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ABSTRACT 

We investigated the influence of anthropogenic threats and hydrologic alteration on fish 

assemblages within the Lower Colorado River Basin (LCRB).  Life history traits of fish 

assemblages for individual stream segments were summarized by presence/absence data of 

current (1980-2006) records.  To assess anthropogenic threats, we developed a series of 

ecological risk indices at various scales (e.g., catchment, watershed, aquatic ecological system 

and upstream of aquatic ecological system) and related each index to fish life-history traits to 

determine the method and scale that best relates to biotic metrics.  Hydrologic alteration was 

quantified using the Indicators of Hydrologic Alteration (IHA) software to calculate hydrologic 

alteration values using the range of variability approach (RVA).  Ecological risk indices within 

all scales were strongly correlated (r
2
>0.54, p<0.0001) to one another.  Relationships between 

fish life history traits and ecological risk indices occurred only at the catchment and watershed 

scales.  Strongest relationships were at the watershed scale where increased levels of 

anthropogenic risk were related to reduced occurrences of native, fluvial dependent species 

(r
2
=0.12, p<0.0001) and increased occurrences of nonnative generalist species (r

2
=0.22, 

p<0.0001).  The percent agriculture was positively related to indices of alteration of low flows 

(r=0.401, p=0.006) while forested land cover was negatively related to alteration of low flow 

events (r=-0.384, p=0.008).  Relationships between indices of hydrologic alteration and fish 

traits indicate the occurrence of piscivorous, nonnative fishes increased with alteration of low 

flow events whereas occurrence of fluvial dependent fishes that preferred rubble substrate 

decreased with alteration of low flow events (r=0.64, p=0.001).  Our analysis suggests that 

ecological risk indices and hydrologic alteration in the LCRB are related to composition of biotic 



 

 

communities.  Incorporating cost-effective risk indices into conservation planning will likely 

increase the effectiveness of conservation efforts while understanding biotic responses to 

modified flow regimes are a necessity in sustainable development of water resources as human 

populations grow and water resources decrease in the LCRB.



iv 

 

TABLE OF CONTENTS 

 

LIST OF TABLES......................................................................................................................... vi 

LIST OF FIGURES ..................................................................................................................... viii 

ACKNOWLEDGEMENTS............................................................................................................ x 

Chapter 1 - Assessing threats to native fishes of the Lower Colorado River Basin: development 

and assessment of ecological risk indices....................................................................................... 1 

Abstract ................................................................................................................................... 1 

Introduction............................................................................................................................. 2 

Methods................................................................................................................................... 4 

Site description.................................................................................................................... 4 

Stressor data ....................................................................................................................... 4 

Ecological Risk Index Methodology ................................................................................... 5 

Fish data ............................................................................................................................. 7 

Data analysis ...................................................................................................................... 8 

Results..................................................................................................................................... 9 

Catchment scale .................................................................................................................. 9 

Watershed scale ................................................................................................................ 11 

Aquatic Ecological System (AES) scale ............................................................................ 13 

Upstream of Aquatic Ecological System (AESUP) scale ................................................... 14 

Discussion ............................................................................................................................. 15 

Literature Cited ..................................................................................................................... 21 

Tables and Figures ................................................................................................................ 27 

Chapter 2 - Alteration of flow regime and its effects of fish assemblages in the Lower Colorado 

River Basin.................................................................................................................................... 45 

Abstract ................................................................................................................................. 45 

Introduction........................................................................................................................... 46 

Methods................................................................................................................................. 48 

Site Description................................................................................................................. 48 

Data collection.................................................................................................................. 49 



 

v 

 

Range of Variability Approach ......................................................................................... 51 

Data Analysis .................................................................................................................... 52 

Results................................................................................................................................... 53 

Discussion ............................................................................................................................. 56 

Alteration by basin ............................................................................................................ 56 

Landscape sources of hydrologic alteration..................................................................... 57 

Influence of alteration on fish assemblages...................................................................... 59 

Literature Cited ..................................................................................................................... 63 

Tables and Figures ................................................................................................................ 72 

Appendix A.  Description of Indicators of Hydrologic Alteration variables used in this analysis.

....................................................................................................................................................... 84 

 



 

vi 

 

LIST OF TABLES 

Table 1.1  Sources of spatial data for anthropogenic stressors used to derive ecological risk 

indices for the Lower Colorado River Basin. ............................................................. 27 

 

Table 1.2.  Summary of severity scores by the ecological integrity categories (Karr 1991).  

