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Abstract. Good management models for postemergence weed control require good
estimates of which weed density produces an economic threshold yield. Because intraweed
competition increases if weeds are aggregated, weed spatial pattern may be an important
factor for inclusion in management models. Mathematical models of weed–crop competition
have demonstrated that this may be the case, but the small number of field studies examining
the effect of weed spatial pattern have given variable results. These studies have used
sampling units at arbitrary spatial scales for determining the level of aggregation in weed
counts. We suggest that the neighborhood size for weed–crop competition is a natural scale
for considering spatial pattern. We modeled crop yield resulting from weed competition as
a function of the economic threshold, the level of competition within the neighborhood,
neighborhood size, and the type and scale of weed pattern. From the model results, we
predicted which weed traits would produce large shifts in threshold weed density as weed
spatial pattern varies. For these weed species, consideration of spatial pattern in weed
management models is predicted to be important. The systems most sensitive to weed
spatial pattern are those with low economic thresholds, less competitive weeds, smaller
neighborhoods, and aggregation at the scale of the neighborhood.

Key words: aggregation; area of influence; competition; economic thresholds; interference; neigh-
borhood models; spatial pattern; spatial scale; weed–crop interaction.

INTRODUCTION

Weed management models can be effective tools for
reducing both herbicide and tillage use in postemer-
gence weed control (e.g., Lybecker at al. 1991; Wilk-
erson et al. 1991). Typically, decision making is based
on estimation of the response of crop yield in experi-
mental plots to a range of weed densities. An economic
threshold is determined based on expected yield loss
and the cost of an action to reduce the number of weeds
(Mumford and Norton 1984, Zadoks 1985). Below the
threshold weed density, money is likely to be saved by
not taking action; above it, taking action is likely to
result in profit. If several courses of action are avail-
able, with the more effective actions being more ex-
pensive, there may be a series of thresholds (e.g., Wiles
et al. 1992b).

Traits other than weed density may also be useful in
characterizing the weed population for yield prediction.
There has been some debate about whether the spatial
pattern of weeds is a useful consideration. Auld and
Tisdell (1988) demonstrated mathematically that, for a
yield response curve that is concave upward, variability
in weed density from one sampling unit (SU) to another
leads to less yield loss than for a homogeneous distri-
bution of weeds. In other words, if weeds are more
aggregated, less overall yield loss is predicted than if
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they are systematically distributed. If estimates of yield
response to weed density were constructed for system-
atically distributed weeds and applied to aggregated
weeds, yield loss would be overestimated. Exaggerated
estimates of yield loss could lead to unnecessary weed
control measures if the shift takes the estimate of loss
from below to above an economic threshold.

Studies of the importance of spatial pattern can be
categorized by the scale at which pattern was consid-
ered. Studies of large-scale processes have focused on
how some areas of a field may need no action while
action may be economically justified in other areas.
This scale of spatial structure may be important in the
context of site-specific tillage or herbicide application
(Thornton et al. 1990, Wilson and Brain 1991). On a
smaller spatial scale, Brain and Cousens (1990) ex-
amined mathematically how a range of levels of ag-
gregation affected yield loss, using different parame-
terizations of the negative binomial distribution to pro-
duce the range of levels. They began with the as-
sumption that aggregation within a 1-m2 quadrat was
negligible and concluded that the effect of spatial pat-
tern may be minimal for high economic thresholds.
Hughes (1989) replaced mean population density in
yield response models with Lloyd’s (1967) ‘‘mean de-
mand,’’ measured by the mean number per individual
of other individuals in the same quadrat. Hughes con-
sidered arbitrarily sized spatial units, concluding that
spatial pattern may be particularly important at low
plant densities.
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FIG. 1. Illustration of how the level of aggregation may
vary depending on the spatial scale being considered. Points
indicate weed positions for two types of patterns. (A) Greater
aggregation at large scale, less at small scale. (B) Less ag-
gregation at large scale, more at small scale.

TABLE 1. Notation.

