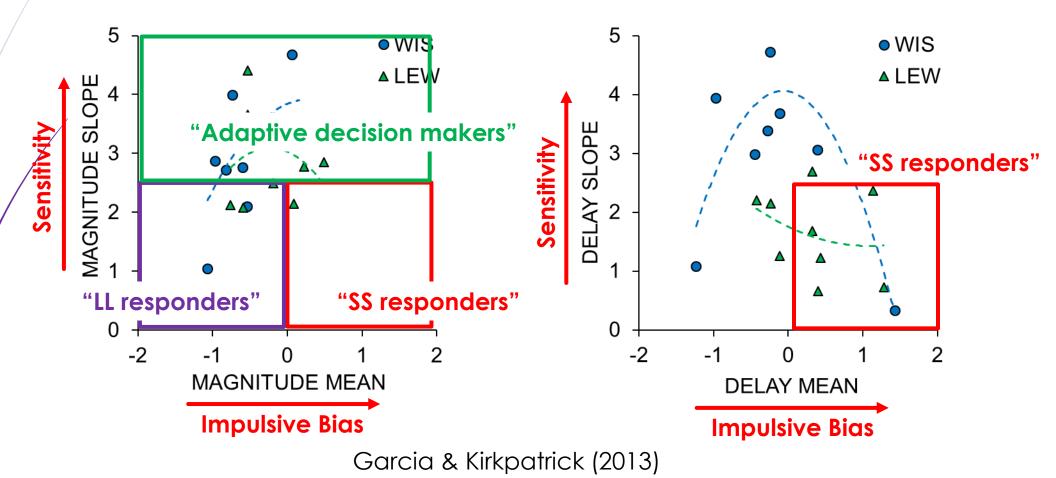

- Spontaneously Hypertensive Rats (SHR) versus Wistar Kyoto (WKY)
- Lewis (LEW) versus Wistar (WIS)
- Tested delay versus magnitude tasks
- Examined bias versus sensitivity

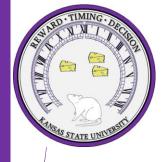
Strain differences in impulsive choice

SHR rats did not differ from WKY
The LEW strain showed increased impulsive choice relative to WIS



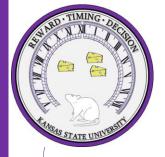
Log Odds = log(N_{SS}/N_{LL}) Log Odds = 0 Neutral Log Odds > 0 Impulsive Log Odds < 0 Selfcontrolled


Garcia & Kirkpatrick (2013)



Strain differences in impulsive choice

LEW strain more likely to show biases to choose SS (SS responders) Deficits are predominantly localized to the delay task



Early rearing environment

- Early rearing in an enriched environment:
 - Reduces self-administration of stimulants, opiates, and ethanol (e.g., Bardo & Dwoskin, 2004; Cain, Mersmann, Gill, & Pittenger, 2012; Coolon & Cain, 2009; Deehan et al., 2011; Green, Gehrke, & Bardo, 2002; Smith et al., 2005; Stairs & Bardo, 2009)
 - Decreases reward sensitivity and novelty-seeking (e.g., Bowling, Rowlett, & Bardo, 1993; Brenes, Padilla, & Fornaguera, 2009; Cain, Green, & Bardo, 2006; Gill & Cain, 2010)
 - Reduces impulsivity (Kirkpatrick et al., 2013; Marusich & Bardo, 2009; Perry, Stairs, & Bardo, 2008)

Rearing effects on impulsive choice

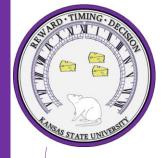
- How does rearing environment alter individual differences in impulsive choice behavior?
- Bias versus sensitivity