Weighted severity scores are based upon peer-reviewed literature whereas equal 

severity scores were assigned on the assumption that all stressors have equal 

influence.  A score of zero suggests no influence whereas a score of 3 suggests severe 

influence on the variable of ecological integrity.  Values are summed across 

ecological integrity variables to produce the weighted severity score. ...................... 28 

 

Table 1.3.  Breakdown of density-weighted frequency scores at the catchment scale. ................ 29 

 

Table 1.4.  Summary of the mean and range of stressor densities at the four scales used to 

calculate the density-weighted ecological risk indices in the Lower Colorado River 

basin. ........................................................................................................................... 30 

 

Table 1.5.  Analysis of covariance results of relationships between risk indices and fish trait PC 

axes with stream order (at catchment and watershed scales only) and basin as 

covariates.  Mean and range of standardized risk values for each index are listed as 

we ll.  Significance levels were adjusted with a Bonferroni correction at each scale 

(α=0.05/12 or 0.004), with bolded P-values as significant after correction................ 31 

 

Table 1.6.  Linear regression statistics of regressing each risk assessment method with each other 

at four different spatial scales.  A slope of 1.0 indicates indices produce similar risk 

values.  High r2 values would indicate that the two indices were highly related, even 

if the slope may not be close to 1.0.  Samples sizes are 73,078 for the catchment 

scale, 36,379 for the watershed scale, 386 for the AES scale, and 197 for the upstream 

AES scale.  All tests were significant (p<0.0001). ..................................................... 32 

 

Table 2.1.  Hydrologic indices calculated using Indicators of Hydrologic Alteration software 

representing all five flow components (in bold), calculated for historic and current 

(1986-2006) periods of time for 48 gage stations in the Lower Colorado River Basin.

..................................................................................................................................... 72 

 

Table 2.2.  Number of total gage stations and gage stations with fish data by sub-basin for data in 

the Lower Colorado River Basin.  Fish data include samples from 1986-2006. ........ 73 

 

Table 2.3.  Principal component (PC) loadings from principal component analysis of 33 

hydrologic alteration variables from 48 gage stations throughout the Lower Colorado 

River Basin.  Variable loadings with absolute values >|0.25| in bold. ....................... 74 

 



 

vii 

 

Table 2.4.  Native (N) and nonnative (I) fish species in the Lower Colorado River Basin used in 

analysis........................................................................................................................ 75 

 

Table 2.5.  Principal component (PC) loadings from principal component analysis of 16 life 

history variables from 24 gage stations throughout the Lower Colorado River Basin.  

Variable loadings with absolute values > |0.25| in bold. ............................................ 76 

 



 

viii 

 

LIST OF FIGURES 

Figure 1.1.  The geographic location of the Lower Colorado River Basin with major river basins 

shaded and labeled.  Major rivers are highlighted in white, major cities are denoted 

with black triangles and states by background lines. ............................................... 33 

 

Figure 1.2.  Catchment and watershed scale for an individual stream segment of interest. ......... 34 

 

Figure 1.3. Lower Colorado River Basin delineated by the 386 aquatic ecological 

systems (AES) boundaries. ...................................................................................... 35 

 

Figure 1.4.  Schematic for developing the four ecological risk indices created for each of four 

scales within the Lower Colorado River Basin.  Severity scores are multiplied by 

frequency scores to generate risk values.  Each index uses different methods for 

quantifying risk from the same raw spatial data. ..................................................... 36 

 

Figure 1.5.  Two methods for quantifying frequency scores.  The large circles represent the 

spatial unit of analysis (e.g., catchment) while the small circles represent a single 

point stressor (e.g., mine).  Presence/absence scores are based on presence of a 

stressor while density-weighted frequency scores are based on equal quartiles of the 

density of the stressor............................................................................................... 37 

 

Figure 1.6.  Ecological risk values at the catchment scale for the Lower Colorado River Basin.  

Major rivers are outlined in black.  Index methods are noted on the left-hand side 

and top of maps. ....................................................................................................... 38 

 

Figure 1.7.  Fish trait principal components analysis results showing the first two principal 

components used for the catchment and watershed scales.  Fishes that scored high 

on PC I include fathead minnow and common carp whereas fishes that scored high 

on PC II include desert sucker and Sonora sucker.  Stream segments are color-

coded by risk according to the severity-weighted x density-weighted index at the 

watershed scale. ....................................................................................................... 39 

 

Figure 1.8.  Linear regressions between risk indices at the catchment scale and fish trait PC III.  

