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ABSTRACT

Garrett, K. A., and Mundt, C. C. 2000. Effects of planting density and the
composition of wheat cultivar mixtures on stripe rust: An analysis taking
into account limits to the replication of controls. Phytopathology 90:
1313-1321.

The effect of plant density on disease is not well understood in popu-
lations of a single host plant genotype and has been studied even less in
mixtures of host genotypes. We performed an experiment to evaluate
the effect of wheat planting density on infection by Puccinia striiformis
in experimental plots with a single wheat genotype and in plots with two
genotypes making up a range of frequencies. Stripe rust severity in
single-genotype plots increased with planting density in 1997 but de-
creased with planting density in 1998. Disease in host mixtures was

compared to the weighted mean of disease levels in the corresponding
single-genotype plots. The design of the field experiment included
limited replication of these reference treatments (that is, there was not a
unique pair of single-genotype plots for each mixture plot); therefore,
we devised an analysis based on collapsing the data into independent
mean observations. Disease reduction due to host diversity was less
when one genotype predominated than when both host genotypes were
present at nearly equal frequencies. The greatest mean host-diversity
effect for reduced disease was at the intermediate planting density of
250 seeds per m2.

Additional keywords: cultivar mixtures, mixture analysis, mixture
models, Triticum aestivum.

Although studies of the effects of host genotype diversity on
disease are in the early exploratory phase for many host–pathogen
systems, much is known about these effects for rusts and mildews
of small grains (25). The effect of host diversity on a wheat stripe
rust system in Oregon has been studied for over a decade. Greater
disease reductions due to host diversity were found for stripe rust
than for eyespot of wheat (21). The relative abundance of Puc-
cinia striiformis races changed during the season within mixtures,
but races virulent to more than one mixture component did not
always come to dominate the pathogen population (8). Host-diver-
sity effects differed for different wheat cultivars and for particular
wheat cultivars depending on which other cultivars were mixed
with them (18). The relative frequency of wheat genotypes in
mixture changed over time (14) and it appears that competition
among wheat genotypes may have altered susceptibility to stripe
rust (13). The fitness of wheat genotypes was frequency depend-
ent both in the presence and absence of disease (15). Akanda and
Mundt (1) found that stripe rust severity on individual cultivars
increased approximately linearly with the frequency of a cultivar
in mixture. When the size of areas planted to a single genotype
was manipulated by planting either random mixtures or alternating
rows of genotypes, disease was reduced in both, though the re-
duction was greater in random mixtures (4,20). Although these
aspects of the epidemiology of stripe rust in mixtures have been
studied, the effect of planting density has not yet been considered.

Little is known about the influence of planting density on dis-
ease in populations of a single host genotype, and even less about
the influence of density on disease in populations of multiple host

genotypes. Burdon and Chilvers (5), in their review of density
effects on plant disease, found a tendency toward increased dis-
ease severity at higher densities, though this was by no means a
consistent trend. In studies of barley powdery mildew, disease in
single-genotype plots decreased with increasing density (12).
Barrett and Wolfe (2) observed greater host-diversity effects for
reduced powdery mildew at higher planting densities, though this
study included single-genotype controls at only one planting den-
sity. Pfleeger and Mundt (23) found little evidence for an effect of
density on wheat leaf rust in wheat and wild oats mixtures, though
they suggested this may have been because of compensatory til-
lering at low densities. Host-diversity effects might be expected to
be greater at higher planting densities because there would be the
potential for reduced autoinfection; single plants, and thus single
genotypes, make up smaller areas as density increases (22). An
alternative hypothesis might be that host-diversity effects would
decrease with increasing density because dispersal gradients
might become steeper, leading to higher rates of autoinfection.
Likewise, if there is an overall increase in disease with higher
density, there might be less of a host-diversity effect because there
would be a smaller number of generations of pathogen increase
before plants approach 100% disease severity.

For testing whether or not there is a host-diversity effect, the
disease severity of a genotype mixture can be compared with the
appropriate weighted mean of percent severity in single-genotype
plots using linear contrasts. This is a test for whether there is an
absolute host-diversity effect (i.e., whether there is a difference
between what is observed in mixture and what would be predicted
in mixture under the null hypothesis of no host-diversity effect).
For comparisons of host-diversity effects under different treat-
ments (e.g., different planting densities), the absolute host-diver-
sity effect may not be a useful measure if the single genotypes
vary strongly with treatment. For example, if disease levels are
much higher at high densities than at low densities, the absolute
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host-diversity effect may also be larger at high densities as a mat-
ter of course. For comparing host-diversity effects at different
densities, a measure of the relative host-diversity effect may be
more useful. We will refer to the ratio of the observation in mix-
ture to the appropriately weighted mean of observations in single-
genotype plots as the relative mixture response (RMR). Under the
null hypothesis of no host-diversity effect, this response would be
one. This analysis becomes more complicated than tests using
linear contrasts, because the response variable is a ratio and ratios
can have undesirable statistical properties (24). In addition, stud-
ies of host-diversity effects typically use a limited number of
genotypes and then consider several mixtures composed of those
genotypes in different combinations and frequencies. Often, there
is not a unique set of single-genotype observations for each mix-
ture observation. Any repeated use of observations from single-
genotype plots in the denominators of relative mixture responses
will result in observations that are not independent, violating the
assumptions of many statistical analyses.

