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Abstract Network models of human epidemics can
often be improved by including the effects of beha-
viour modification in response to information about
the approach of epidemics. Similarly, there are oppor-
tunities to incorporate the flow of information and its
effects in plant disease epidemics in network models at
multiple scales. (1) In the case of human management
networks for plant disease, each node of a network has
four main components: plant communities, microbial
communities, human information (among researchers,
extension agents, farmers, and other stakeholders), and
environmental conditions, along with their interac-
tions. The links between nodes, representing the rate
of movement between them, have three parts: the rates
for plant materials, the rates for microbes, and the rates
for information. Network resilience for information
flow is an important goal for such systems. Game
theory can provide insights into how human agents
decide how to invest their efforts in strengthening
information networks, and how policies can support
more resilient networks. (2) For the case of within-
plant signalling networks, each node has a comparable
set of four main components: plant signals (often in
the form of phytohormones) and development status,
microbial communities and plant disease status, mi-
crobial signals (often in the form of quorum sensing
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molecules), and micro-environmental conditions, along
with their interactions. In effect, human information is
replaced by plant signals and microbial signals in this
second model. The links between nodes have three
parts: the rates for microbes, the rates for microbial
signals (which may move separately from the microbes,
themselves), and the rates for plant signals. Understand-
ing how to enhance adaptive plant signalling networks
and microbial signalling networks that support plant
productivity, and disrupt microbial signalling networks
that contribute to pathogenicity, will be an important
step for improved disease management.
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modelling - Quorum sensing - Systems biology -
Biofilms

Introduction

Network models are used to describe processes where
there are discrete nodes, such as individual people,
plants, or political units, and each pair of individuals
is joined (or not) by a link. Wider use of network
models for plant disease epidemics is motivated by,
for example, changes in the structure of horticultural
trade that must be understood to protect against
pathogen invasions (Dehnen-Schmutz et al. 2010).
One of the simplest types of network models would
be one representing a group of people (nodes),
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where each pair of people is either acquainted or
not (a link exists between the pair, or does not).
Network models become more elaborate as more
types of information are included. For example,
the link between a pair of people might have a
weight indicating how often the two see each other.
Or the link might have a weight indicating how
likely one of the pair is to infect the other with a
disease. The inclusion of more and more interesting
and useful features of interactions has led to com-
plex weighted network models (Newman 2003;
Barrat et al. 2004). Networks may describe features
such as the relationship between species (nodes) in
food webs, but this paper focuses on networks that
explicitly describe processes in space (Dale and
Fortin 2010; Barthelemy 2011). One particularly
useful aspect of network models is that understand-
ing the topology of interactions among the nodes
leads to understanding of emergent properties of the
system. For example, often threshold levels of path-
ogen movement and establishment that allow an
epidemic to progress or not can be identified as a
function of the network structure.

Network models offer a fresh perspective on plant
disease epidemics (Jeger et al. 2007; Moslonka-
Lefebvre et al. 2011). For example, it is useful to
understand whether a plant pathogen is likely to
move from a neighbouring field into a new field,
by understanding principles of pathogen dispersal.
Network models can provide insight into whether a
disease is likely to move through a network of
fields to reach a new field, as a function of how
‘well-connected’ those fields are to each other. Use
of network models can help to partition the effects
of spatial and temporal organization on the risk of
pathogen spread (Brooks et al. 2008). The termi-
nology of networks is helpful for developing a
common vocabulary to understand similar processes
acting across temporal and spatial scales in plant
pathology, from individuals to landscapes (Jordan et
al. 2010), where individual plants may constitute
landscapes for microbes. As an example, consider
the wheat plant in Fig. la and a corresponding
network summarizing the wheat structure at the
organ level in Fig. 1b, from the perspective of a
plant-associated microbe.

This paper addresses network models to describe
epidemic processes both within host plants and at
larger scales. It emphasizes how information influences
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Fig. 1 a Vegetative wheat plant structure (image from Klepper
et al. (1983)). b A corresponding network graph, where lines
indicate direct physical links. (Note that the best formulation of
this network can be debated, in terms of how leaves in a grass
are linked.) Nodes are adjacent if connected by a link; for
example, the nodes representing leaf 1 (L1) and leaf 2 (L2) are
adjacent. In this model, only the most direct physical connec-
tions are treated as producing adjacency, but other processes
such dispersal through air or water could produce additional
links for microbes. If links are directional (arcs), such as processes
related to xylem or, depending on growth stage, phloem, then the
graph may be a digraph (= directional graph). The degree of a
node is the number of links incident, or linked, to the node; L2 and
the seed both have the highest degree in this model, three. In
digraphs, the in-degree and out-degree can also be evaluated. A
walk on a graph is an alternating sequence of nodes and links, and
the length of the walk is the number of links the path includes; for
example the length of the walk between L1 and L5 is four. A path
is a walk without repeated links or nodes. A node is reachable
from another node if a walk exists between them. A graph is
connected if any node can be reached from any other node, as in
this model; graphs for some processes within plants or between
plants would not be connected

epidemics, as information moves through the same
networks as do pathogens, or ideally can be made to
move through more efficient networks. The objective of
this paper is to contribute to the development of a
conceptual framework for (1) linked epidemic networks
and information networks for plant disease, and (2)
mesoscale plant-microbe networks, scaled between
epidemic networks of multiple host individuals and
genetic networks of gene interactions.