Fish species scoring high on PC III included rainbow and brown trout and fishes 

scoring low on PC III included western mosquitofish.  Sample size for all analyses 

was 1,718. ................................................................................................................ 40 

 

Figure 1.9.  Ecological risk values at the watershed scale of the Lower Colorado River Basin.  

Index methods are noted on left-hand side and top of maps.................................... 41 

 

Figure 10.  Linear regressions between risk indices at the watershed scale and fish trait PC I.  

Fish species scoring high on PC I include fathead minnow and common carp....... 42 

 



 

ix 

 

Figure 1.11.  Ecological risk values at the AES scale for the Lower Colorado River Basin.  Major 

rivers are outlined in white.  Index methods are noted on the left-hand side and top 

of maps..................................................................................................................... 43 

 

Figure 1.12.  Ecological risk values at the upstream of AES scale for the Lower Colorado River 

Basin.  Major rivers are outlined in white.  Index methods are noted on the left-hand 

side and top of maps. ............................................................................................... 44 

 

Figure 2.1.  The geographic location of the Lower Colorado River Basin.  Major watersheds 

within the basin are denoted by shading and labels, cities by black triangles and 

major rivers in white. ............................................................................................... 77 

 

Figure 2.2.  An example of the range of variability approach for average June discharge over 

time at a gage station on the Lower Colorado River within the Grand Canyon.  The 

high bar represents the 75th percentile for the historic period whereas low bar 

represents the 25
th

 percentile for the historic period.  This example shows extreme 

hydrologic alteration as no current records occurred within the 25
th

 and 75
th

 

percentiles of the historic period.............................................................................. 78 

 

Figure 2.3.  The 48 gage stations within the Lower Colorado River Basin with highly greatest 

altered sites in black and least altered sites in white.  Rankings (i.e., low, high) were 

based on hydrologic alteration principal component scores.  The 24 gage stations 

with fish records are symbolized with diamonds..................................................... 79 

 

Figure 2.4.  Mean hydrologic alteration principal component (PC) scores by sub-basin of the 

Lower Colorado River Basin.  Higher PC scores suggest more alteration of the 

variables represented by that PC axis.  Error bars represent 1 standard error. ........ 80 

 

Figure 2.5.  Spearman rank correlations between hydrologic alteration principal component (PC) 

axes and landscape-level sources of hydrologic alteration at the watershed scale.  

Hydrologic alteration PC1 represents an index of alteration of low flows while PC3 

represents an index of alteration of low flows and rates of change. ........................ 82 

 

Figure 2.6.  Regression results between hydrologic alteration principal components (PC) scores 

and life history PC scores.  Fish species which scored high on PCLH2 included 

flathead catfish, northern pike and largemouth bass whereas fish species which 

scored low on the axis included rainbow trout, brown trout, speckled dace and loach 

minnow. ................................................................................................................... 83 

 



 

x 

 

ACKNOWLEDGEMENTS 

 This work would not have been possible without the strong mentoring of my advisor, Dr. 

Craig Paukert.  To him, I extend immense gratitude for his statistical knowledge and 

brainstorming abilities, as well as for his friendship and support throughout the past two years.  I 

also thank Jodi Whittier for her friendship, patience, and technical assistance with GIS and the 

Lower Colorado River Basin Aquatic Gap Analysis Project databases.   

 Many thanks go to the faculty, staff and students whom I have worked with at Kansas 

State University.  My knowledge and experience base has expanded thanks to the Kansas State 

University Aquatic Journal Club, faculty members including Dr. Walter Dodds, my coursework 

and teaching responsibilities.  I thank my committee members, Dr. Keith Gido and Dr. Julian 

Olden, for their comments on an earlier version of this document.   

 I thank all fellow graduate students with whom I have created lasting friendships, 

including Wes Bouska, Jeff Eitzmann, Jesse Fischer, Andy Makinster, Alyssa Riley, Josh 

Schloesser, Andrea Severson, and Darren Thornbrugh.  The positive and entertaining working 

environment provided by these students and others has helped me accomplish my goals.  

 I would like to acknowledge the USGS Gap Analysis Program for the funding of this 

research.  Special thanks goes to all state and federal agencies, universities and NGOs which 

have contributed data and knowledge to the Lower Colorado River Basin Aquatic Gap Analysis 

Project.  I also thank Brad Schmidt for assistance with database management.   

 I thank my family and close friends for their support and encouragement throughout the 

last two years and beyond.  I thank my dog, Bela, who has served as a dependable and enjoyable 



 

xi 

 

distraction from work.  I am extremely thankful to my mother and father, Mattie and Doug Pitts, 

for much more than words can say, therefore I dedicate this work to them.