Variable Definition

l mean weed density (parameter for the Poisson
distribution of weed density)

c competition coefficient for effects of weeds on
crop plants

d length of neighborhood or area of influence
(unit distance 5 spacing between crop plants)

h length of sampling unit (unit distance 5 spacing
between crop plants)

k negative binomial parameter determining level
of aggregation

m density of weedss (no. weeds/crop plant)
N total number of weeds in a neighborhood
t economic threshold yield (expressed as propor-

tion)

Spatial pattern has rarely been considered in empir-
ical studies of weed impact on crop yield. Hughes, in
his 1996 review of the incorporation of spatial pattern
of harmful organisms into crop loss models, states,
‘‘Wiles et al. (1992b) made what seems to be the only
formal attempt to evaluate spatial information about
harmful organisms (in this particular case, weeds) in
the context of crop protection decision-making.’’ Wiles
et al. (1992b) looked at the effects of aggregation using
9.1 m length SUs in soybean weed control models and
concluded, for their case, that the cost of ignoring spa-
tial pattern in decision models may be low on average,
but occasionally great.

One source of variable results in evaluations of the
importance of weed spatial pattern is the scale at which
pattern is assessed. The level of aggregation at one
scale may or may not translate into a similar level of
aggregation at a different scale. For example, the first
pattern of weed positions in Fig. 1 has a systematic
distribution for a SU of length 16, an aggregated dis-
tribution for a SU of length 8, and a lower level of
aggregation for a SU of length 1. The second pattern
has a systematic distribution for a SU of either length
16 or length 8 and an aggregated distribution for a SU
of length 1.

We suggest that the size of the neighborhood for
competition of a crop plant (e.g., Pacala and Silander
1985) is the natural scale for considering level of ag-
gregation. At that scale, all weeds counted in a SU will
influence the crop plant at the center of the SU. Weed
scientists have considered the comparable concept of
the weed area of influence (AOI), the range over which
a weed impacts crop plant yield (e.g., Mercer et al.
1990, Pike et al. 1990), but not, to our knowledge, in
the context of spatial pattern. If an arbitrary scale larg-
er than the neighborhood is selected, undetected spatial
pattern within the SU may be important. If an arbitrary
scale smaller than the neighborhood is selected, weeds
outside the SU may be having a great influence on yield
within the SU. Under the yield response model that
will be described below, the two weed patterns in Fig.
1 would each have the same predicted yield if the
neighborhood is of length 16. If the neighborhood is
of length 8, the predicted yield for weed pattern A
would be the higher of the two. If the neighborhood is
of length 1, predicted yield would be higher for weed
pattern B.

In addition to providing an appropriate scale for con-
sidering spatial pattern, the use of neighborhood mod-
els allows the characteristics of different types of weeds
to be compared based on the shift they produce in
threshold weed densities. ‘‘Types’’ of weeds can be
defined in terms of an individual weed’s AOIs (equal
to the corresponding neighborhood diameters) and how
competitive they are within their AOIs. We developed
predictions as to when spatial pattern would be im-
portant and potentially a valuable factor for inclusion
in management models. The influence of weed spatial
pattern may be important in two different settings.
First, competition coefficients have usually been de-
termined for weeds planted or thinned to be system-
atically distributed (Hughes 1996). When these esti-
mates are used in constructing economic thresholds for
the management of fields where weeds are likely to be
more aggregated, there is the question of whether an
adjustment for that aggregation is needed. In this case,
shifts in the threshold density from that for systematic
distributions are of interest. Second, if weeds are gen-
erally somewhat aggregated in natural populations,
shifts in the threshold density over the naturally oc-
curring range of aggregation may be important to adjust
models for particular fields.

THE MODEL

Three main aspects of the agroecosystem were con-
sidered in this analytical model: (a) the level of com-
petition, defined in terms of the size of the neighbor-
hood or AOI and the intensity of competition exerted
by the weeds, (b) the spatial pattern of weeds, defined
in terms of weed density, whether weeds are system-
atically or randomly distributed or aggregated, and the
spatial scale of aggregation relative to crop plants, and
(c) the economic threshold for the use of an input to
reduce the density of weeds. For a range of parameter
values, we determined how large the shift in the eco-
nomic threshold was in response to changing the level
of aggregation. Notation is summarized in Table 1.
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Analytical model of competition