Human networks for disease management

The spread of information and its effects on epidemics

The idea that the spread of ideas (or memes) is
analogous to the spread of a disease (or genes in
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a population) has been stimulating scientists for some
time (Gerard et al. 1956; Goffman and Newill 1964,
Dawkins 1976), with inroads in popular culture (e.g.,
Language is a Virus, Laurie Anderson). Intriguing
models of networks of human relationships have
also been developing rapidly across decades (Goffman
and Newill 1964; Agliari et al. 2006), with a journal
devoted to the topic: Social Networks. Evaluations of
human communication, particularly, have taken this
perspective, with increasing mathematical rigour, such
as in ‘theories of rumour’ (Nekovee et al. 2007). Now
there are many models of communication processes
such as movement of information through the internet
and networks of scientific citations. Epidemic and
communication networks have been frequent topics
for network modelling, but it is only recently that
they have been considered simultaneously in systems in
which information and epidemics interact as individuals
use information about epidemics to guide decisions
such as whether to vaccinate (Del Valle et al. 2005;
Salathé and Bonhoeffer 2008; Perisic and Bauch 2009).

Social structures in human populations may affect
movement of epidemics (Andersson 1997). A primary
behaviour change in response to information about
human epidemics may be change in how frequently
people choose to encounter others and other attempts
to avoid exposure, which may or may not slow epi-
demics (Del Valle et al. 2005; Meloni et al. 2011).
Increasingly information is available about patterns of
interaction among study groups of people (Edmunds
et al. 1997; Eubank et al. 2004; Mossong et al. 2008;
Scoglio et al. 2010). Individuals as nodes may choose
to modify their network links, such that they have less
exposure to potential infection sources (Gross et al.
2000).

Funk et al. (2010) have developed a classification
for voluntary behaviour initiated by individuals (as
opposed to behaviour imposed through outside rules)
to manage their disease risk. They categorize models
first in terms of the source of information: ‘global’
information that is publically available vs. ‘local’ in-
formation that comes from their social neighbourhood.
Clustered beliefs about how best to manage disease
may lead to clusters of lower or higher infection,
depending on how well beliefs correspond to actual
effective management strategies. Local spread of
useful information has the potential to stop an epidemic
(Funk et al. 2009). Second, there are different types of
information. Information about incidence (‘prevalence’)

and severity of disease is one important form, perhaps
the type of information most commonly addressed in
models of human disease. Funk et al. (2010) distinguish
between ‘prevalence-based’ and ‘belief-based’ informa-
tion. Belief-based information may relate to decisions in
advance of the approach of disease, such as decisions
about vaccination (Cornforth et al. 2011) (or, in the case
of plant disease, decisions about what types of manage-
ment are needed in terms of form of cultivar resistance,
use of pesticides and cultural practices, etc., as discussed
by Savary et al. (2006)). Not only beliefs about factors
such as the costs and benefits of vaccination may move
through networks, but also emotions (Hill et al. 2010),
which may influence the likelihood that managers make
optimal decisions for themselves and others in their
network. Models of information flow through networks
may also incorporate the degeneration of information as
it moves from one agent to another (Agliari et al. 2006)
or within an agent over time.

Plant disease networks

There are similarities whether information networks
provide information about the risk of human disease or
the risk of disease in plants managed by humans. For
IPM, different types of information play a role.
Irwin (1999) discussed three ‘tiers’ of information:
a fundamental knowledge base (scientific fields
such as plant pathology, aerobiology, etc.), tactical
or methodological (biological control, chemical
control, host resistance deployment, habitat manipula-
tion), and operational (integration of tactics into a
scalable strategy). For ‘global’ (in the sense of
Funk et al. (2010)) plant disease, national and interna-
tional diagnostic networks provide information about
the types of disease found at different geographic
nodes of epidemic/information networks, as well as
information about how to identify pathogens and
vectors (Stack et al. 2006; Miller et al. 2009). For
some diseases, such as endemic soilborne diseases
that have long-lived structures for survival when a
host is not available, farmers primarily make use of
information about management. New invasive
pathogens may arrive at new locations, or familiar
pathogens may make annual migrations to arrive at
different times and so require different types of
information for management. For pathogens such
as soybean rust, each growing season represents a
new invasion for the regions that do not support
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overwintering (Li et al. 2010). Long-distance spore
transport is also important for other rusts such as
wheat stripe rust (Wang et al. 2010). The timing of
arrival is critically important for decision-making in
areas distant from overwintering sites for diseases such
as soybean rust or wheat rusts, because appropriate
management timing is necessary for efficiency (Isard
et al. 2004; Isard et al. 2005; Isard et al. 2007). Appli-
cation of network models supports analysis of the im-
portance of information about disease at the nodes in
such epidemic networks (Chadés et al. 2011), so that an
efficient set of nodes can be selected for sampling (for
example, for soybean rust in the US, shown by Sutrave,
S., Scoglio C., Isard, S. A., Hutchinson, J. M. S., and
Garrett K. A., in preparation).