Typical parametric analyses of variance assume that the errors
in models are normally, identically, and independently distributed.
Such analyses are known to be robust to deviations from assump-
tions of normality and heteroscedasticity. “To make a preliminary
test on variances is rather like putting to sea in a rowing boat to
find out whether conditions are sufficiently calm for an ocean
liner to leave port” (3). However, deviations from the assumption
of independent observations may be more important. Response
variables will no longer be independent if observations in the de-
nominator of the RMR are reused within experimental treatments.
There are two ways of “reusing” observations for producing re-
sponse variables that might seem appealing. In the first, referred
to as “same standardization for all blocks” by Mead and Riley
(19), the mean of all replicates for a particular genotype in a par-
ticular treatment would be calculated for the whole field experi-
ment. In our experiment, this would mean taking the mean over all
replicates of single-genotype stands of a particular cultivar at a
particular density. This estimate would then be used in the de-
nominator of all RMRs for mixtures at that density that include
that cultivar. For the second form of reuse, referred to as “separate
standardization in each block” by Mead and Riley (19), observa-
tions from single-genotype stands are only used within a block.
Depending on the experiment, each single-genotype observation
might be used only once or more than once for this form of stan-
dardization. For both types of reuse, any error associated with the
measurements of the reused observations will also be repeated and
may make measurements within a treatment appear artificially
consistent. This artificially imposed homogeneity within a group
may produce an artificial difference between groups or make it
appear that an observed difference between groups is defined with
more precision than really exists, or both.

Thus, we had three goals in this work. One goal was to estimate
the effect of planting density on stripe rust in single-genotype plots.
The second was to clarify what artifacts may be introduced by an
analysis that ignores a type of dependence structure common in
studies of genotype mixtures. The third was to appropriately analyze
the impact of mixture components, genotype frequencies, and plant-
ing density on the relative mixture response of stripe rust in wheat.

MATERIALS AND METHODS

Field study. The field experiment was carried out during two
winter wheat seasons, 1996 to 1997 and 1997 to 1998, at the
Columbia Basin Agricultural Research Center field station near
Pendleton, OR. Field plots, 6.1 m by 4 rows in size, with 0.36-m
row spacing, were planted with four-row strips of the resistant
wheat cv. Stephens as a buffer on each side of each plot. Plots
were later mowed to 4.9 m in length. The experiment was planted
15 October 1996 in the first season and 13 to 14 October 1997 in
the second.

Four winter club wheat cultivars were included in the study:
Jacmar, Tres, Tyee, and a sibling of the commercial cv. Faro, OR
7142, which has an additional gene for resistance to stripe rust and
will here be referred to as Faro. Two races of Puccinia striiformis
were used to inoculate the field plots, Cereal Diseases Laboratory
(CDL) races 27 and 29; each plot was inoculated with both races
on 25 February and 6 March 1997 in the first season and 18 and
24 March 1998 in the second season. The plots were inoculated by
introducing infected seedlings of cv. Nugaines, as described in
Akanda and Mundt (1). Wheat cultivars were combined to form
three different two-component mixtures (Table 1). The components
of two mixtures (Faro-Tyee and Jacmar-Tyee) had differential
susceptibility (i.e., their components were susceptible to different
races of the introduced pathogen population). The other mixture
(Faro-Tres) had one component (Tres) that was resistant to both
pathogen races. The experiment was originally designed to include
a third race, virulent to Tres and avirulent to Faro, but this isolate
could not be cultured successfully. Thus, we had two differential
mixtures and a comparison between Faro in a differential mixture
with Tyee, and Faro in a nondifferential mixture with Tres.

Each of the three wheat genotype combinations was planted at
each of four planting densities: 62, 125, 250, and 500 seeds per m2.
The 250 seeds per m2 planting density corresponds to the planting
rate commonly used by wheat growers at this location. Each
genotype combination at each planting density was sown at each
of five genotype frequencies: 10/90, 25/75, 50/50, 75/25, and
90/10. The experiment was planted in a randomized block design
with four blocks. Each of the treatment combinations described
above was represented in each block for a total of 60 mixture plots
per block. Each of the four wheat cultivars also appeared as a
single-genotype plot at each of the planting densities, adding
another 16 plots per block. (If unique single-genotype plots had
been included for each mixture plot, there would have been 120
single-genotype plots per block.)

Visual estimates of disease severity (the percentage of leaf area
covered by stripe rust lesions on a whole-canopy basis) were
made for each experimental plot, and averaged for two observers,
on 3 or 4 June 1997 and 31 May or 1 June 1998.