1 

Chapter 1 - Assessing threats to native fishes of the Lower Colorado River 

Basin: development and assessment of ecological risk indices 

Abstract 

Anthropogenic disturbances often influence biotic communities but are rarely 

incorporated into conservation planning due to the difficulty in quantifying associated risk to 

biota.  We developed a series of ecological risk indices at various scales (e.g., catchment, 

watershed, aquatic ecological system and upstream of aquatic ecological system) for the Lower 

Colorado River Basin and related each index to fish life-history traits to determine the method 

and scale that best relates to biotic metrics.  Four different ecological risk indices were developed 

using severity and density weightings of individual stressors (e.g., agricultural land use, canals, 

dams, etc.).  Ecological risk indices within all scales were strongly correlated (r
2
>0.54, 

p<0.0001) to one another.  Relationships between fish life history traits and ecological risk 

indices occurred only at the catchment and watershed scales.  Strongest relationships were at the 

watershed scale where increased levels of anthropogenic risk were related to reduced occurrence 

of native, fluvial dependent species (r
2
=0.12, p<0.0001) and increased occurrence of nonnative 

generalist species (r
2
=0.22, p<0.0001).  Our analysis suggests that ecological risk indices are 

related to biotic communities (fish traits) and therefore are applicable for prioritizing areas for 

native fish conservation, but the spatial scale of risk index development is important.  

Incorporating cost-effective risk indices into conservation planning will likely increase the 

effectiveness of conservation efforts.   
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Introduction 

It is estimated that 68% of all freshwater mussel species, 51% of crayfish species, 40% of 

amphibian species, and 39% of freshwater fish species in the United States are considered 

vulnerable, imperiled, critically imperiled, or presumed extinct (Master et al. 1998).  Efforts to 

manage and conserve these species often focus on maintaining the natural physical, chemical, 

and biological processes within ecosystems (Abell et al. 2000).  Although well-intentioned, 

conservation planning efforts rarely integrate landscape-level anthropogenic threats that may 

significantly alter the ecosystem (Mattson and Angermeier 2007).  While restoration of 

ecological processes is vital in successful freshwater conservation, conservation priorities will 

likely prove to be more effective by recognizing and assessing the role of anthropogenic stressors 

in an ecosystem (Cowx 2002; Groves 2003). 

 Rivers naturally collect surface water from surrounding land and therefore incorporate 

landscape influences at multiple spatial scales (Allan 2004).  Numerous landscape influences 

have been implicated as sources of stress to biotic assemblages throughout the U.S.  Among 

these, agricultural land use, municipal land use, exotic species, impoundments, land use change, 

channelization and hydropower generation have greatly contributed to the imperilment of aquatic 

biota (Richter et al 1997; Wilcove et al. 1998; Cowx and Collares-Pereira 2002).    

There have been increased efforts to quantify risk associated with stressors because of the 

increased availability of large-scale datasets and the ability to delineate stream reaches and 

associated catchments.  The ecological risk index (ERI; Mattson and Angermeier 2007) 

combines risk-based components (i.e. frequency and severity of stress sources) with biotic 

drivers to produce relative risks for watersheds.  The ERI weights individual stressors by their 

severity, or impact on ecological integrity (i.e., flow regime, physical habitat, water quality, 
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energy sources, and biotic interactions; Karr 1991) and frequency.  The human-threat index 

(HTI), created by Sowa et al. (2007), generated relative rankings for 11 uncorrelated measures of 

human disturbance to produce a composite three-digit number reflecting individual and 

cumulative disturbances.  Wang and others (2008) developed a disturbance index by first 

assessing influence of disturbances on fish assemblages and then using that influence as 

weighting factors to produce overall disturbance values.  These efforts suggest that threat 

assessments may be useful tools for aquatic conservation. 

These indices have been created as relatively cost-effective tools for conservation 

management, but have not been tested or validated to determine the fish community response to 

stressors (but see Wang et al. 2008).  Because one measure of an index’s utility is its response to 

various metrics, there is a need to evaluate the risk indices to determine if there are relationships 

with measures of ecological health.  The Lower Colorado River Basin (LCRB) is an ideal region 

to test risk indices because of the large database of fish records and the increasing need for 

conservation measures to ensure the persistence of native fishes in the midst of highly altered 

fish communities (Rahel 2000; Mueller and Marsh 2002).  The large area of the LCRB and the 

extensive fish records for the region should allow an evaluation of whether risk indices are an 

effective tool in targeting high and/or low risk locations for native fish species.  If effective, risk 

indices would allow locations within the LCRB to be assessed for conservation practicality, 

based on current risk.  Application of an effective risk index would also allow conservation 

managers, planners and policy makers to assess the current set of threats and native fish presence 

while considering future threat projections. 