The networks formed by landscapes of plant
communities have been considered most commonly
for variety mixtures or intercropping (Finckh et al.
2000), and sometimes at larger scales such as epi-
demic processes among fields or at larger scales
(Margosian et al. 2009). Understanding of the cur-
rent and potential structure of epidemic networks
can potentially be used to design networks with
lower disease risk (Liu et al. 2011; Schneider et
al. 2011). Disruption of epidemic networks because
of higher plant diversity can be a form of ecosys-
tem service, while the presence of additional host
species that strengthen networks by functioning as
green bridges or other means can be a form of
ecosystem disservice (Cheatham et al. 2009). In
general, higher host diversity tends to decrease disease
risk (Garrett and Mundt 1999; Keesing et al. 2006), so
the diversity of hosts within networks will have
important effects on epidemics, where immune or
highly resistant hosts may essentially be removed
from the network. For example, in a network analysis
of important crop species in the US, each county was
represented in the network by a node (Margosian et al.
2009). The resistance to movement between nodes was
modelled as a function of the availability of the
host crop species being evaluated. In order to eva-
luate the impact of host availability for a range of
different types of invasive pathogens or vectors, the
network was evaluated for a range of different
threshold tolerances. For example, some species
can only move short distances without contact with
their hosts (without human help), and for these
species only low levels of resistance to transmis-
sion would allow links to be retained in the
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network. This analysis provides perspective on
the potential for host crop species distributions to
influence epidemic spread. Agricultural and natural
or unmanaged systems may be linked through their
shared pathogens, such as links among tallgrass
prairie, maize, sorghum, and soybean fields
through the generalist pathogen Macrophomina
phaseolina (Saleh et al. 2010). Networks formed
by plants are also dynamic at different time scales
as annual crops are sown and harvested. The con-
duciveness of the environment for disease also
influences the effect of network structure on epi-
demics (Garrett et al. 2009).

Human information networks for plant disease
management

A model of human information networks related to
plant disease management might include the elements
illustrated in Fig. 2. In this diagram, links join geo-
graphical nodes, where nodes might be individual
plants, fields, farms, counties, regions, or countries.
At each node, four main factors interact to determine
the role that that node will play in the larger network.
(1) The plant communities present at the node will
determine what plant diseases may be present and
what microbial communities may be supported. (2)
The information available at this node will influence
how plants are managed. Farmers may or may not act
efficiently and effectively to manage disease, depending
on factors such as the information they have access to,
and their perceptions of risk and how those perceptions
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Fig. 2 Nodes and links within a geographic network, where a
node might be a farm, county, region, or country
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influence their decision-making (McRoberts et al.
2011). In scenarios where resource-poor farmers have
limited access to information, programs such as farmer
field schools may support better decision-making (Ortiz
etal. 2004). (3) Environmental conditions will influence
both plant-microbe interactions and human decision-
making. For example, the increasing environmental var-
iability predicted in climate change scenarios will
change the utility of different weightings of past and
present experience in farmers’ decision-making (Garrett,
K. A., Dobson, A., Kroschel, J., Natarajan, B., Orlandini,
S., Randolph, S., Tonnang, H. E. Z., and Valdivia, C., in
review). (4) The current microbial communities and
disease status will directly affect the probability of
disease movement from this node. The local structure
at the beginning of an epidemic may be particularly
important (Keeling 1999). These four factors will inter-
act as generally described for the plant disease triangle,
or plant disease tetrahedron. Between each pair of nodes,
there may be a nonzero rate of influence for three of these
factors (where movement of environments is less ger-
mane to the concepts discussed here). Rates are not
necessarily related at all to the Euclidean distance be-
tween nodes. (1) Microbes may move between nodes,
‘directly’ as windborne spores or vectored by arthropods,
for example. (2) Information moves between nodes,
where cell phones and newer technologies for dispersing
information can facilitate if valuable information is not
lost in noise. Key people such as extension agents may
act as information ‘hubs’ or ‘superspreaders’. (3) Plant
movement by humans may be a particularly important
means for movement of microbes. Transport of plants
through networks such as those of cargo ships is beco-
ming more feasible to incorporate in models (Blasius et
al. 2010). The capacity for inspection of plant materials
is limited, so strategies for optimizing inspection are
needed (Surkov et al. 2008). Moslonka-Lefebvre et al.
(2011) review network models of plant pathogens
including Phytophthora ramorum, the causal agent of
sudden oak death and other diseases of trees and shrubs.
In this system, it is important to consider both ‘natural’
spread and spread through trade networks. The effects of
different changes to this epidemic network, such as ins-
pection and eradication programs, have been evaluated in
simulations to identify the best strategies for management
(Harwood et al. 2009). The relationship between epide-
mic networks and information networks will also be an
important consideration for climate change scenario ana-
lysis and adaptation (Garrett et al. 2011).