Crop plants typically are planted closely enough to
each other that competition between crop plants might
be viewed as approximately constant in the absence of
weeds. Competition of crop plants against weeds was
also assumed approximately constant. Unit yield in the
absence of weeds incorporates the constant effect of
competition between crop plants. The distance between
crop plants in the row was taken as unit distance, and
neighborhood sizes were expressed in terms of the
spacing between crop plants. The length of the AOI of
the weeds, equivalent to the length of the neighbor-
hood, was denoted by d. The inverse hyperbolic equa-
tion was used to model the individual crop plant yield
response (Cousens 1985),

Y 5 1/(1 1 cN)

where N is the number of weeds within a crop plant’s
neighborhood, c is the competition coefficient of weeds
against crop plants, and crop plant individuals have
unit yield in the absence of weeds. The competitive
effect of weeds against crop plants was approximated
as constant regardless of the position of weeds relative
to crop plants within the neighborhood (Pacala 1989).
Use of the inverse hyperbolic incorporates the dimin-
ishing yield response to increasing weed densities that
is likely to result from increased weed–weed compe-
tition. For each parameter combination, all weeds were
assumed to be the same species or at least the same
competitive type.

Distribution of weed counts within neighborhoods

It was assumed for simplicity that weeds fell in a
line with the crop plants, as might be expected if there
was postplanting tillage, and that they only influenced
crop plants within their row. The mean weed density
was denoted by m weeds per unit length of row, with
unit length defined as the distance between crop plants.
The scale at which plants interact was determined by
the size of the neighborhood, d, also measured by unit
length of row. So, for example, if the neighborhood is
of length d 5 1, each weed competes against only one
crop plant.

The distribution of weed count per neighborhood was
modeled as either systematic, random, or having one
of three levels of aggregation. For systematic distri-
butions, the number of weeds per neighborhood was
nearly constant. This is the distribution under the as-
sumption that an initial weed is equally likely to be
positioned anywhere between two crop plants and that
weeds are 1/m units apart from each other down the
row. For random weed distributions, the number of
weeds in a neighborhood was modeled as following a
Poisson distribution. For aggregated weed distribu-
tions, a distinction was made between SU size and
neighborhood size. The number of weeds per SU was
modeled by the negative binomial (NB) distribution

(Appendix A) so the variance in number of weeds per
SU was higher than for randomly distributed weeds.
We modeled the distribution of the number of weeds
in a SU for the aggregated case as NB(k, hm), where
k is the aggregation parameter as in Brain and Cousens
(1990) and hm is the length of the SU multiplied by
the mean number of weeds per unit length. The negative
binomial distribution used in this way models aggre-
gation at only one spatial scale. We have suggested that
the level of aggregation at the spatial scale of the neigh-
borhood size is likely to be the most useful measure.
To model aggregation first at that scale, we used a SU
size equal to the neighborhood size (h 5 d). Level of
aggregation for SUs at a larger scale than the neigh-
borhood may or may not reflect the level of aggregation
at the scale of the neighborhood (Fig. 1), though the
smaller the difference in scale, the greater the corre-
spondence between the two measures. The effect of
aggregation at a smaller scale than the neighborhood
can be directly evaluated. For this case, we considered
SUs of unit length (h 5 1) so that neighborhoods en-
compass as many SUs as they are units long. The dis-
tribution of the total number of weeds in the neigh-
borhood was then NB(dk/h, dm) (Appendix A). In-
cluding this smaller SU example allows us to consider
the effect as neighborhood size becomes large relative
to aggregation at a fixed scale.

As an illustration of these distributions, suppose
neighborhoods are of length d 5 10 and mean weed
density is m 5 1 (Table 2). For systematically distrib-
uted weeds, md 5 10 weeds appear in each neighbor-
hood. For N following a Poisson distribution with mean
m, variation in the number of weeds per neighborhood
is introduced and weeds are randomly distributed.
When the number of weeds per neighborhood follows
the negative binomial, the level of aggregation for NB
parameter k 5 1 is somewhat higher than for the Pois-
son. Weeds are highly aggregated for k 5 0.01, the
majority of crop plants being exposed to no weeds. For
unit-length SUs (h 5 1), the level of aggregation within
neighborhoods does not increase as rapidly as k be-
comes small because there are 10 chances for a SU
with many weeds to occur within each neighborhood;
the number of weeds per neighborhood is essentially
averaged over ten draws so its variability is lower.