The first objective of this study is to develop a suite of ecological risk indices which 

quantify risk from anthropogenic threats at various spatial scales.  This objective involves 
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developing methods of transferring raw spatial data into risk values.  The second objective is to 

compare results of these various risk indices to one another.  This objective seeks to qualitatively 

disclose strengths and weaknesses of each method and scale.  The final objective is to assess the 

usefulness of risk indices by relating risk to current fish distributions.   

Methods 

Site description 

The LCRB drains 362,750 km² within the state boundaries the Arizona, California, New 

Mexico, Utah and Nevada, USA (Figure 1; Blinn and Poff 2005).  Beginning below the 

confluence of Paria River in northeastern Arizona, the LCRB includes all tributaries flowing into 

the Colorado River thereafter, encompassing 26,000 km of stream (Blinn and Poff 2005; Olden 

and Poff 2005).  Major tributaries to the Lower Colorado River include the Gila, Virgin, Bill 

Williams and Little Colorado rivers (Figure 1.1). 

Stressor data 

Anthropogenic stressors were selected based on their known influence on aquatic species 

assemblages and availability of spatial data.  Stressors included canals, dams (>2 m high) , roads, 

railroads, stream crossings, diversions (including rights and claims under public water codes), 

urban and agricultural land use, mines, non-point discharge elimination system permitted sites 

(NPDES), waste facilities (i.e., Superfund sites, toxic release inventory sites and hazardous waste 

facilities), and EPA-sanctioned 303d impaired stream classifications.  Spatial stressor data were 

collected primarily from state and federal agencies (Table 1.1).   

Stressor data were summarized at four spatial scales: 1) catchment; 2) watershed; 3) 

aquatic ecological system (AES); and 4) upstream of the AES (AESUP).  Catchment scale 
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included all land draining into an individual stream segment.  Watershed scale included all land 

draining into upstream reaches of an individual stream segment (Figure 1.2).  Aquatic ecological 

systems are broad-scale regions reflecting distinct biological communities and are delineated 

using abiotic factors within a zoogeographic context (Figure 1.3; Higgins et al. 2005; Sowa et al. 

2007; Whittier et al. 2008).  The upstream of AES scale includes all land draining into upstream 

reaches of AES boundaries.   

Ecological Risk Index Methodology  

 Methods used to quantify risk indices were based upon published risk indices (Mattson 

and Angermeier 2007; Sowa et al. 2007) and were created using a two tier hierarchical 

framework (see below).  First, spatial stressor data were converted to density at each scale.  Point 

stressor (i.e., mines, NPDES sites, waste facilities, diversions, and stream crossings) density was 

calculated as number of stressors per square km of the spatial unit (i.e., catchment).  For linear 

stressors (i.e., roads, railroads, canals, and 303d streams), density was calculated as length (m) of 

the stressor per square km of the spatial unit.  Land cover (i.e., urban and agriculture) density 

was calculated as square km of the land cover category per square km of the spatial unit.  Dam 

density was calculated as total storage area (square m) per square km of the spatial unit.   

The first tier of the hierarchical framework included two classes of severity; 1) weighted 

scores based on ecological impact of stressors and 2) all stressors having equal severity (Figure 

1.4).  For the ecological impact method of calculating severity, all stressors were weighted, using 

peer-reviewed literature, on their potential impact to the various aspects of ecological integrity 

(i.e., habitat quality, water quality, biotic interactions, energy, and flow regime; Karr 1991; Table 

1.2).  Each measure of ecological integrity was scored between 0-3; with a score of zero 

suggesting little influence and a score of three suggesting major influence (Mattson and 
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Angermeier 2007).  The scores were then summed across all ecological integrity variables to 

produce one severity score for each stressor.  The equal severity method gave each stressor equal 

weighting which would suggest all stressors have equal impact (Table 1.2). 

The second tier of the hierarchical framework included two classes of stressor frequency; 

1) binary scores representing presence/absence of a stressor and 2) scores representing relative 

density of the stressor (Figure 1.3).  For the presence/absence method, each stressor was 

determined to be present or absent in the spatial unit of interest (e.g., catchment, AES, etc.).  For 

example, if the spatial unit examined had no mines within its boundaries, it would have a score 

of zero for frequency of mines (Figure 1.5).  However, if the spatial unit had mines within its 

boundaries, regardless of density, it would have a score of one for frequency of mines.  The 

second method of quantifying frequency accounts for relative density of each stressor.  Under 

this method, all spatial units having a density of zero for a particular stressor have a score of zero 

frequency of that stressor.  With the exception of land cover, remaining spatial units are ranked 

based on four equal quartiles of the density of the stressor (not including densities of zero).  