Statistical analysis of single-genotype plots. Disease severity
was analyzed as a function of planting density, year, and their
interactions. Level of statistical significance of the different fac-
tors was determined in an analysis of variance (ANOVA). This
and the following statistical analyses were performed using S-Plus
(MathSoft Inc., Seattle, WA) and SAS (SAS Institute Inc., Cary,
NC) software.

Studies of the statistical properties of analyses using simu-
lated data. To determine how the dependence structure of our
data might influence realized α levels, our data structure was
analyzed, but with simulated responses free of treatment effects.
We performed a simulation study to determine how reusing esti-
mates from single-genotype plots influenced realized α levels.
The treatment and replication structure from the experiment was
used, but the actual observed disease levels were not. Instead, the
simulated percent severity for each plot was simply a constant,
one, plus an “error” unique to that plot. Errors were produced by a
pseudorandom number generator in S-Plus from a normal distri-
bution with mean 0 and standard deviation σe = 0.1. Relative

TABLE 1. Susceptibility of wheat cultivars to Puccinia striiformis races used
to inoculate experimental plots of two-component cultivar mixtures

Component susceptible to racea

Mixture components CDL 27 CDL 29

Faro and Tres Neither Faro
Faro and Tyee Tyee Faro
Jacmar and Tyee Tyee Jacmar

a Mixtures with differential susceptibility are those for which each compo-
nent is susceptible to a different Puccinia striiformis race; CDL = Cereal
Disease Laboratory races.
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mixture responses were then calculated from these simulated
“observations”. Thus, the new simulated RMRs had the same
dependence structure as our real data (before constructing inde-
pendent means), but there were no treatment effects because all
observations were constructed to have the same expectation. De-
nominators were calculated in the two different ways described by
Mead and Riley (19). For the first method, “separate standardiza-
tion in each block”, the same observations from single-genotype
plots were reused only within a block. For the second method,
“same standardization for all blocks”, the mean over blocks of
single-genotype plots was used through the experiment. This pro-
cedure was repeated 1,000 times, each time with a new set of
errors. For each run, an ANOVA was performed on the relative
mixture responses and P values for each effect were tallied. In the
absence of any treatment effects and under the assumptions of an
ANOVA, the P values for any given effect would be uniformly
distributed and the probability of a P value falling below 0.05
would be 0.05. We used the 1,000 simulations to estimate the
realized α level for each effect.

To determine how similar, but smaller, data structures might in-
fluence realized α levels, we also analyzed a much smaller version
of our experimental structure, again with simulated responses free
of treatment effects. This was to determine the effect of depend-
ence on realized α levels for smaller experiments in which single-
genotype responses would still be reused, but to a lesser extent.
This data structure had two planting densities and two, two-com-
ponent mixtures with different compositions but one component in
common (e.g., Faro-Tres and Faro-Tyee). As in the large data set,
each of the cultivars in the smaller data set (Faro, Tres, and Tyee)
was replicated only once for each density in each of the four
blocks. Thus, each block contained four mixture plots and six
plots with single genotypes. As in the larger analysis without
unique single-genotype plots for each mixture plot, the same sin-
gle-genotype result was reused within a density level in calculat-
ing the RMR. For 1,000 simulations, the realized α level for an
intended α level of 0.05 was recorded.

To determine how nonnormality of the response variables might
influence realized α levels, we analyzed our data structure with
simulated responses free of treatment effects and additional
simulated single-genotype plot responses, so that each relative
mixture response was calculated with unique single-genotype plot
responses in the denominator. The realized α level for this data set
was also measured in 1,000 simulations. The ratio of two normal
random variables is not normally distributed and we wished to
determine what impact this nonnormality might have on realized
α levels. We also wanted to confirm that the method we used to
analyze the real data from the field study did not produce undesir-
able artifacts. To determine whether realized α levels were as de-
sired for the analysis of our independent means data set, described
below, we conducted a comparable analysis with simulated re-
sponses free of treatment effects. The realized α level for the
simulated data was measured for 1,000 simulations in those analy-
ses, as well.

Density, cultivar, and cultivar frequency effects on RMR.
Tests of significance based on independent means of RMR were
constructed as an alternative to the problematic analysis of de-
pendent data. These tests take advantage of the fact that unique
estimates of responses for single-genotype plots are available in
each block for each density. Thus, the mean RMR in each
density–block combination can be calculated and these means will
not share any observations in common from one density–block
combination to another. This is the approach used for analyzing
the density main effect; the other analyses are based on the
same idea, but include fitting of regression lines within density–
block combinations. All of the analyses are described in more
technical detail in the appendix. Plots of the residuals versus pre-
dicted values from these analyses indicated satisfactory distribu-
tions of residuals.