Estimating yield loss over parameter combinations

The distributions of the number of weeds in a neigh-
borhood described above were used to determine the
average yield over a range of parameters. Fields were
assumed large enough that the number of crop plants
was effectively infinite for purposes of this evaluation.
The average yield was calculated as

`

E[Y ] 5 [1/(1 1 cn)P(N 5 n)].O
n50

For this calculation, we used Maple version 5 (Char et
al. 1991) to determine expected yields, using the forms
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TABLE 2. Ten examples of neighborhood weed counts for each of eight spatial patterns, with
weed density n 5 1, neighborhood length d 5 1, sampling unit length h varying, and negative
binomial parameter k varying.

Systematic
Poisson

10
14

10
13

10
12

10
11

10
10

10
10

10
9

10
8

10
7

10
6

Negative binomial
h 5 10

k 5 1.00 (case 1)
k 5 0.10 (case 2)
k 5 0.01 (case 3)

29
57
72

18
10

0

16
2
0

13
1
0

9
0
0

6
0
0

5
0
0

3
0
0

1
0
0

0
0
0

h 5 1
k 5 1.00 (case 1)
k 5 0.10 (case 2)
k 5 0.01 (case 3)

18
21
43

15
18
27

14
16
20

11
14
19

11
9
0

10
9
0

9
8
0

9
5
0

9
0
0

4
0
0

TABLE 3. Estimates of spatial aggregation ( ) of weeds in agroecosystems. SU 5 sample unit.k̂

Source Crop SU size Weed k̂

Marshall 1988 Triticum aestivum L. 0.25 m2 Bromus sterilis L.
Bromus commutatus Schrader
Elymus repens (L.) Gould

0.15
0.025
0.059

Wiles et al. 1992a Glycine max (L.) Merr. 9.1 m Amaranthus retroflexus L.
Cassia obtusifolia L.
Ipomoea spp.
Sida spinosa L.

0.04–0.61
0.04–0.27
0.14–2.79
0.05–0.39

Dessaint and Caussanel 1994 Zea mays L. 625 cm2 Chenopodium album L.
Lolium perenne L.
Polygonum persicaria L.
Solanum nigrum L.

0.74
0.12
0.32
1.16

Cardina et al. 1995 Glycine max (L.) Merr. 2500 cm2

1000 cm2
Chenopodium album L. 0.76

0.43

given in Appendix B. For each of three economic
threshold levels (t), we found the threshold weed den-
sity that produced the threshold yield loss. This allowed
us to determine how changes in the spatial distribution
affect the threshold weed density. We found the thresh-
old weed density over all combinations of represen-
tative parameter values of economic threshold t 5
{0.60, 0.90, 0.98}, competition coefficient c 5 {0.1,
0.2, 1.0}, length of SU h 5 {1.0, d}, neighborhood
length d 5 {1.0, 2.0, 10.0, 20.0}, and spatial distri-
butions systematic, random, or aggregated with NB pa-
rameter k 5 {0.01, 0.1, 1.0}.

Examples of parameter estimates from published em-
pirical studies were assembled to guide the selection
of parameter ranges for k (Table 3) and c and d (Table
4). In aggregation studies, the NB aggregation param-
eter k was either directly reported by the authors or
calculated by us from reported estimates of the mean
and variance of weed density using

.2 ˆŝ 5 m̂(1 1 m̂/k)

Estimates of NB parameters at different densities may
not be directly comparable (Taylor et al. 1979), and the
size of SUs may not be that of neighborhoods, but these
estimates give an idea of the likely range. For com-
petition parameters, AOI studies were used. In this
case, the competition coefficient (c) was estimated from
reported yields by 1/(1 1 cN) 5 mean yield within

neighborhood/mean yield in absence of weeds, assum-
ing an asymptote of 0. The greatest distance reported
as still yielding statistically different yield from crop
plants in the absence of competition was taken as the
radius of the neighborhood (AOI). This is only a rough
estimate because it is influenced by the power of the
experiment, and the resulting step function is only an
approximation of the probably more complicated yield
vs. distance function (Law and Watkinson 1987).