Impulsive Choice: Magnitude

$$SS = 10 \text{ s}, 1 \text{ p}$$

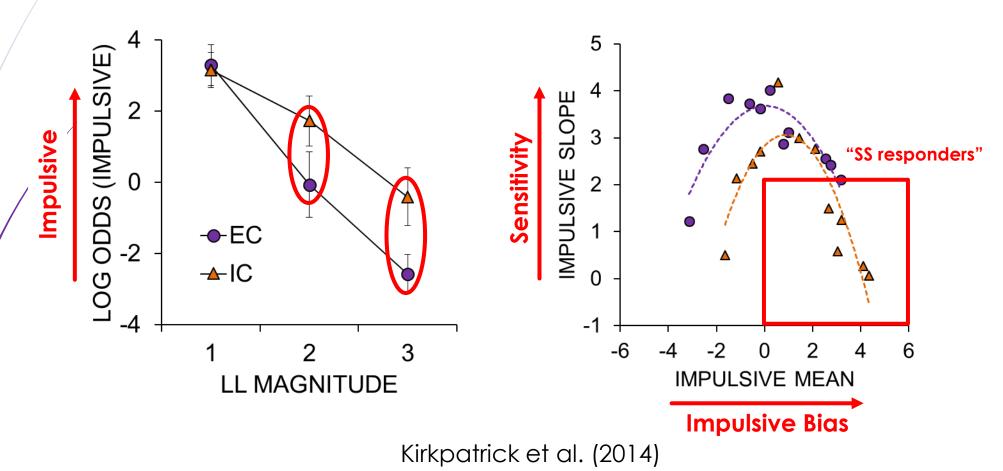
$$LL = 30 \text{ s}, 1 \rightarrow 2 \rightarrow 3 \text{ p}$$

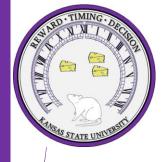
Rats reared from PND 21-51



ENRICHED CONDITION (EC)

ISOLATED CONDITION (IC)

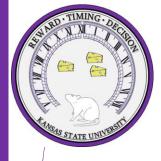


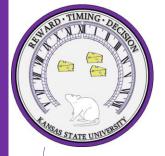


Rearing effects on impulsive choice

IC rearing increased impulsive choice relative to EC IC rats more likely to exhibit biases to choose SS (SS responders)

Distal factors summary here

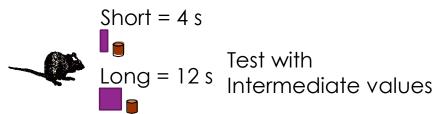

- Strain differences were present in impulsive bias in the Lewis versus control strains
 - Localized to delay task (timing processes?)
- Environmental rearing conditions influenced impulsive biases
 - Isolate rats more SS-biased with magnitude manipulations
 - Possibly due to reward deficits?
- Could SS responders be driving the drug selfadministration effects?


Sources of individual differences

- Given that individual differences are stable traits, what are the sources of the individual differences?
 - Approach 1: Distal factors
 - Genetic differences may contribute to the formation of the impulsive phenotype
 - Rearing environment may contribute to the expression of the impulsive phenotype
 - Approach 2: Proximal factors
 - Timing Processes should be critical for processing the delay to reward
 - Reward Processes should be critical for processing the magnitude of reward

Timing Processes

- More impulsive humans:
 - Overestimate interval durations (Baumann & Odum, 2012)
 - Demonstrate poorer temporal discrimination abilities (Van den Broek, Bradshaw, & Szabadi, 1987)
- Adolescents with ADHD:
 - Exhibit poorer temporal discrimination abilities (Barkley et al. 2001; Smith et al. 2002)
 - Display steeper impulsive choice functions than controls (e.g., Barkley et al. 2001; Scheres et al. 2010; Wilson et al. 2011)


Impulsive choice: Correlations with timing

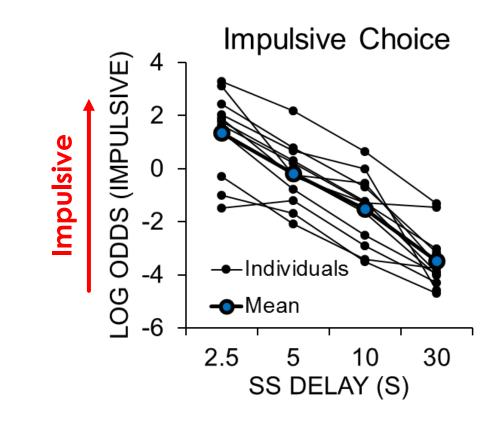
Impulsive Choice: Delay

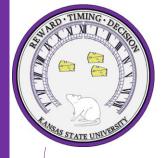
$$SS = 30 \rightarrow 10 \rightarrow 5 \rightarrow 2.5 \text{ s}, 1 \text{ p}$$