Analysis 1—Planting density main effect. A test of planting
density main effects on RMR was constructed by first calculating
the mean RMR (averaged over frequencies and genotypes) in each
block for each density. This yielded four independent responses
per block for a total of 16 independent responses per year. The
2 years were analyzed together in an ANOVA for the linear,
quadratic, and cubic portions of a density effect on relative
mixture response. Tests of the linear, quadratic, and cubic parts of
the density effect were performed using contrasts constructed by
Gram-Schmidt orthogonalization (9).

Analysis 2—Genotype frequency main effect and fre-
quency–density interaction. A test of genotype frequency main
effects on RMR was constructed by calculating parameter esti-
mates from regression within each density–block combination.
Because we expected the mixtures with differential resistance
(Faro-Tyee and Jacmar-Tyee) to perform differently than the non-
differential mixture (Faro-Tres), we analyzed the two groups sepa-
rately. The relative mixture response was fit as a function of the
linear and quadratic parts of the genotype frequency effect. The
parameter estimates from each density–block combination, which
can be assumed to be independent, were then analyzed in a linear
model with predictor variables mean, density, and year. The mean
response is, itself, a measure of the relationship between genotype
frequency and RMR. If the mean is significantly different from 0,
this indicates evidence for a frequency effect. If the density effect
is significant, this indicates evidence for a frequency–density in-
teraction. If the year effect is significant, this indicates evidence
for a frequency–year interaction. This analysis is similar to the
“Standard Two Stage” analysis described by Feldman (11). In the
first stage, there is some data dependence, but not in the second
stage, where inference is drawn.

Analysis 3—Mixture components main effect and compo-
nents–density interaction. A test of the mixture components
main effect on the RMR was constructed by calculating, within
each block–density combination, the mean difference in the rela-
tive mixture response between Faro-Tyee and Jacmar-Tyee mix-
tures and between Faro-Tyee and Faro-Tres mixtures. These two

TABLE 2. Results of analysis of variance for log10-transformed percent stripe
rust severity in single-genotype stands of wheata

Source df P value

Years combined
Density 3 0.049

Linear 1 0.019
Quadratic 1 0.183
Cubic 1 0.413

Cultivar 3 0.000
Year 1 0.000
Density–cultivar 9 0.673
Density–year 3 0.000
Cultivar–year 3 0.000
Density–cultivar–year 9 0.225
Residual error 96 …

Data from 1997 analyzed separately
Density 3 0.000

Linear 1 0.000
Quadratic 1 0.253
Cubic 1 0.250

Cultivar 3 0.000
Density–cultivar 9 0.199
Residual error 48 …

Data from 1998 analyzed separately
Density 3 0.021

Linear 1 0.003
Quadratic 1 0.500
Cubic 1 0.816

Cultivar 3 0.000
Density–cultivar 9 0.990
Residual error 48 …

a Four densities were considered: 62, 125, 250, and 500 seeds per m2.
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differences were then analyzed in a linear model with predictor
variables mean, density, and year. If the mean is significantly dif-
ferent from 0, this is evidence for a mixture component effect on
the RMR. If there is a significant density effect, this is evidence
for a component–density interaction. If there is a significant year
effect, this is evidence for a component–year interaction.

Analysis 4—Components–frequency interaction and three-
way interaction. A test of the mixture components–genotype
frequency interaction was constructed by separating the data into
groups by block–density–components combinations. Within each
group, RMR was fit as a function of the linear and quadratic parts
of genotype frequency. Then, within each block–density group,
the difference between these parameter estimates for Faro-Tyee
mixtures versus Jacmar-Tyee mixtures and for Faro-Tyee mixtures
versus Faro-Tres mixtures was calculated. These four differences
were analyzed in a linear model with predictors mean, density,
and year. If the means are significantly different than 0, this is
evidence for a components–frequency interaction. If there is a
significant density effect, this is evidence for a three-way interac-
tion, components-frequency-density. If there is a significant year
effect, this is evidence for a significant components-frequency-
year interaction.

RESULTS

Stripe rust in single-genotype plots increased with density in
1997 and decreased with density in 1998. Residuals showed some
tendency to increase in variance with predicted values; therefore,
the ANOVA was performed on both untransformed and log10-
transformed response variables. The results for both analyses were
quite similar, but results for transformed variables are reported
(Table 2). For the analysis of both seasons combined, the effect of
density on percent stripe rust severity was statistically significant
and the interaction between density and year was highly signifi-
cant. This interaction reflects the striking difference in response to
density between 1997 and 1998 (Fig. 1). When results were ana-
lyzed separately by year, the effect of density was highly signifi-
cant in 1997 and also significant in 1998 (Table 2). The effect of
cultivar, year, and their interaction were highly significant, but the
interaction between cultivar and density was not (Table 2).