MODEL PREDICTIONS

Both aspects of the competitiveness of weeds have
a straightforward influence on the yield response to
weed density (Fig. 2). Increases in the competition co-
efficient (c) and the length of the neighborhood (d)
function similarly to deepen the response curve. Spatial
aggregation influences yield through its influence on
the distribution of individual yields (Fig. 3). For the
most aggregated case (Fig. 3D), almost all individuals
have unit yield because they have no weeds in their
neighborhood. A small number of plants have low
yields because they are surrounded by many neigh-
boring weeds. As the level of aggregation decreases (k
increases), moderate yields become much more likely
and fewer individuals have unit yield. These differ-
ences in probability distributions translate into differ-
ences in expected crop yield for a given weed density
(Fig. 4).
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TABLE 4. Estimates of competition parameters of weeds in agroecosystems.

Source Crop Weed ĉ Radius† ‡d̂

Mercer et al. 1990

Pike et al. 1990
Byrd and Coble 1991
Stauber et al. 1991

Gossypium hirsutum L.

Glycine max (L.) Merr.
Gossypium hirsutum L.
Oryza sativum L.

Proboscidea louisianica
(Miller) Thellung

Xanthium strumarium L.
Xanthium strumarium L.
Echinochloa crus-galli L.

0.9

0.2
0.6
0.07

50 cm

100 cm
60 cm
25 cm

10

40
15
10

† Estimated radius in units from experiment.
‡ Neighborhood size parameter d scaled in terms of the spacing between crop plants in the row.

FIG. 2. Expected yield response to weed density (m) for randomly (Poisson) distributed weeds. (A) The competition
coefficient (c) varies (neighborhood length d 5 10). (B) The neighborhood length (d) varies (competition coefficient c 5
0.2).

The shift in threshold weed density over the range
of spatial patterns can be seen by following the hori-
zontal dotted lines in Fig. 4. For this example weed
system, there is little shift in threshold density at the
0.98 threshold. The point where the yield curve for the
most aggregated case (case 3, k 5 0.01) crosses the
0.98 threshold is somewhat shifted toward higher
threshold densities, but the difference is relatively
slight. At the 0.90 threshold, the moderately aggregated
case (case 2, k 5 0.1) is slightly offset from the less
aggregated cases and the yield curve of the most ag-
gregated case (3) does not even cross the threshold for
the range of weed densities portrayed in the figure. At
the low 0.60 threshold, even the systematic (S) and
Poisson (P) cases are somewhat distinct from each oth-
er. Both the moderately aggregated (2) and highly ag-
gregated (3) cases do not cross the threshold over the
illustrated range of weed densities.

The above example incorporates differences in only
threshold and spatial pattern; the shift in threshold yield
over spatial patterns for all the parameter combinations
is illustrated in Fig. 5. Each row of the figure shows
the point where the yield curves cross the economic
threshold for the indicated parameter combination,
marking the threshold weed density as do the characters
along the three horizontal dotted lines in Fig. 4. As in
the example (Fig. 4), lower thresholds result in greater

shifts in threshold weed density over different spatial
patterns, and the difference is greatest going from mod-
erately aggregated (2) to highly aggregated (3). Larger
neighborhood sizes (d) result in smaller shifts in thresh-
old density as do larger competition coefficients (c). A
given level of aggregation at a scale smaller than the
neighborhood (h 5 1) results in smaller shifts in thresh-
old density than does the same level of aggregation at
the scale of the neighborhood. (When h 5 d 5 1, the
SU length is the same as the neighborhood length, so
there is no distinction.) The difference in threshold
density shift in response to scale of aggregation is
greatest moving toward the highest level of aggregation
(3).

For which parameter combinations is there a large
shift in threshold density when comparing systematic

distributions to other distributions?