$$LL = 30 \text{ s}, 2 \text{ p}$$

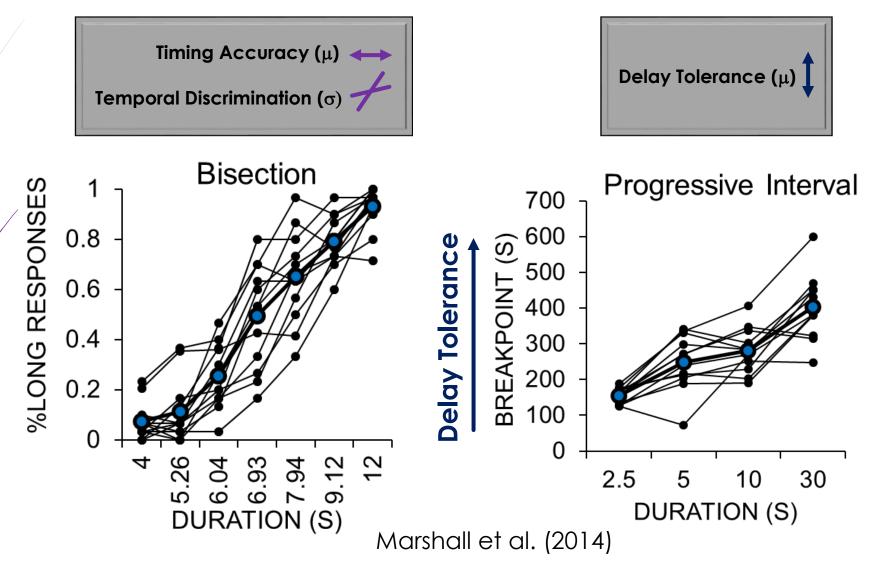
Temporal Bisection

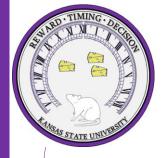
Progressive Interval

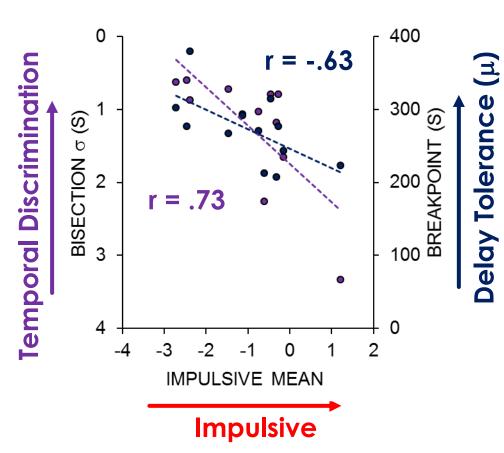



Impulsive choice: Individual differences

Log Odds = log(N_{SS}/N_{LL}) Log Odds = 0 Neutral Log Odds > 0 Impulsive Log Odds < 0 Selfcontrolled

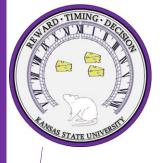

Impulsive Bias (µ)
Sensitivity (slope)




Impulsive choice: Correlations with timing

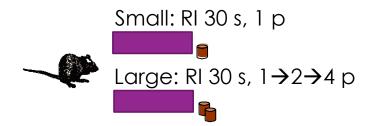
Impulsive choice: Correlations with timing

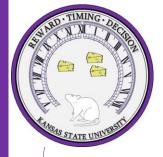
- Rats with poor temporal discrimination were more impulsive
- Rats with poor delay tolerance were more impulsive
- No relationship with impulsive slope (sensitivity)
- Therefore, poor timing predicts biases towards making impulsive choices