Ignoring the dependence structure in data with limited rep-
lication of controls can result in greatly inflated type I error
rates. For simulated data without unique single-genotype plots for

each mixture plot and with no treatment effects, the type I error
rate (α level) was particularly inflated when the mean over blocks
was included in the denominator (“same standardization for all
blocks”) for the calculation of the RMR (Table 3). For this case,
the planting density main effect had a realized α level more than
10 times the intended level of 0.05. That is, 68% of simulations
gave a false positive for the planting density main effect in an
analysis which was intended to allow only a standard 5% level of
false positives, had there been no problem with lack of independ-
ence. Realized α levels for the mixture composition main effect
and some interactions were also greatly inflated. When single-
genotype plot responses from only one block were used in the
denominator of the relative mixture response (“separate
standardization in each block”), the inflation of realized α levels
was not as striking overall, but there was still an important
increase for the planting density main effect. Note that the realized
α level for the block effect became inflated for this case because
observations within a block are dependent. For the simulated data
with a simpler treatment structure (Table 3), the inflation of
realized α levels was not as dramatic. Still, the realized α level for
planting density when the mean over blocks was used in the
denominator was more than double the desired level.

In the check of realized α levels for a data set with unique sin-
gle-genotype plots for each mixture plot and no treatment effects,
all α level estimates were within 0.010 of the intended 0.05 level.
This indicates that the nonnormality of the ratio response had no
important effect on realized α levels for the simulations. In the
check of realized α levels for the analysis of independent mean
RMRs with responses simulated to include no treatment effects,
estimates of the realized α level were within 0.012 of the intended
0.05 level.

The host-diversity effect for reduced disease was greatest at
the intermediate density (results of analysis 1). In the analysis
of independent means, only the quadratic part of the density effect
on the relative mixture response was statistically significant (Table
4). There was some evidence for a difference between years, but
none for a density–year interaction. The results are portrayed
separately by year (Fig. 2) to show the striking similarity in re-
sponse between the two seasons.

For the two differential mixtures, disease reduction was
greatest when the two components were present at inter-
mediate frequency (results of analysis 2). This result was highly
significant, though the effect of frequency was not significant for

Fig. 1. Percent severity of stripe rust in single-genotype wheat plots as a function of wheat planting density.
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the nondifferential mixture (Faro-Tres). None of the interactions
in this analysis were highly significant, though there was some
evidence for an interaction between density and frequency for the
nondifferential mixture (Fig. 3; Table 5).

The host-diversity effect for reduced disease was greater in
Faro-Tyee mixtures than in Faro-Tres mixtures (results of
analysis 3). This difference was large and statistically significant
(Figs. 3 and 4; Table 6). There were some estimated differences in
interactions between composition and density (Fig. 4), but this
interaction was not significant (Table 6). Likewise, there was no
evidence for a difference between Jacmar-Tyee and Faro-Tyee
mixtures (Table 6).

There was evidence for a composition–frequency–density
interaction for the comparison of Faro-Tres and Faro-Tyee
(results of analysis 4). The quadratic and cubic parts of density
appeared to be the main contributors to this effect (Table 7). There
was also some evidence for a composition–frequency–year inter-
action for that comparison. None of the interactions for the Faro-
Tyee and Jacmar-Tyee comparison were statistically significant.

DISCUSSION

For the single genotypes, density effects on percent severity
were reversed from one year to another. We can speculate that part
of this difference might be due to the fact that there was greater
tillering in 1998 than in 1997. Compensation from increased til-
lering at low densities can prevent treatments from representing as
wide a range of densities as planned. For planted rates of 62, 125,
250, and 500 seeds m–2, realized tiller densities averaged 157, 218,
274, and 329 tillers m–2 in 1997 and 270, 308, 369, and 395 tillers m–2

in 1998 (J. Brunet and C. C. Mundt, unpublished data). The
general tendency for disease levels to increase with density (5)
would be more likely to hold in 1997, when the low levels of til-
lering made differences between density treatments more striking.
However, this does not explain the reverse linear trend in 1998,
which was statistically significant when the years were analyzed
separately (Table 2). Different levels of nutrition and water stress
experienced by plants in the two years might have influenced sus-
ceptibility.

Our field study consisted of 304 experimental plots each year
and was only part of a larger study. One way of addressing the
problem of dependent data would have been to include unique

single-genotype plots paired with each mixture plot. This would
be similar to a paired plot design, except that each mixture plot
would have two corresponding single-genotype plots. If the cur-
rent study had included such unique plots, there would have been
an unrealistic total of 720 experimental plots. Thus, we were
forced to confront the problem of dependent data in our analyses
of the RMR.

Reuse of observations from single cultivar plots in calculating
RMRs did inflate realized α levels, demonstrating that use of the
RMR without accounting for possible dependence structures can
produce misleading results. However, our field study was unusual
in the large number of treatments and the large number of times
the response from each single-genotype plot could have been re-
used. In our simulation of a smaller experiment, inflation of α
levels was less of a problem. The method we used in our analysis
of the field data, analyzing independent mean responses, gets
around the problem, but at the cost of reduced statistical power.
There is reduced power because the unique observations of per-
cent severity in mixture plots are essentially averaged together in
producing the mean RMRs. Greater replication of single-genotype
plots short of unique single-genotype plots for each mixture plot
could increase the power of the experiment by giving a greater
number of independent mean RMRs.