An important consideration is the resilience of
human networks that process information related to
the management of plant disease, where resilience
is defined here as the ability of a system to continue with
essentially the same desirable features despite perturba-
tions to the system. There are many potential perturba-
tions to the general system in Fig. 2. New pathogens
may be introduced, for which there may be a lag in the
availability of information at some nodes. Budget cuts
for formal information networks, such as reduced fund-
ing for the US National Plant Diagnostic Network,
disrupt established networks. Folke et al. (2005) review
how the structure of human organizations determines
the success of adaptive ecosystem-based management
when there are abrupt changes. Social networks
within governance systems can help in the process
of transformation to a more desirable state during
periods of crisis. The high level of uncertainty associat-
ed with complex ecosystem and management systems
motivates regular adjustment of approaches through
adaptive management. Especially when change is rap-
id, informal social networks can complement hier-
archical bureaucracies. The social capital of a
human group provides advantages through the ‘citizen-
ship behaviors’ of group members (Bolino et al. 2002).
The nature of human networks has the potential to
contribute to effective problem solving, such as
cooperation to stop an epidemic. ‘Agency within
networks requires specific skills from entrepreneurs,
including ones that enable pattern generation, relation-
ship building and brokering, knowledge and resource
brokering, and network recharging’ (Moore and
Westley 2011). Biological networks have the potential
to serve as examples for the construction of robust
human information networks; for example, Tero et al.
(2010) have compared networks formed by a slime
mold to the Tokyo rail system.

Theoretical perspectives on epidemic and information
networks

Theoretical analyses of the effects of network structure
offer perspective on potential outcomes for plant dis-
ease epidemic and information networks. Moslonka-
Lefebvre et al. (2011) also review some of the key
traits of epidemic networks, where knowledge about
the form of the network can provide insights for
anticipating the likelihood of different types of out-
comes for an epidemic. For example, the epidemic
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threshold, the threshold above which an epidemic
spreads and below which an epidemic dies out, is a
function of the probability of transmission, the
probability of persistence, and the network struc-
ture. Analysis of networks can give insights into
how management actions to limit transmission and/
or persistence, or to modify network structure, can
most efficiently be used to move a system below
the epidemic threshold. Other measures capture
aspects of how well-connected a network is, such
as connectance, the fraction of possible links that
exist in the network. Many networks exhibit nodes
with a scale-free power-law distribution (Barabasi
and Albert 1999). ‘Many existing natural, social,
and technological networks have been shown to
have small-world (local connectivity with short-
cuts) and scale-free (presence of superconnected
nodes) properties’ (Moslonka-Lefebvre et al.
2011). Scale-free networks generally have a lower
threshold than other network forms, which also
holds true for small networks with a positive cor-
relation between links in and out of nodes (Pau-
tasso and Jeger 2008). Scale-free networks also
support the spread of ‘rumors’(Nekovee et al.
2007) or general information. In ‘small world’ sce-
narios, individuals that are particularly well-
connected may be the most important for epidemic
processes (e.g., Mossong et al. 2008). The goal for
management is to break the short-cuts in epidemic
movement, while introducing and strengthening the
short-cuts in the movement of information contrib-
uting to management.