Spatial units with high relative densities receive a higher score for the frequency of the stressor 

whereas spatial units with relatively low densities receive lower scores (Figure 1.5).  Density-

based frequency scores for urban and agricultural land cover were based on published literature 

relating stressor density to aquatic ecosystem health (Table 1.3; Wang et al. 1997; Wang et al. 

2000; Allan 2004; Wheeler et al. 2005). 

These two tiers were used to calculate an index of anthropogenic threats.  Severity scores 

(tier 1) were multiplied by frequency scores (tier 2) to generate a risk value for each stressor and 

then summed across stressors to calculate an overall risk value for each spatial unit examined.  

The four different indices calculated at each scale are: 1) Severity-weighted scores x density-
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weighted frequency scores; 2) Severity-weighted scores x presence/absence scores; 3) Equal 

severity scores x density-weighted frequency scores and 4) Equal severity scores x 

presence/absence scores (Figure 1.4) and represent four different approaches to quantify risk 

using the same raw stressor data.  These four indices were calculated for each spatial scale.     

Fish data 

We used fish species presence/absence to determine if any of the 16 calculated stressor 

indices were related to fish assemblage structure.  Recent (1980 – 2006) fish collections were 

obtained from the LCRB Aquatic Gap Analysis Project (GAP) database of over 80,000 fish 

sampling locations and 1.5 million individual fish records within the LCRB from various sources 

(e.g., Arizona Game and Fish Department, Arizona State University, US Geological Survey, 

Utah Heritage Database, US Forest Service, etc.).  Data collected included geo-referenced point 

locations (verified by agency personnel), species name, site description, and date collected.  Fish 

were sampled with various gears (e.g., hoop nets, dip nets, gill nets, minnow traps, trammel nets, 

seines and electrofishing) but electrofishing and seining accounted for 82% of all stream 

segments with recorded gear type.  Although samples were not collected for the objectives of this 

study, other studies have indicated how large, historical databases can be effectively utilized for 

similar purposes as our study (e.g., Fagan et al. 2002; Fagan et al. 2005; Olden and Poff 2005; 

Olden et al. 2006a).   

At the catchment and watershed scales, presence/absence was determined by 

summarizing the 1980-2006 records for each individual stream segment and AES.  Sampling 

events from hatcheries and ponds were removed from analysis as were fish recorded as re-

introduced but not necessarily established spawning populations.  Because LCRB encompasses a 

large area in which species assemblages may differ due to biogeographic constraints, life history 
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traits were used to allow functional comparison of sites throughout the basin (Poff and Allan 

1995; Scott and Helfman 2001).  By using life history traits instead of species, we can focus 

more on the broad natural history of the fish assemblages instead of species composition.  Life 

history characteristic data primarily came from Olden et al. (2006a) with additional species data 

collected from peer-reviewed literature and online databases (e.g., FishBase).  There were a total 

of 70 life history variables per spatial unit (i.e., catchment).  All life history variables were 

categorical (i.e., native species) therefore numerical variables (i.e., spawning temperature) were 

divided into equal thirds resulting in three categories per variable (i.e., low, medium, high).   

Data analysis  

Each of the 16 risk indices was standardized to range from 0 (low risk) to 100 (high risk) 

to compare indices.  Frequency histograms of risk values for each index at all scales were 

compared to assess distribution of risk.  Linear regression was used to assess the relationship of 

risk values between indices.  In this analysis, a slope of 1.0 would indicate the two risk indices 

were very similar. 

 Principal components analyses (PCA) were used to reduce the dimensionality of the fish 

life history characteristic data at the various scales.  These analyses used each site (e.g., 

catchment, AES) as an observation.  The PCA axes were interpreted based on the component 

loadings of each life history trait.  Variable loadings with absolute values greater than 0.20 on 

each axis were interpreted.  Analysis of covariance was used to test the relationship between risk 

indices and principal component (PC) scores with stream order (for catchment and watershed 

scales only) and river basin (refer to Figure 1.1) as covariates.  Bonferroni corrections were used 

to adjust the alpha level for multiple tests within each scale (alpha=0.05/12 or 0.004). 
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Results 

A total of 73,078 stream segments were used in our analysis at the catchment scale (mean 

area=5.1 km
2
), whereas only 36,379 stream segments were analyzed at the watershed scale 