TABLE 3. Realized α levels (Type I error rates) from analysis of relative
mixture response using simulated data without unique single-genotype plots
for each genotype–mixture plota

Realized α level

Effect df Sameb Separatec

Experimental design of field experiment
Block 3 0.05 0.481
A = genotype pair 2 0.33 0.136
B = genotype frequency 2 0.16 0.034
C = planting density 3 0.68 0.480
A–B 4 0.11 0.007
A–C 6 0.54 0.262
B–C 6 0.21 0.033
A–B–C 12 0.13 0.002

Smaller design for comparison
Block 3 0.056 0.081
A = genotype pair 1 0.075 0.045
B = planting density 1 0.129 0.070
B–C 1 0.069 0.047

a Simulations included no treatment effects and were for one season’s data
for intended level α = 0.05 (σe = 0.1). This analysis was performed to
determine the magnitude of artifacts that might be produced when data
dependence was not taken into account in performing such analyses.

b Means for single-genotype plots were calculated over the whole experiment
and were the same for each block.

c Means for single-genotype plots were calculated separately for each block.

Fig. 2. Mean relative mixture response (RMR) for wheat stripe rust as a
function of planting density (corresponding to analysis 1). The RMR is the
ratio with the percent severity of wheat stripe rust in a mixture of wheat
genotypes in the numerator and the weighted average of the percent severity
in single-genotype plots of the mixture components in the denominator. The
line at RMR = 1 indicates the result under the null hypothesis of no host
diversity effect on percent severity.

TABLE 4. Analysis of variance on the relative mixture response (RMR) for
stripe rust percent severity in wheat genotype mixturesa

Source df P value

Density 3 0.099
Linear 1 0.360
Quadratic 1 0.021
Cubic 1 0.803

Year 1 0.162
Density–year 3 0.892
Residual 24 …

a RMR is the ratio with numerator equal to the percent severity of wheat
stripe rust in a mixture of wheat genotypes and denominator equal to the
weighted average of the percent severity in single-genotype plots of the
mixture components. These results are from the analysis of independent
means described in the appendix, analysis 1.
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Federer (10) has discussed statistical issues involved in ana-
lyzing land equivalent ratios (LERs) in studies of intercropping.
The LER is “a measure of the efficiency of an intercrop in terms
of land area required under sole cropping to give the yields ob-
tained from the individual crops” (10). This may be expressed as a
ratio similar to the RMR. Federer (10) recommended use of
known response levels for single-genotype plots that could be
treated as constants in constructing the denominator of the LER.
This would be a good choice if constants were available, but, in
general, the response in single-genotype plots must be estimated
under environmental conditions similar to the conditions for the
mixture plots. Mean responses from single-genotype plots might
approximate a known constant response, but, unless there are
enough replicates to produce a very low variance for the estimate,
the potential for artifacts that was illustrated in our simulations
will still be present.

For our experiment, there was adequate power to detect effects
of interest using the method of collapsing the data set to inde-
pendent means. Alternative methods of analysis might be prom-
ising for some studies that lack sufficiently large sets of independ-
ent observations. Randomization tests might be used with the
incorporation of randomization of residuals, for data sets with
appropriately distributed residuals. It may prove useful to con-

struct a parametric ANOVA without the assumption of indepen-
dent observations by directly specifying the correlation between
observations (17). It may also be possible to modify mixture
models for this purpose (7), though the emphasis in mixture
models has been on absolute effects. In standard mixture models,
the responses in single-genotype plots would function similarly
to covariates. For these analyses it would still be necessary to
carefully consider how observations are reused, because re-
using single-genotype observations as predictor variables within a
treatment could lead to problems with colinearity (9). Applying
a series of linear contrasts to log-transformed observations of
percent severity might give results somewhat similar to the
comparisons of RMR reported here, because the log of a ratio is
equal to the difference between logs. The results would not be the
same, however, because the contrasts would be based on the mean
of logs rather than the log of means. Tests for the presence of
host-diversity effects using such an approach might be undesirably
conservative.

Using the conservative analysis based on independent means,
average density effects on relative mixture responses were con-
sistently quadratic over two very different seasons. This response
was unexpected. It is possible that a trend for increased host-di-
versity effects with increasing density (because of smaller geno-

TABLE 5. Analysis of variance on the relative mixture response (RMR) for stripe rust percent severity in wheat genotype mixturesa

P values

Differential mixtures Nondifferential mixture

Source df Linear Quadratic Linear Quadratic

Genotype frequency (GF)b 1 0.005 0.002 0.451 0.540
GF–densityc 3 0.549 0.615 0.095 0.099
GF–yeard 1 0.474 0.349 0.310 0.312
GF–density–yeare 3 0.520 0.485 0.738 0.826
Residual 24 … … … …

a RMR is the ratio with numerator equal to the percent severity of wheat stripe rust in a mixture of wheat genotypes and denominator equal to the weighted
average of the percent severity in single-genotype plots of the mixture components. These results are from the analysis of independent means described in the
appendix, analysis 2.

b Corresponds to test of mean (intercept) in analysis 2.
c Corresponds to test of density in analysis 2.
d Corresponds to test of year in analysis 2.
e Corresponds to test of density–year interaction in analysis 2.