Game theory offers useful perspectives on human
decision-making, as well as the co-evolution of plants
and microbes. One game commonly considered, in
many variations, is the Prisoner’s Dilemma. In a sim-
ple form of the game, two prisoners must decide
whether to confess to a crime or not, without being
able to discuss the situation with each other. If neither
confesses, they both go free. If both confess, they each
have a shorter sentence. If one confesses and the other
does not, the one who does not confess has a longer
sentence. The trick for a prisoner is to weigh the
different outcomes without knowing what the other
prisoner will do, though perhaps with an estimate of
the probability that the other prisoner will decide to
confess. This game can be generalized to other situa-
tions where a person makes decisions without know-
ing other people’s future actions. In the context of
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information networks, people must decide what infor-
mation to collect and what to share, in part as a
function of whether other people are likely to collect
and share information, too. In general, plant patholo-
gists in academia are motivated to share information
(unless they are waiting until after it has been pub-
lished), but time constraints and funding opportunities
will determine how much effort they invest in collect-
ing and distributing particular information resources.
The Prisoner’s Dilemma has also been evaluated for
the case of decision makers in networks. If the prison-
er’s dilemma is considered on a small-world network,
an intermediate optimum level of topological hetero-
geneity is observed for cooperation (Fu et al. 2007). In
the Continuous Prisoner’s Dilemma, agents may have
different degrees of cooperation rather than an all-or-
nothing scenario. In simulations of this game in net-
works, levels of cooperation evolve to higher levels
when agents are clustered in networks (Ifti et al. 2004)
and clusters of cooperators have higher success
(Luthi et al. 2008). Network structure for mutualistic
networks may be favoured by high levels of connection
and nested architecture (Thebault and Fontaine 2010).

In addition to decisions about information sharing,
game theory can provide insights into people’s
decisions about disease management. Decisions
about vaccination have been studied in a game
theoretic framework. Smaller network neighbourhoods
may support greater protection through ‘herd immunity’
when not all people are vaccinated (Perisic and Bauch
2009). Herd immunity is the phenomenon by which a
group of potential hosts is effectively protected even if
not all members have protection through vaccination or
other means, although opinion processes can lead to
clusters of unprotected individuals (Salathé and
Bonhoeffer 2008). In game theory models, the vaccina-
tion rates observed when individual agents act only in
their perceived self-interest is generally below what
would be optimal for the group (Funk et al. 2010).
Individuals who do not vaccinate may still benefit from
lower disease exposure because others have vaccinated,
while the unvaccinated individuals have avoided the
perceived costs of vaccination.

Analogously, farmers might decide to manage plant
disease less strenuously if they believe that the
management efforts of farmers around them will
protect them from disease. A multi-state analysis
of benefits from ‘herd immunity’ in maize suggests
that non-Bt-maize has experienced lower European
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corn borer damage as a result of being mixed with
Bt maize (Hutchison et al. 2010). Conversely, non-
Bt maize refugia are designed to reduce selection
pressure for European corn borers to develop toler-
ance to Bt maize. In this case, farmers forego the
potential immediate benefits of growing Bt maize
on the refugia lands, to gain the future benefit of Bt
maize that is still effective against local populations
of European corn borer.

Within-host signalling networks
Networks within individual plants

There is an obvious analogy between these models of
human communication, and communication within
and among microbial communities and individual host
plants. The mesoscale for plant-microbe network mod-
els might be defined as scales ranging from between-
cells to between-individuals, in contrast to larger geo-
graphic networks or smaller genetic networks. Models
of individual plant ‘networks’ have been available for
many years, with ‘the algorithmic beauty’ of plants
(Prusinkiewicz and Lindenmayer 1991) addressed par-
ticularly in the context of simulating plant structure
and architecture. ‘Trees’ are one type of network
graph, where branches come off from a central node.
Cells are one natural choice for representation as net-
work nodes. At the between-organs scale, the modular
structure of many plant species results in a network of
plant organs that may vary from one individual within
a species to another. Organs in network models might
include leaves and stems, roots, flowers, and seeds/

fruits, with architecture changing over time. Network
models for disease have also been developed to incor-
porate changes in the network structure, itself (Gross
et al. 2006). Such an adaptation will be important for
network models of plants, where plants may grow to
quickly change their form and thus the network struc-
ture they provide for microbes and signalling (Fig. 3).
Environmental cues change plant architecture through
effects on hormones and responses to hormones (Wol-
ters and Jurgens 2009). The genetic structure of net-
works of multiple plants has often been studied
(Skelsey et al. 2005; Biek and Real 2010), and new
tools for transcriptome analysis make it possible to
similarly study the phenotypic structure of networks
both between plants and within individual plants
(Garrett et al. 2006). An interesting question in the
context of within host networks is to what extent
summary statistics at smaller scales can be used to
approximate larger scale processes. For example, av-
erage status of cells within a leaf may be used to
summarize the leaf processes, but process outcomes
may not scale directly (e.g., Hughes 1996).
Microbial communities may be associated with
plants on leaf or root surfaces, in intercellular spaces,
or within cells. The structure of the microbial com-
munity may influence the likelihood of infection by
any given potentially pathogenic species through
processes such as competition for resources, antibiotic
production, or through production of disease in the
microbe. Some transitions from one within-individual
‘zone’ to another have been studied in detail, such as
movement from epiphytic surfaces to within leaves
through entry points such as wounds and stomates.
Movement from one organ to another, or from one plant
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Fig. 3 Growth stages of wheat, illustrating the change in the network composed of a winter wheat plant in Kansas, USA (image from
Kansas State University Agricultural Experiment Station and Cooperative Extension Service (1997))
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to another, can be facilitated by wind, splashing, or
arthropod vectors. For some pathogens such as Tilletia
indica, an Allee effect, where reproduction decreases
disproportionately as other members of the same species
become rarer, will be important due to limits on the
availability of mates (Garrett and Bowden 2002). Leaf
surface features and the presence of other microbes may
influence the survival of newly arrived microbes
(Monier and Lindow 2005). Arthropod vector nodes
are also important, both for movement of microbes
and for influencing plant resistance. Sack and Holbrook
(2006) represent the plant as a simplified electronic
circuit based on water transport capacity, a network
structure relevant for microbes that use the plant
vascular system. Skirting the within-plant scale,
network models have also been applied to microbial
movement between individual plant hosts (Jeger et
al. 2007; Lamour et al. 2007; Moslonka-Lefebvre et
al. 2011), to evaluate the coexistence of plants and
epiphytes (Blick and Burns 2009), and to model
mycorrhizal networks (Southworth et al. 2005).