At the highest threshold (0.98), there is never an
important difference in threshold density between the
systematic distribution case (S) and any but the highest
aggregation case (3). Even for this comparison, there
is only a difference for weeds with small AOIs (d) and
small competition coefficients (c). At the 0.90 thresh-
old, there are added differences in threshold density
between the systematic distribution case and the me-
dium aggregation case (2) for less competitive weeds
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FIG. 3. Probability distributions of individual crop plant yields (competition coefficient c 5 0.5, mean weed density m
5 1, neighborhood length d 5 1, and sampling unit length h 5 1). Probabilities lower than 0.0001 are not depicted. (A)
Randomly distributed weeds. (B) Aggregated weeds with NB (negative binomial) parameter k 5 1. (C) Aggregated weeds
with NB parameter k 5 0.1. (D) Aggregated weeds with NB parameter k 5 0.01.

FIG. 4. Expected yield response to weed
density as the level of spatial aggregation varies
(competition coefficient c 5 1, neighborhood
length d 5 1, and sampling unit length h 5 1).
Economic thresholds of yield loss t 5 0.98,
0.90, and 0.60 are indicated by dotted lines. S
5 Systematic, P 5 Poisson, 1 5 NB (negative
binomial) with k 5 1.0, 2 5 NB with k 5 0.1,
and 3 5 NB with k 5 0.01.

(smaller d and c). The difference between the system-
atic case and the highest aggregation case is always
great at this threshold when aggregation is at the scale
of the neighborhood (h 5 d). For aggregation at the
scale of smaller SUs (h 5 1), this difference is great
for less competitive weeds. At the lowest threshold
considered (0.60), differences between the systematic
case and the low aggregation case (1) are becoming
important for less competitive weeds. Even differences

between the systematic case and the random case (P),
though relatively small, are apparent.

For which parameter combinations is there a large
shift in threshold density when comparing different

levels of aggregation?

The pattern of response to differences between the
aggregated cases is similar to that seen comparing the
systematic cases to cases with other distributions. At
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FIG. 5. The weed density at which the threshold yield is obtained. Within a box, four neighborhood lengths (d) are
depicted, and within each level of d, there are three levels of the competition coefficient (c). S 5 Systematic, P 5 Poisson,
1 5 NB (negative binomial) with k 5 1.0, 2 5 NB with k 5 0.1, and 3 5 NB with k 5 0.01.

the highest threshold (0.98), the highest level of ag-
gregation results in a threshold density different from
the other aggregated cases for less competitive weeds.
At the 0.90 threshold, each level of aggregation pro-
duces distinct threshold densities for the less compet-
itive weeds and the highest level of aggregation is very
distinct for the case of aggregation measured at the
scale of the neighborhood (h 5 d). At the 0.60 thresh-

old, the three levels of aggregation produce distinct
results for every case except the most competitive
weeds when aggregation is measured at a small scale
(h 5 1).

DISCUSSION

Our model predicts that shifts in threshold weed den-
sity between different spatial patterns can be large. For
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less competitive weeds or low economic thresholds,
yield loss in response to weed density, if estimated from
studies using weeds planted in a systematic pattern, is
predicted to be significantly overestimated if applied
to aggregated weeds. Likewise, if less competitive
weed species are present in different fields at different
levels of aggregation, the threshold weed density may
be very different for the different fields. Studies of the
spatial pattern of weeds have found a wide range of
levels of aggregation (Table 3). Researchers have re-
ported quite different levels of aggregation between
species, at least for limited sampling (e.g., Dessaint
and Caussanel 1994). Within a weed species, Wiles et
al. (1992a) found a range of levels of aggregation of
weeds in different fields of soybeans. Though estimates
of NB parameters may not be suitable for comparisons
over a wide range of densities (Taylor et al. 1979),
estimates of Taylor power law parameters for several
agroecosystems also demonstrated a range of spatial
patterns (Clark et al. 1996). These studies suggest that
there exists a range of aggregation that could produce
large differences in threshold weed density.

Our model predicts that a range of weed spatial pat-
terns at the scale of the neighborhood results in larger
shifts in threshold weed density than the same range
of patterns at a smaller spatial scale than the neigh-
borhood. It should be noted that this result is based on
the assumption that all the weeds in the crop plant
neighborhood compete with each other; pattern within
the neighborhood would be more important if intraw-
eed competition takes place only over a smaller dis-
tance than weed-crop competition. Differences in spa-
tial pattern at both the neighborhood scale and smaller
scales would then produce even larger shifts in thresh-
old density. Studies of the AOI of weeds have generally
found large neighborhoods (Table 4), though it is likely
that the selection of weed species for AOI estimation
has been based at least in part on their being compet-
itive enough for a single individual to produce a mea-
surable effect against a background of environmental
variability. Other aspects of weed competitiveness are
known to vary widely (e.g., Zimdahl 1980). The spatial
pattern at a larger scale may influence spatial pattern
at the scale of the neighborhood, though this is not
necessarily the case (Fig. 1). Pattern at larger scales
may be important if differential management at that
scale is possible.