Fig. 3. Mean relative mixture response (RMR) for wheat stripe rust as a function of planting frequency (corresponding to analysis 2). The RMR is the ratio with
the percent severity of wheat stripe rust in a mixture of wheat genotypes in the numerator and the weighted average of the percent severity in single-genotype
plots of the mixture components in the denominator. The line at RMR = 1 indicates the result under the null hypothesis of no host diversity effect on percent
severity.
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type unit; 22) and a trend for decreased host-diversity effects with
increasing density (because of shortened dispersal gradients) com-
bined to produce an optimum at the intermediate density. Fortu-
nately for potential users of wheat mixtures, this optimum was at
the density typical of wheat production systems in the study area.

As in Akanda and Mundt’s (1) study, the effects of host diver-
sity in differential mixtures were usually greatest when the fre-
quency of each component was minimized. For mixtures com-
posed of only two genotypes, this would be the 50:50 genotype
proportion. The results for the nondifferential Faro-Tres mixture
were more erratic. Mixture theory would argue that mixtures with
the lowest frequency of the susceptible Faro would experience the
greatest mixture effect for reduced disease (16). But we would
also expect high variability in disease severity for the Faro-Tres
mixtures with a low frequency of Faro because only a small pro-
portion of plants can have appreciable infection. Also, in the
analysis of independent means, tests for this nondifferential mix-
ture are based on averages over only half as many observations in
mixtures as for the differential mixtures.

Differential mixtures can experience a greater mixture effect for
reduced disease because each component can benefit from re-
duced inoculum. There is also the potential for benefits from in-
duced resistance (6). In nondifferential mixtures, only the more
susceptible component benefits. As might be expected, the host-

diversity effect for reduced disease was greater for the mixture
with differential susceptibility (Faro-Tyee) than for the mixture
with varying susceptibility (Faro-Tres). But this comparison is
based on only one nondifferential mixture and differences due to
differentiality are confounded with other ways in which Tyee and
Tres differ in mixture with Faro.

There was some evidence for interactions with density, so we
should emphasize that our results in the analysis of density main
effects (analysis 1) are average effects. The RMR will vary
throughout an epidemic, often reaching a maximum at an interme-
diate time point (26). Disease levels could not be estimated at
exactly the same point in both seasons; this difference in timing
may explain some differences between years and interactions
between year and treatment or density. Changes in cultivar fre-
quency over time may also have caused some differences in host-
diversity effects between treatments. Seed from the first season
was used to plant the second season; therefore, changes in cultivar
frequency could accumulate over two seasons. Between the origi-
nal planting in 1996 and the planting in 1997, frequencies had
changed by an average of –3% for Faro in Faro-Tres mixtures,
+2% for Faro in Faro-Tyee mixtures, and –12% for Jacmar in
Jacmar-Tyee mixtures (J. Brunet and C. C. Mundt, unpublished
data). Strongly significant interactions between frequency and
density were not found in this experiment.

TABLE 6. Analysis of variance on the relative mixture response (RMR) for stripe rust percent severity in wheat genotype mixturesa

P values

Source df Faro-Tres versus Faro-Tyee Faro-Tyee versus Jacmar-Tyee

Genotype composition (GC)b 1 0.044 0.393
GC–densityc 3 0.690 0.353
GC–yeard 1 0.960 0.987
GC–density–yeare 3 0.920 0.377
Residual 24 … …

a RMR is the ratio with numerator equal to the percent severity of wheat stripe rust in a mixture of wheat genotypes and denominator equal to the weighted
average of the percent severity in single-genotype plots of the mixture components. These results are from the analysis of independent means described in the
appendix, analysis 3.

b Corresponds to test of mean (intercept) in analysis 3.
c Corresponds to test of density in analysis 3.
d Corresponds to test of year in analysis 3.
e Corresponds to test of year–density in analysis 3.

Fig. 4. Mean relative mixture response (RMR) for wheat stripe rust as a function of planting density (corresponding to analysis 3). The RMR is the ratio with
the percent severity of wheat stripe rust in a mixture of wheat genotypes in the numerator and the weighted average of the percent severity in single-genotype
plots of the mixture components in the denominator. The line at RMR = 1 indicates the result under the null hypothesis of no host diversity effect on percent
severity.
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To summarize, the effects of density on stripe rust severity were
reversed in the 2 years of our study. Despite this dramatic dif-
ference between the 2 years, the average effect of density on the
RMR was consistently quadratic in the 2 years. The greatest host-
diversity effect in both years was for the density typically planted
by growers in the area of the study. This strong influence of
planting density on host-diversity effects suggests that caution
should be used when applying the results of one mixture study to
systems that might involve different planting densities. In addi-
tion, analyses of the RMR should be designed to take into account
which observations are independent.