Plant signalling networks

In within-plant networks, information moves in the
form of hormones and other molecules that signal
biotic and abiotic stressors. The plant immune system
can recognize pathogen molecules and activate a
defence signalling network including a number of
small-molecule hormones (Pieterse et al. 2009).
This set of different hormones offers the potential
for plants to present a range of different responses
to microbes. Systemic acquired resistance utilizes
the signal molecule salicylic acid (Durrant and
Dong 2004). Signal molecules such as salicylic
acid, jasmonic acid, and ethylene may function as
part of complex networks, where there may be
inhibition between signalling dependent on the different
molecules (Glazebrook et al. 2003). As a generality,
necrotrophic pathogens may be limited by defence
responses from jasmonic acid and ethylene signalling,
while biotrophic pathogens may be limited by responses
from salicylic acid signalling (Glazebrook 2005).
Growth and development are influenced by hormones
such as auxin, cytokinin, gibberellin, and brassinoste-
roid, and these may also respond to stresses. More types
of plant signalling interactions and forms continue to be
recognized (Tsuda et al. 2009). Due to the modular
structure of many plant species, these hormones
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influence the form of the within-plant network in
terms of the number of nodes present and distances
between nodes (Wolters and Jurgens 2009). Cross-
talk between hormones can make the impact of
hormonal concentrations more complex (Bostock
2005). Crosstalk can also occur between tissues,
and could be incorporated into network models at
the appropriate scale to study the effects of spatial
structure. Between individual plants, volatile che-
micals may alert plants to herbivore attacks on their
neighbours so that they can activate their own
defence systems (Baldwin et al. 20006).

Microbes may influence plant hormones and other
forms of signalling for heightened susceptibility or
resistance in a number of ways. Microbial processes
include pathogenicity, disease suppression by biolo-
gical control agents, and growth promotion. Associa-
tions with mycorrhizal fungi and endophytes may
influence plant susceptibility to disease through mech-
anisms that are not always well-understood. Through
their effects on plant processes such as induced and
acquired resistance, microbes may influence resistance
to their own or other species. RNA silencing as a
response to viruses is another process by which plant
resistance is altered in an effect that moves across
plant organs. In some cases, microbes can manipulate
plant signalling networks to disrupt phytohormone ba-
lance and so the plant immune response (Pieterse et al.
2009). Pathogens such as Pseudomonas syringae can
manipulate plant defence systems through systemic
induced susceptibility (Cui et al. 2005). Plants may
select for microbes that provide benefits such as
growth promotion and disease suppression (Smith
and Goodman 1999).