(mean area=4,180 km
2
; i.e., there were fewer stream segments analyzed because headwater 

streams have no upstream catchments).  A total of 386 AES’ (mean area=966 km
2
) were used at 

the AES scale, and 197 AES’ had associated upstream reaches for the AESUP scale (mean 

area=38,943 km
2
; Table 1.4).  Most stressors had similar mean densities among scales (Table 

1.4).  For example, mean mine density ranged from 0.4 – 0.5 per km
2
 and mean diversions 

ranged from 0.2 – 0.3 per km
2
.  Stressors with mean densities not consistent across scales 

included dams and 303d impaired segments.  Mean dam storage size ranged from 7.4 – 201.3 

m
2
/km

2
 while mean density of 303d impaired segments ranged from 11.6 – 42.7 km/ km

2
.   

Catchment scale 

Risk values at the catchment scale were typically low throughout the basin with mean 

values ranging between 7 and 15 (Table 1.5).  Presence/absence indices tended to have greater 

risk values (range: 0-100) than density-weighted indices (range: 0-65).  Risk values were similar 

for the severity-weighted x density-weighted index and the equal severity x density-weighted 

index.  Linear regressions of the risk indices indicated no difference between indices (Table 1.6).  

However indices with the same frequency scoring method were more strongly correlated.  For 

example, values for the equal severity x presence/absence index were strongly related to values 

for the severity-weighted x presence/absence index (r
2
=0.95, slope=0.92, p<0.0001), and values 

for the equal severity x density-weighted index were strongly related to values for the severity-

weighted x density-weighted index (r
2
=0.95, slope=1.06, p<0.0001).  Values for the equal 

severity x presence/absence index were less related to values for the equal severity x density-
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weighted index (r
2
=0.78, slope=0.61, p<0.0001) as were risk values for the severity-weighted x 

presence/absence index when related to risk values for the severity-weighted x density-weighted 

index (r
2
=0.80, slope=1.34, p<0.0001).   

The greatest risk was spatially concentrated near urban centers (Figure 1.6).  The two 

density-weighted indices showed few high risk areas, primarily near Phoenix, Arizona (Salt and 

Lower Gila river basins) and Las Vegas, Nevada (mainstem Colorado River Basin).  The two 

presence/absence indices indicated high risk areas near St. George, Utah (Virgin River Basin), 

Las Vegas, Nevada (mainstem Colorado River Basin), Phoenix, Arizona (Salt and Lower Gila 

river basins), downstream of Tucson, Arizona (Santa Cruz River Basin) and large sections of the 

southern half of the LCRB.   

There were 1,718 stream segments with fish data used to assess if risk scores were related 

to fish traits.  The first three axes of the fish trait PCA explained 46.6% of the variation among 

catchments.  The first PC axis explained 23.2% and had high loadings of fish considered not 

fluvial dependent, having small length of larvae and preferring low velocities and silt/mud 

substrate (Figure 1.7).  Fish species that scored high on axis one included fathead minnow 

(Pimephales promelas) and common carp (Cyprinus carpio).  The second axis explained 12.9% 

of total variation and had high loadings of fish considered to be native, benthic, 

herbivorous/detrivorous, having low maximum size, short lifespan, narrow diet breadth, low 

fecundity, high shape factor and preferring moderate velocities.  Fish species that scored high on 

axis two included woundfin (Plagopterus argentissimus), desert sucker (Catostomus clarkii) and 

Sonora sucker (Catostomus insignis).  The third axis explained 10.5% of variation and had high 

loadings of fish preferring cold temperatures, rubble substrate, moderate to fast current, having 

high maximum size, low maturity, low spawning temperature, and being external bearing, 
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pelagic spawners.  Fish species that scored high on axis three included rainbow trout 

(Oncorhynchus mykiss), brown trout (Salmo trutta), and brook trout (Salvelinus fontinalis).  Fish 

species that scored low on axis three included western mosquitofish (Gambusia affinis) and 

topminnow (Poeciliopsis occidentalis).  Results of this PCA were used for both catchment and 

watershed scales. 