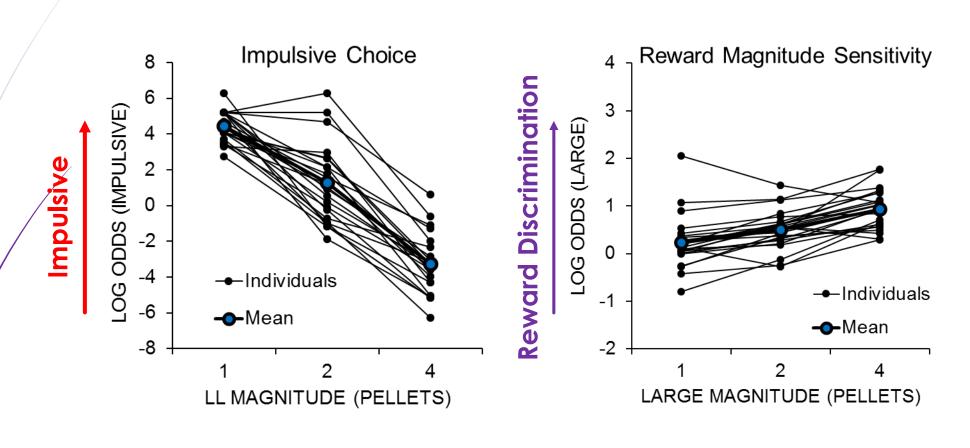
Reward Processes

- Impairments in reward processing are associated with ADHD (Holroyd, Baker, Kerns, & Maller, 2008; Johansen et al., 2002; Johansen et al., 2009; Luman et al., 2005; Scheres et al., 2007)
- Rearing environment acts upon both reward sensitivity and impulsive choice (Bowling, Rowlett, & Bardo, 1993; Brenes, Padilla, & Fornaguera, 2009; Cain, Green, & Bardo, 2006; Gill & Cain, 2010; Lore & Levowitz, 1966; Kirkpatrick et al., 2013, 2014; Marusich & Bardo, 2009; Perry, Stairs, & Bardo, 2008; Zimmermann et al., 2001)
- Therefore, we would expect to see a relationship between reward processes and impulsive choice

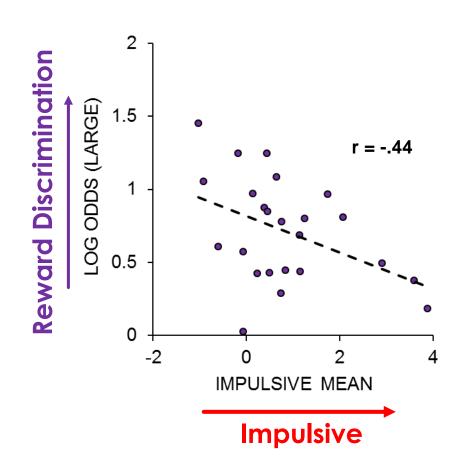

Impulsive choice: Correlations with reward discrimination

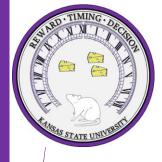

Impulsive Choice: Magnitude

$$SS = 10 \text{ s}, 1 \text{ p}$$

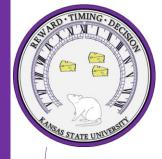

$$LL = 30 \text{ s}, 1 \rightarrow 2 \rightarrow 4 \text{ p}$$


Reward Magnitude Sensitivity


Choice and Reward Discrimination

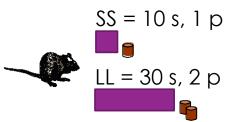


Impulsive choice-reward correlation

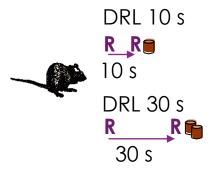

- Rats with poor reward discrimination were more impulsive
- No relationship with impulsive slope (sensitivity/adaptability)
- Therefore, poor reward discrimination predicts biases towards making impulsive choices

Altering individual differences

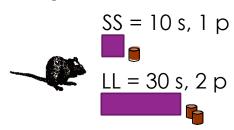
- Given the clear relationship between impulsive choice and:
 - Temporal discrimination, delay tolerance
 - Reward discrimination
- Sought to decrease impulsive biases by delivering:
 - Time-based intervention
 - Reward-based intervention