Microbial signalling networks and environmental
effects

The influence of microbes moves through within-plant
networks through the presence of microbial cells,
through influence on plant signalling and plant health
or disease, and also through microbial signalling
molecules that affect the development of microbial
communities. Microbes can modify their group be-
havior through intercellular communication net-
works using small signal molecules (Atkinson and
Williams 2009). When the concentration of signal
molecules passes a threshold, gene expression is
altered. Many bacteria modify their phenotypes in
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response to these signals, which may result in greater
fitness for the current conditions. Communication
across species in different kingdoms can induce these
changes, which may or may not be adaptive for all the
linked species. “Different bacterial species may ‘speak’
the same QS [quorum sensing] ‘language’, some may
possess sensors for specific QS signals that facilitate
eavesdropping while others may manipulate the QS
activities of neighbouring bacteria by degrading the
QS signal molecules within their locality’ (Atkinson
and Williams 2009). The production of biofilms is an
important outcome of phenotypic changes from QS,
which can enhance the survival and pathogenicity of
bacteria. Biofilms associated on leaves or root surfaces,
or in intercellular plant spaces, provide a protected
environment for bacteria (Morris and Monier 2003).
Selection for biofilm polymer secretion may change
over time, so that downregulation of polymer secretion
is beneficial at higher levels when it can favour dispersal
(Nadell et al. 2008). Thus, quorum sensing would tend
to evolve through competition in and among biofilms.
In simulations, cooperative and non-cooperative
bacterial cells tend to segregate in space, which
can support the evolution of cellular cooperation
(Nadell et al. 2010). On leaf surfaces, other epiphytes
may interfere with quorum sensing by pathogens, by
limiting the availability of essential elements such as
iron (Dulla et al. 2010). Quorum size for microbes
associated with leaves can vary with environmental
conditions, such as the availability of water (Dulla and
Lindow 2008). Rather than being mixed together on leaf
surfaces, different species of microbial epiphytes may
tend to aggregate, and aggregation can lead to enhanced
survival (Monier and Lindow 2003; Monier and
Lindow 2005). The potential for human pathogens
associated with plants to be ‘conditioned’ by signal
networking with other plant-associated microbes is an
interesting possibility that may be an important
consideration for management (Tyler and Triplett 2008).

The microenvironment has important effects, par-
ticularly on microbes on plant surfaces. In addition to
temperature, leaf surface wetness is a key factor for
epiphytic communities (Huber and Gillespie 1992).
Microbes inside plants are relatively more buffered
from water stress, but are still exposed to ambient
temperatures (in contrast to pathogens of warm-
blooded animals). In many cropping systems,
microenvironments, with all their impacts on net-
work processes, will change over time as canopies

close. Climate change may have profound effects
on plant disease risk that scale from gene networks
through mesoscale networks to epidemic networks
(Garrett et al. 2006; Pautasso et al. 2010).

Within-plant information networks and plant disease

A model of within-host information networks related
to plant disease might include the elements illustrated
in Fig. 4. In this diagram, links join plant nodes, where
nodes might be cells or organs, or potentially arthro-
pod vectors. At each node, four main factors interact
to determine the role that that node will play in the
larger network. (1) Plant signals and development
stage at the node will determine what microbial com-
munities are supported, and will also determine the
form of the network linked to the node in the future
through their influence on plant growth. Plant signal-
ling is an analog to human information for decision-
making in comparison with Fig. 2. (2) Microbial in-
formation through signalling at this node will help to
determine what microbes are present, whether they
are pathogenic, and how their populations will
change. (3) Environmental conditions will influence
all processes. (4) The current microbial communities,
themselves, and disease status, will directly affect the
probability of disease movement from this node.
Different pathogens may have different niches within
a host, such as niches based on how close leaves are
to senescence (Al-Naimi et al. 2005). The form of
interaction between microbes and host can change as a
function of the host life-cycle stage and environmental
condition, where microbes may change from

Microbialcommunities
& plant disease status

/

Plant signals and
developmental stage

‘ Microbial signals

Plant node 3,
L)

Fig. 4 Nodes and links within a plant, where nodes might be
cells or organs (leaves, roots, flowers)

.
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beneficial to detrimental to plants depending on these
conditions (Newton et al. 2010), and plants will vary
in the quality of environment they provide to
microbes. Between each pair of nodes, there may be
a nonzero rate of influence for three of these factors.
As for larger networks, rates are not necessarily related
to the Euclidean distance between nodes. (1) Microbes
may move across plant surfaces or among plant cells,
or be vectored by arthropods. (2) Microbial signals
move between nodes, impacting processes beyond
the immediate location of the microbes that produced
them. (3) Plant signals similarly move beyond the
immediate location of biotic stressors to influence
plant-microbe interactions. Network models could in-
clude both directed and undirected components, in that
movement between some nodes will be approximately
equally likely in both directions, while movement
between other nodes will be directional. For example,
movement through phloem and xylem will often tend
to be more directional, while the direction of move-
ment of epiphytic microbes by rain splashing may be
closer to random. A synthetic model of information
networks within plants might include analysis of plant
responses to stressors in the form of receiver operation
characteristic (ROC) curves, evaluating whether a
plant’s response to a stressor is adaptive or non-
adaptive. A synthetic model could address the struc-
ture of plants first in the context of their inherent
structure, and its changes over time, and then in terms
of the other ways that their components may be linked
by air, water, and arthropod vectors.