Weed scientists developing management decision
models can use our model predictions as recommen-
dations for when it would be worth investigating the
impact of weed spatial pattern. When weeds are highly
competitive in large neighborhoods and economic
thresholds are high, it is probably not important to try
to include information about weed spatial pattern.
When weeds are less competitive in smaller neighbor-
hoods and economic thresholds are lower, it is likely
that weed spatial pattern is important and will shift
where the threshold weed population lies. If parameters

describing competition between a particular weed spe-
cies and crop are known confidently enough, and the
inverse hyperbolic is known to describe the response
to competition well, the estimates of shifts in threshold
given here could be taken as approximations of how
much the actual threshold would shift. It is more likely
that parameters describing a crop–weed interaction are
not well known enough and/or the inverse hyperbolic
is not a good enough approximation to the functional
response. In that case, our results give suggestions as
to which crop–weed interactions require empirical
studies of response to weed spatial pattern.

For those agroecosystems for which weed spatial
pattern is predicted to be important, estimates could be
made of yield loss in experimental plots with imposed
spatial patterns. If there is typically only one level of
aggregation at the neighborhood scale for a species of
interest, that level should be reproduced in experimen-
tal plots rather than transplanting weeds into a system-
atic pattern. Perhaps a range of levels of aggregation
are observed for a species. Different plots would then
need to have different spatial patterns imposed, rep-
resenting the set of patterns likely to be found in fields.
Hughes (1996) discusses two approaches for incorpo-
rating spatial pattern into crop loss models. Yield may
be estimated as the sum of yields at different weed
densities weighted by the frequency of each density.
Or the approach may be based on a description of yield
loss per unit weed density and the relationship between
an index of aggregation and the mean density.

The presence of several species of weeds in a field
complicates estimation of the shape of yield response
curves to weed populations, with or without consid-
eration of spatial pattern. It may be possible to group
weeds into competitive types based on individual bio-
mass (Goldberg 1987). But it would be important to
consider whether some species that are similar com-
petitors tend to occur in different spatial patterns be-
cause they have different dispersal mechanisms.

Our model predictions could be tested empirically
by measuring the importance of experimentally im-
posed spatial pattern for determining threshold density
in experimental plots. The most straightforward tests
would involve only one weed species per experimental
plot. To test the prediction that weeds with smaller
neighborhoods and lower competitiveness within
neighborhoods result in greater response to spatial pat-
tern, weed species for comparison should be of varying
AOI and level of competition within neighborhood. To
test the prediction that spatial pattern at scales smaller
than the neighborhood is less important than spatial
pattern at the scale of the neighborhood, the experi-
mental plot could be split into subplots. Spatial pattern
would then be imposed at the plot level in some plots
and at the subplot level in other plots for comparison.

VanGessel et al. (1995) performed an experiment in
which naturally-occurring weeds were removed in
strips (Garrett 1995) to introduce aggregation at a range
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of scales. Even under this imposed scaling of aggre-
gation, differences in yield between subplots with dif-
ferent spatial patterns were not detected. However, in
this experiment the resulting density of weeds varied
greatly (VanGessel et al. 1995) and there were a number
of weed species present, with the proportions varying
from plot to plot. Differences in species and genotype
of weeds and differences in germination times will add
a great deal of variability in competitive effect. One
point that has been little addressed in the context of
aggregated weed distributions is that such distributions
may occur in part because of environmental hetero-
geneity in the field. Because of this, competition be-
tween weeds and crop plants may be occurring only in
certain types of microenvironments within the field,
rather than in average conditions for the field (Pacala
and Tilman 1994). Likewise, observational studies us-
ing neighborhood or AOI analyses may be subject to
environmental pseudointeraction effects when com-
petition coefficients for weeds are estimated (Garrett
and Dixon 1997). In other words, correlations between
weed number or species and environmental variables
may bias estimates of weed competitiveness. It may be
important that weeds be either transplanted into ex-
perimental plots or sown and thinned to a desired den-
sity.

