Infectious Diseases Among College Students
Thomas A. Moore, MD, FACP, FIDSA
Clinical Professor of Medicine
UKSM-W

Outbreaks of Infectious Diseases Among College Students
• Meningococcal Disease (1990s)
• Pertussis (2002)
• Measles (2004)
• Mumps (2006)
• H1N1 (2009)
• Seasonal influenza (annually)

Infectious Diseases Among College Students
• Mono and Mono-like illnesses
• Infections from Abroad
 – Travel/study abroad
 – Foreign Students

Infectious Diseases Among College Students
• Risk factors
 – Social density
 – Facilitates transmission of respiratory pathogens
 – Agents transmitted fecal-oral less of a threat due to public health interventions (clean water, sewage treatment, HVAC)
 – Behavior
 • Now more important factor in transmission than density
 • Immunization practices

Mumps
• 2006 Outbreak
 – Several Midwest college campus outbreaks
 – ~6,000 cases (38% among 18-24 yrs)
 – Contributing factors
 • Social density
 • Lack of immunization
 • Importation from abroad (primarily GG strain from UK where outbreak had been occurring)

Mumps
• What slowed the outbreak?
 – Isolation of cases (5 days)
 – Enhanced surveillance
 – Publicity
 – Education about handwashing, cough hygiene
 – Immunization
 • Midwest college attack rate low on campuses with high vaccination rates
 • Only 25 states & DC require 2 doses of MMR
Meningococcal Disease

- Outbreaks in 1990s
- Studies demonstrated increased risk in:
 - Residents of dormitories
 - College freshmen
 - Alcohol drinkers
 - Persons with URIs

- Key intervention points
 - 1997: ACHA recommends vaccination
 - 1999: ACIP permissive recommendation
 - 2005: ACIP recommends MCV4 (new vaccine product)

Meningococcal Disease

- Manifestations
 - Rash
 - Most common = asymptomatic carriage
 - URI sx common prior to invasive disease presentation
 - Incubation 1-10 days (usually <4 days)
 - LRTI/CABP
 - Meningitis
 - Meningococcemia (purpura fulminans)
 - Other
 - Septic arthritis, pericarditis, endophthalmitis, urethritis

Meningococcal Disease

- Manifestations
 - Rash
 - Develops in >80%; often absent early in illness
 - Initially blanching (macules); later, nonblanching (petechiae or purpura)
 - Fever w/petechial rash not pathognomonic (<10% have Nm)
 - Meningitis
 - Classic signs (fever, HA, photophobia, neck stiffness)
 - 30-50% meningitis only; 40% also have meningococcemia

Meningococcal Disease

- Manifestations
 - Meningococcemia
 - 20% have this alone
 - Progression from nonspecific symptoms to death in hours
 - Nonspecific symptoms
 - Fever, HA, myalgia, vomiting, abdominal pain
 - Suggestive symptoms
 - Limb pain, cyanosis, mottling, cold hands & feet!
 - Mortality high (25-40%)
 - Morbidity higher (skin grafting, amputation, cerebral ischemia)
Infectious Mononucleosis

- EBV causes heterophile (Monospot-positive) infectious mononucleosis
 - Incubation period: 4-6 wks
 - Prodrome (1-2 wks): fatigue, malaise, myalgia
 - First 2 wks of illness:
 - Fever (93%); may last >1 month
 - Sore throat (75%)
 - Lymphadenopathy (95%)
 - Atypical lymphocytosis (100%)
 - Splenomegaly (51%); hepatomegaly (11%)
 - Rash (10%)
 - Jaundice (5%)

Mimickers of Mono
- CMV (5-10%) of all IM cases
- HIV
- Toxoplasmosis
- HHV-6
- Rubella (maculopapular rash, no splenomegaly)
- Lymphoma
- Streptococcal pharyngitis (no splenomegaly)

Bedbugs
(aka “Eww Dat”)

- Why now?
 - Common before WWII, then DDT
 - Ant/cockroach bait traps rather than insecticide sprays
 - NOT indicative of poor hygiene or bad housekeeping
- Who?
 - Humans preferred but not required

Bedbugs

- Developmental time (egg to adult):
 - 86 °F = 21 days
 - 65 °F = 120 days
- Each molt requires a blood meal
- Nymphs and adults can live several months without eating (adults can live up to 18 months without food)