Considering the full range of types of information
flows in within-host networks will be a challenge, but
would provide a number of benefits for plant disease
management. Understanding of phenomena such as
changes in the efficacy of resistance genes with
temperature (Webb et al. 2010) will benefit from a
more complete characterization of these within-plant
networks. Clarification of these processes will also
inform analysis of the evolution of plant network
structure. There are trade-offs for plants, in that
well-connected plant components may contribute
to plant fitness in many ways, but also offer advantages
to pathogens. This is analogous to ‘single large’ or
‘several small” debates regarding nature reserves: large
reserves are beneficial for most processes that benefit
from connectivity, but multiple less connected reserves
help to slow pathogen movement. Connectivity is a
larger scale measure of network cohesion. In plant
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networks where some nodes may be quite distant
compared to the size of a microbe, dispersal by air,
water, or arthropod vectors can add links between
the distant nodes to result in a small world scenario.
Similarly, movement within plants may be more
cohesive when it involves the plant vascular system.

New questions to be addressed

Formulating and estimating parameters for within-host
network models will help to address questions such as
the following.

1. Which types of interactions are most important,
such that multi-factor experiments are necessary
for understanding those system components?

2. Asthe model incorporates more and more biological
features, at what point are there so many interactions
that outcomes are unpredictable? Conversely, if
fewer and fewer features are included, at what
point do outcomes become predictable?

3. How do the results change with the scale of model
considered? How can smaller scale processes best be
used to predict larger scale processes, and vice versa?

4. If signalling is disrupted through a management
intervention, when must the disruption occur and
what degree of disruption is necessary for the
approach to be effective and efficient? What min-
imal and optimal spatial patterns for disruption are
needed?

5. What are the relative magnitudes of effects?
Under what circumstances can the abiotic envi-
ronment override the effects of microbial or
plant communication?

6. What forms of engineering of plant resistance
related to signalling may be most effective? How
may crosstalk and buffering of signals through gene
redundancy influence attempts to achieve results
based on engineering small numbers of genes?

7. What are optimal sampling schemes to characterize
these networks?

8. Are there emergent properties such that initially
small changes in the system propagate to produce
large changes?

Commonalities and impact

Evaluating the impact of research networks in the
context of human information and within-plant
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networks can produce an interesting hall of mirrors.
Agricultural economists have often used supply and
demand models of commodity markets in the analysis
of agricultural research impacts, where decreases in the
price of commodities and increases in consumption are
one measure of success (Alston et al. 2009). Evaluation
of benefits for producers is another element. Attributing
the source of improvements is a problem because of the
frequently long time-lag between research effort and
benefit, as is dealing with ‘spillover’ benefits for sys-
tems that were not the original targets of the research
(Alston et al. 2009). Ekboir (2003) argued that research
impacts should be analyzed by treating the link between
research and adoption of new products of research as a
complex adaptive system. From this perspective, re-
search impacts come about because of the whole net-
work and it is the network that can be evaluated.
Returning to ideas from game theory, the research net-
work may be more or less successful as a function of the
costs and benefits of participation in the network.
Ekboir (2003) discusses the idea of a national innova-
tion system (NIS) ‘composed by all agents involved in
the innovation process, their actions, interactions and
the formal and informal rules that regulate the system’
as formulated by the Organisation for Economic Co-
operation and Development, where networks of
agents develop technologies. Lack of sufficient con-
nections between research networks and extension net-
works in NISs can reduce research impacts (Green et al.
2009; Shanley and Lopez 2009). Ekboir’s (2003)
conclusion is that increased research impacts result
not from management of the research process but
from providing conditions for effectively linking
research institutions in innovation networks.
Systems biology in its broader sense can address
the type of multi-scale modelling issues suggested by
comparison of human information networks and
within-host networks. Scaling is a challenge for
models of epidemics, where new types of structures
may be encountered at higher scales (Kleczkowski
et al. 1997). Linking mesoscale models of within-
plant epidemics and their associated experiments
into the context of field-scale and larger epidemics
will be an important step. New genomic tools will
facilitate this, making it possible to characterize
genotypic resistance (Rouse et al. 2011) and phenotypic
resistance (Travers et al. 2010) even in natural plant
communities such as tallgrass prairie. Network
structures from one scale may inform another. For

example, humans weight past and present informa-
tion differently, and the system of weighting may
differ from one social group to another (Johnson
and Covello 1987; Slovic et al. 2002). Are there
analogs for plant conditioning to biotic stresses,
where some plants have the strategy of weighting
the past heavier and others the present, perhaps as a
function of their life span and reproductive strategies?
Models of disease risk developed for smaller-scale
decision-making may be adapted to different scales
through approaches such as metamodelling (Sparks et
al. 2011). The level of autoinfection, or infection from
inoculum produced on the same host individual,
can have important epidemiological consequences
(Mundt 2009). Induced resistance may have impor-
tant effects that scale to influence epidemic out-
comes (Calonnec et al. 1996; Garrett et al. 2000).
The study of information networks across scales in
plant pathology will support the development of
strategies to enhance information flows that support
plant productivity, and to disrupt information flows
that contribute to disease.
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