Time-based interventions

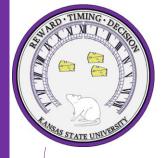
- Exposure to delays reduces impulsive choice in rats (Madden et al. 2011, Stein, Johnson, et al. 2013, Stein et al. 2015) and humans (Eisenberger and Adornetto 1986)
- Gradually increasing the delay to the LL reward maintained preference for the LL outcome in:
 - Adults with development disabilities (Dixon et al. 1998)
 - Children with ADHD (Binder, Dixon, and Ghezzi 2000; Neef, Bicard, and Endo 2001)
 - Adults with moderate to severe intellectual disabilities (Dixon, Rehfeldt, and Randich 2003)
- Previous studies did not measure any effects of the intervention on timing processes



Time-based intervention

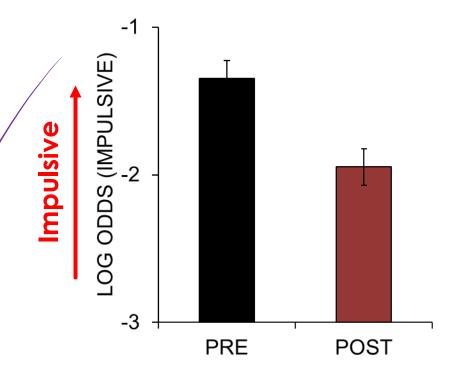


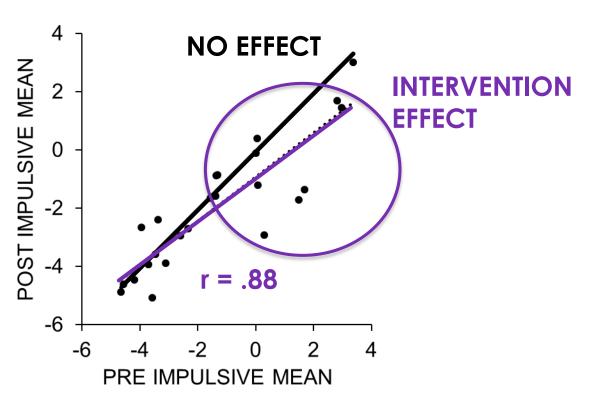
DRL Intervention



Impulsive Choice

Smith, Marshall, & Kirkpatrick (2015)