APPENDIX

Formulation of tests on data analyzed in the form of
independent means. The percent severity was observed in each
plot and notated as yijlt within a single-genotype plot and yijk(l,m)t

within a genotype mixture for the ith block within year t (i =
1,…,4; t = 97,98), the jth planting density (j = 1,…,4), the kth

genotype frequency (k = 1,…5; p1 = 0.10, p2 = 0.25, p3 = 0.50,
p4 = 0.75, p5 = 0.90), and the lth (and mth) genotype (pairs are FR,
FY, and JY). The relative mixture response was calculated for
each mixture plot as

Rijk(l,m)t = yijk(l,m)t / [pk × yijlt + (1 – pk) yijmt]

where pk is the kth frequency.
Analysis 1—Planting density. In this analysis, the mean of

Rijk(l,m)t was calculated for each block × density × year com-
bination and notated as tijR .. . The model we fit was

ijtjttjtijR ε+δγ+γ+δ+µ= )(..

where δj corresponds to the jth density.
Analysis 2—Genotype frequency. Because we would expect

frequency to influence differential and nondifferential mixtures
differently, we analyzed them separately. In the first stage of the
analysis, the models

ijktkijtkijtijttijk ppR ε+β+β+β= 2
210.

where pk is the kth genotype frequency, were fit for each com-
bination of ijt. In the next stage of the analysis, a multivariate
response model was fit as

( ) ijtjttj
ijt

ijt ε+δγ+γ+δ+µ=











β
β

2

1

where µ corresponds to the test for frequency main effects, δj

corresponds to the test for density–frequency interactions, γt

corresponds to the test for frequency–year interactions and (δγ)jt

corresponds to the test for density–frequency–year interactions.
Analysis 3—Mixture components main effect and com-

ponents–density interaction. In the first stage of the analysis, the
differences between

tFYijtFRijijFt RRD ).().( −=

tJYijtFYijijYt RRD ).().( −=

were calculated for each combination of ijt. In the next stage of
the analysis a multivariate response model was fit as

ijtjttj
ijYt

ijFt

D

D
ε+δγ+γ+δ+µ=












)(

where µ corresponds to the test for mixture components main
effects, δj corresponds to the test for density–components inter-
actions, γt corresponds to the test for components–year inter-
actions and (δγ)jt corresponds to the test for density–components–
year interactions.

Analysis 4—Components–frequency interaction and three-
way interaction. In the first stage of the analysis, the models

2
),1(2),1(1),1(0),1( ktmijktmijtmijtmijk ppR β+β+β=

where pk is the kth genotype frequency, were fit for each combi-
nation of ij(l,m)t. In the next stage of the analysis, the differences

tFYijtFRijijFtD )(1)(11 β−β=

tJYijtFYijijYtD )(1)(11 β−β=

tFYijtFRijijFtD )(2)(22 β−β=

tJYijtFYijijYtD )(2)(22 β−β=

were calculated for each combination of ijt. In the third stage of
the analysis, a multivariate response model was fit as

ijtjttjt

ijYt

ijFt

ijYt

ijFt
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1

where µ corresponds to the test for a components–frequency
interaction, δj corresponds to the test for a density–components–
frequency interaction, γt corresponds to the test for a components–
frequency–year interaction and (δγ)jt corresponds to the test for a
density–components–frequency–year interaction.

TABLE 7. Analysis on the relative mixture response (RMR) for stripe rust percent severity in wheat genotype mixturesa

P values

Faro-Tres versus Faro-Tyee Faro-Tyee versus Jacmar-Tyee

Sourceb df Linear Quadratic Linear Quadratic

GC–GFc 1 0.191 0.123 0.250 0.224
GC–GF–densityd 3 0.099 0.102 0.506 0.449
Linear density 1 0.926 0.829 … …
Quadratic density 1 0.102 0.110 … …
Cubic density 1 0.054 0.054 … …

GC–GF–yeare 1 0.088 0.106 0.642 0.666
GC–GF–density–yearf 3 0.684 0.760 0.484 0.476
Residual 27 … … … …

a RMR is the ratio with numerator equal to the percent severity of wheat stripe rust in a mixture of wheat genotypes and denominator equal to the weighted
average of the percent severity in single-genotype plots of the mixture components. These results are from the analysis of independent means described in the
appendix, analysis 4.

b GC = genotype composition and GF = genotype frequency.
c Corresponds to test of mean (intercept) in analysis 4.
d Corresponds to test of genotype frequency–density interaction in analysis 4.
e Corresponds to test of genotype frequency–year interaction in analysis 4.
f Corresponds to test of genotype frequency–year–density interaction in analysis 4.
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