Bedbugs

- Feed mostly at night; bite is painless
- Salivary fluid containing an anticoagulant injected; this is irritant
- Feeding lasts 3 mins (nymphs) to 15 mins (adults)
- Once fed, they crawl away and hide in dark, protected sites—prefer wood, fabric, paper surfaces near bed
Bedbugs

- Rows of ≥3 welts on exposed skin are characteristic of bedbugs
 - (Flea bites have red spot in the center)

Bedbugs

- Signs of infestation:
 - Live insects
 - Fecal material
 - Cast skins

Bedbugs

- Treatment
 - Topical steroids
 - Oral antihistamines

- Prevention
 - Inspection
 - Sanitation (put vacuum bag in plastic)
 - Trapping (plastic over mattress >1 yr)
 - Insecticides

MRSA--SSTI

- Abscess
 - Incision and drainage (AII).
 - No difference in outcomes with antibiotic
 - RCT of patients with MRSA abscesses; cure rates:
 - Cephalexin (84.1%) vs. Placebo (90.5%)²
 - Treatment reserved for systemic symptoms, severe local symptoms, immunosuppression, extremes of age, critical location (e.g., face), and failure to respond to I&D

MRSA--SSTI

- Recurrences
 - Preventive educational measures that focus on appropriate wound care/personal hygiene are recommended (AIII):
 - Keep draining wounds covered (AIII)
 - Maintain good personal & hand hygiene (AII)
 - Avoid reusing/sharing personal items & linens that contact infected skin
 - Educational measures that focus on environmental hygiene should be considered (BIII):
 - Focus cleaning efforts on surfaces that may contact bare skin or uncovered infection (AIII)
MRSA--SSTI

- Decolonization
 - Indicated if recurrent SSTI or ongoing transmission among household members or other close contacts despite optimizing wound care and hygiene measures (CIII)
 - Should be offered in conjunction with ongoing reinforcement of hygiene measures:
 - Nasal decolonization with mupirocin NOT effective (CI)
 - Cluster-randomized, double-blinded, placebo-controlled trial of CA-MRSA colonized soldiers = decrease in nasal colonization, but NO DECREASE IN INFECTION RATES¹
 - Body decolonization: chlorhexidine or dilute bleach baths (CIII)
 - Oral antibiotics are NOT recommended (AIII)
 - Ellis MW, AAC 2007

Case

- 24 yo college student presents to the ER with 2 day history of rigors, fever (102 °F), and sweats that developed on return trip from Ghana
- Exam: nonfocal; appears “washed out” but not acutely ill
- Labs:
 - WBC normal; Hgb 12.5; plt 100k
 - CMP: tbili 1.5, otherwise normal

Malaria

- *Plasmodium* species
 - *P. falciparum* (Pf)
 - *P. vivax*
 - *P. ovale*
 - *P. malariae*
 - *P. knowlesi*
- Transmitted by female *Anopheles* mosquito
- Most cases in USA imported

Malaria

- Imported malaria
 - Increased travel
 - >1,000 cases/year in USA and rising; most *P. falciparum*
 - Risk factors for mortality
 - Age, comorbidities
 - Inadequate or incorrect pre-travel advice (VFR)
 - Lack of compliance (overseas advice)
 - Increased drug resistance
 - Lack of recognition of the disease
 - Delays and inaccuracies in lab diagnosis

Malaria: Signs & Symptoms

- **FEVER!**
 - Favor malaria: Do NOT favor malaria
 - True rigors: Skin rash
 - Splenomegaly: Diffuse abdominal pain
 - Abnormal CBC: Eosinophilia
 - Hyperlipidemia: Acute joint swelling
 - Elevated transaminases: Lymphadenopathy
 - May be seen in malaria:
 - Headache, myalgias, cough, N/V, diarrhea
 - Presentation may be atypical in semi-immune & with prior chemoprophylaxis and/or abs (e.g., doxy, azithro, clinda, T/S)

Malaria: Diagnosis

- Traditional:
 - Thick film: used for diagnosis
 - Thin film: used for speciation
- Rapid detection tests (RDTs)
 - Consistently better than blood films in all studies
 - Only 0.5% false-positive (e.g., RF)
 - Rarely false-negative (proztoine, HRP2 gene deletions, very low Ag levels)
 - N.B.: after Rx, antigenemia ≠ parasitemia