To summarize, our results corroborate Brain and
Cousen’s (1990) demonstration that threshold weed
densities are likely to be more sensitive to spatial pat-
tern for lower economic thresholds. We also predict
that weeds with smaller AOIs and that are less com-
petitive within their AOIs will result in greater sensi-
tivity to spatial pattern. For these weed types, we pre-
dict that sensitivity will be greater to spatial pattern at
the scale of the crop plant neighborhood than at smaller
scales.
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APPENDIX A

THE DISTRIBUTION OF N UNDER AGGREGATION

If the weed count in a sampling unit (SU) of unit length
has a Poisson distribution conditional on the rate for that SU
and the rate is distributed following a gamma distribution,
then the unconditional distribution of the count is negative
binomial (Kotz and Johnson 1969). If the size of the SU is
scaled by a factor h, the conditional distribution of the count
is then

P(N 5 n z l) 5 [exp(2lh)(lh)n]/n!.

If the rate parameter l follows the gamma distribution with
mean density m weeds per unit length of row,

fl(l) 5 (1/m)a/G(a)la21 exp(2l/m)

where G(x) 5 (x 2 1)! is the gamma function, then the un-
conditional distribution of the number of weeds in a SU of
length h is

P(N 5 n)

`

n a5 [(lh) exp(2lh)/n!][(1/m) /G(a)]1E
0

a213 l exp(2l /m) dl2
a5 G(n 1 a)/[n!G(a)]{[1/(hm)]/[1 1 1/(hm)]}

n3 {1/[1 1 1/(hm)]}

which is the probability density function of the negative bi-
nomial distribution. Brain and Cousens (1990) used a dif-
ferent notation for the negative binomial:

G(n 1 k)
n kP(N 5 n) 5 [m /(m 1 k)] [k /(m 1 k)] .

n!G(k)

In this form, decreasing the parameter k increases the level
of aggregation. The distribution derived above, allowing for
SU size to vary proportionately with h, can be reparameter-
ized for SU counts in the functional form used by Brain and
Cousens (1990) as

P(N 5 n)

G(n 1 k)
n k5 [(hm)/(hm 1 k)] [k /(hm 1 k)] .

n!G(k)

If SU size is the same as neighborhood size (h 5 d), the
distribution of the number of weeds in a neighborhood is
NB(k, dm). If SUs are of size h , d, so that d/h SUs fall
inside a neighborhood, the distribution of the count within
one of these smaller SUs is NB(k, hm). Because the sum of
identically distributed negative binomial random variables is
also distributed following a negative binomial (Kotz and
Johnson 1969), the distribution of the total count within a
neighborhood over h small SUs is

NB[(dk)/h, dm].

APPENDIX B

FORM OF YIELD EXPECTATION FOR EVALUATION

We used the probability generating function, G(z), to
change the evaluation from over an infinite sum to over a
finite integral as in Brain and Cousens (1990),

1

1/cE[Y] 5 1 2 z G9(z) dzE
0

where G9(z) 5 dG(z)/dz. In our case, the probability distri-
bution function for the negative binomial is

GNB(z) 5 [[(dk)/h]/[(dk)/h 1 dm(1 2 z)]](dk)/h

with derivative

5 dm[[(dk)/h]/[(dk)/h 1 dm(1 2 z)]](dk)/h11.G9 (z)NB

For the Poisson distribution, the generating function is

G9P(z) 5 exp[2dm(1 2 z)]

G9(z) 5 dm exp[2dm(1 2 z)].p

For the systematic distribution, at most two levels of N are
possible so a finite sum is appropriate:

E[Y ] 5 [1/(1 1 cn)P(N 5 n)]O
P(N 5 int(dm)) 5 1 2 re(dm)

and P[N 5 int(dm) 1 1] 5 re(dm), where int(dm) gives the
integer part of dm and re(dm) gives the remainder.