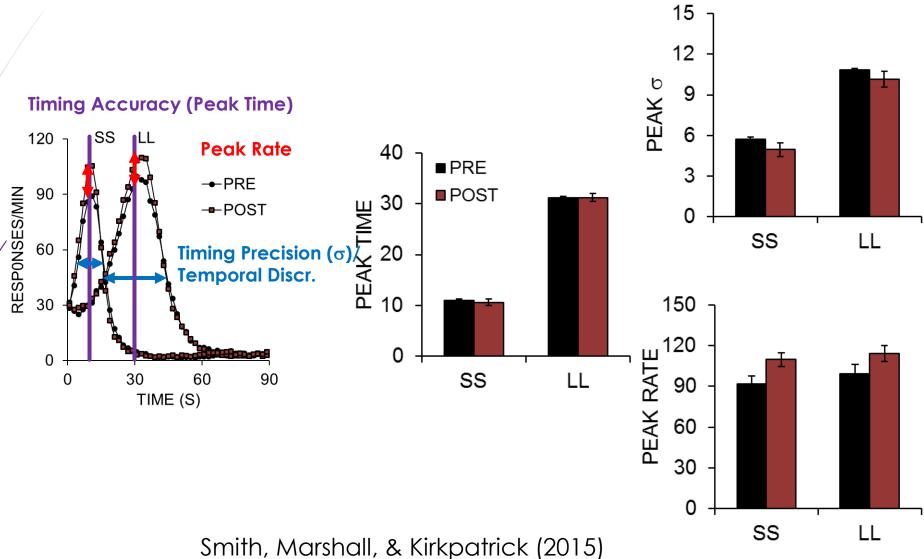


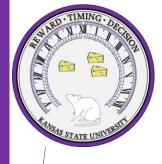


Intervention effects on choice

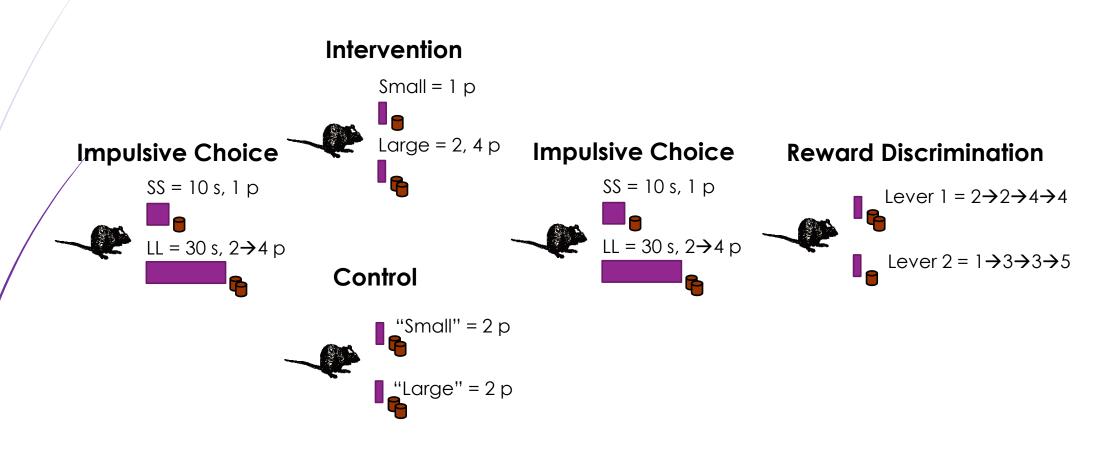
The intervention decreased impulsive choices

Individual differences still remained Most impulsive rats benefitted the most

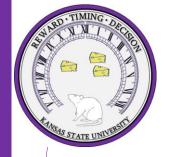




Intervention effects on timing

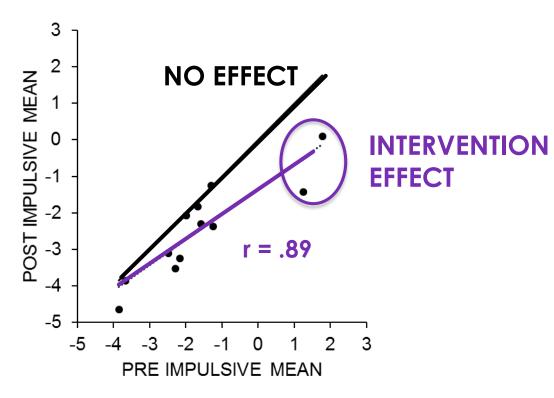


Reward-based interventions


- Only previous study in rats looked at reward bundling (Stein et al., 2013)
 - Choice of SS → bundled delivery of SS rewards spaced apart by LL delay
 - Choice of LL → bundled delivery of LL rewards spaced apart by LL delay
- Found that more bundling resulted in better selfcontrol
- Appeared to be due to exposure to the LL delay

Reward-based intervention

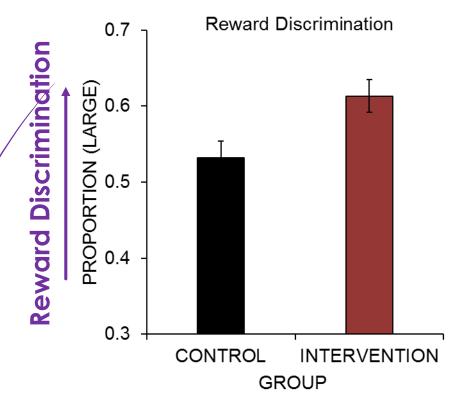
Marshall & Kirkpatrick (in press)

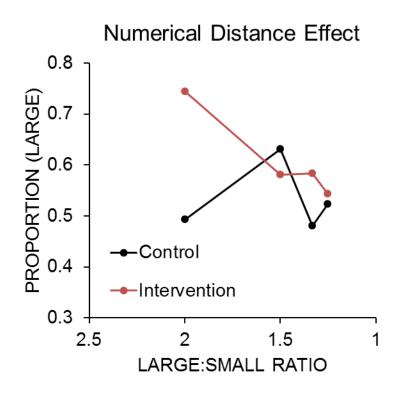


Intervention results

The intervention decreased impulsive choice biases

Individual differences still remained
Most impulsive rats benefitted the most,
but broader benefits were seen here


Marshall & Kirkpatrick (in press)



Intervention and reward discrimination

Intervention rats discriminated reward magnitudes significantly better than control rats

Intervention rats demonstrated a numerical distance effect, a hallmark of numerical processing

Marshall & Kirkpatrick (in press)

Overall summary

"Proximal factors"

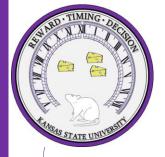
Impulsive Phenotype

"Distal factors"

Genetic differences
Environmental rearing

Impulsive

Self-controlled



SS Responders Adaptive

LL Responders

Time-based intervention Reward-based intervention

Pathways to disease/disorder development

Acknowledgments

Andrew Marshall

Jen Peterson

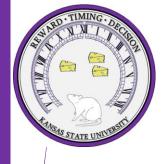
Catherine Hill

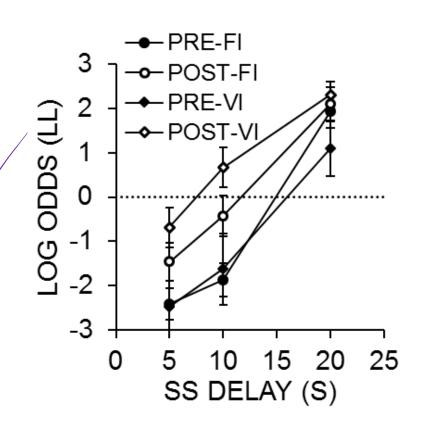
Aaron Smith

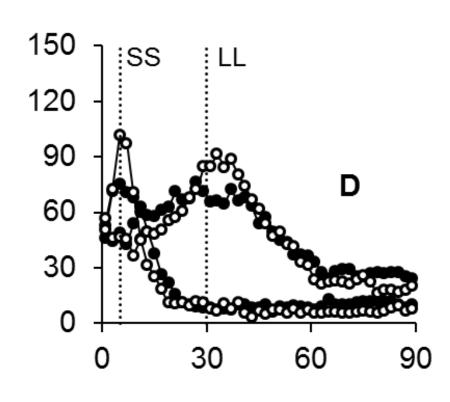
Tiff Galtress

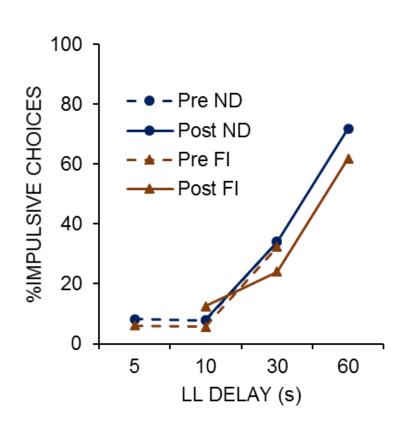
Ana Garcia

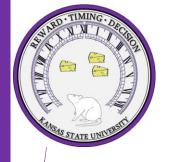

- Other RTD lab members and collaborators
 - Mary Cain, Juraj Koci, Yoonseong Park
 - Lots of undergrads
- Funding: R01-MH085739

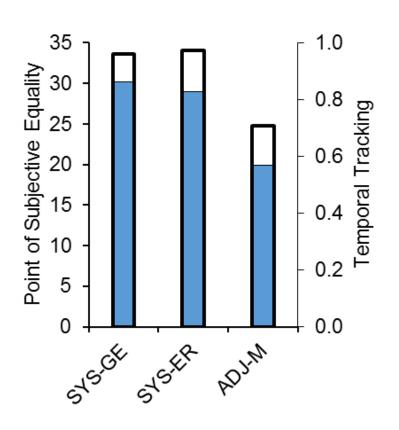



Questions to take away/future directions


- Are the SS responders the primary targets for disease/disorder development?
- Are timing and reward deficits separate gateways to disease? Or do they emerge from the same underlying mechanisms?
 - ATOM model (Walsh, 2003), Mode-control model (Meck & Chuch, 1983)
- Can we translate our interventions to humans?
- Could we use our interventions proactively to:
 - Reduce drug abuse, obesity, gambling


FI and VI Interventions – Sprague-Dawleys





Long FI intervention with control

Temporal tracking and impulsive choice in adjusting and systematic procedures