 Numerous significant relationships were found between PC scores and risk indices at the 

catchment scale, however all relationships had very low predictive power based on regression 

coefficients.  Severity-weighted x density-weighted risk values were related with fish trait PCI 

(r
2
=0.0005, p=0.0003; Table 1.5) as was severity-weighted x presence/absence risk values 

(r
2
=0.0013, p=0.001).  Severity-weighted x density-weighted risk values and equal severity x 

density-weighted risk values were related with fish trait PCII (r
2
=0.0006, p=0.0002; r

2
=0.001, 

p=0.006; respectively) and PCIII (r
2
=0.07, p<0.0001; r

2
=0.07, p<0.0001; respectively; Figure 

1.8).  Both severity-weighted x presence/absence risk values and equal severity x 

presence/absence risk values were also correlated with fish trait PCII (r
2
=0.003, p<0.0001; 

r
2
<0.001, p<0.0001; respectively) and PCIII (r

2
=0.073, p<0.0001; r

2
=0.078, p<0.0001, 

respectively).  Although there were statistically significant relationships with fish PC scores and 

risk values at the catchment scale, regression coefficients were always <0.08.  

Watershed scale 

The majority of stream segments had low risk values at the watershed scale with mean 

risk values ranging from 17 to 36 (Table 1.5).  Density-weighted indices typically had lower risk 

values and narrower value ranges than presence/absence indices.  Linear regression indicated 

similar results as with catchment scale in that there was no difference between indices; however 

indices with the same frequency method were more strongly related to one another.  For 
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example, values for the equal severity x presence/absence index were strongly related to values 

for the severity-weighted x presence/absence index (r
2
=0.98, slope=1.03, p<0.0001; Table 1.6), 

and risk values for the equal severity x density-weighted index were strongly related to risk 

values for the severity-weighted x density-weighted index (r
2
=0.98, slope=1.0, p<0.0001).  

Values for the equal severity x presence/absence index were less strongly related to values for 

the equal severity x density-weighted index (r
2
=0.82, slope=0.55, p<0.0001) as were values for 

the severity-weighted x presence/absence index when related to values for the severity-weighted 

x density-weighted index (r
2
=0.82, slope=1.73, p<0.0001).   

All indices indicated greater risk in downstream stream segments (Figure 1.9).  The 

density-weighted indices show risk highest in the Virgin, Lower Gila, Santa Cruz river basins 

with portions of the Gila, mainstem Colorado and Salt river basins also having high risk 

watersheds.  The presence/absence indices show risk to be widespread throughout larger rivers 

(Figure 9).   

There were 1,519 watersheds with fish data used to assess if risk values were related to 

fish traits.  All four risk indices were significantly related to all three fish trait PC axes and 

typically had higher predictive power than at the catchment scale.  The strongest relationships 

were with fish trait PCI for the severity-weighted x density-weighted index (r
2
=0.13, p<0.0001; 

Figure 1.10), severity-weighted x presence/absence index (r
2
=0.22, p<0.0001), equal severity x 

density-weighted index (r
2
=0.15, p<0.0001) and equal severity x presence/absence index 

(r
2
=0.21, p<0.0001).  These relationships indicate that sites with increased risk were more 

associated with generalist species such as common carp and fathead minnow.  Relationships 

between risk indices and fish trait PCII were statistically significant for severity-weighted x 

density-weighted values (r
2
=0.11, p<0.0001), severity-weighted x presence/absence values 
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(r
2
=0.12, p<0.0001), equal severity x density-weighted values (r

2
=0.09, p<0.0001) and equal 

severity x presence/absence values (r
2
=0.12, p<0.0001), but had lower predictive power.  These 

relationships indicate sites with low risk being associated with species such as woundfin, desert 

sucker and Sonora sucker.  Risk indices were also significantly related to fish trait PCIII but had 

relatively low predictive power (r
2
<0.009; Table 1.6).   

Aquatic Ecological System (AES) scale 

The mean risk value of the different risk indices at the AES scale ranged from 31 to 61 

(Table 1.5).  Similar to catchment and watershed scales, density-weighted indices tended to have 

lower risk values than presence/absence indices.  Also, linear regression indicated no difference 

between indices, with stronger associations between indices with the same frequency method 

(presence/absence: r
2
=0.96, slope=1.08, p<0.0001; density-weighted: r

2
=0.97, slope=0.96, 

p<0.0001) whereas indices with different frequency treatments were less related (equal severity: 

r
2
=0.74, slope=0.80, p<0.0001; severity r

2
=0.75, slope=1.00, p<0.0001; Table 1.6). 

Density-weighted indices indicated the greatest risk to be in central Arizona near Phoenix 

(Salt River Basin) and Tucson (Santa Cruz River Basin) and Las Vegas, Nevada (northwestern 

region of the mainstem Colorado River Basin; Figure 1.11).  The presence/absence indices 

indicated widespread high risk throughout the LCRB, concentrating in the same urban areas in 

the Santa Cruz, Salt and Lower Gila river basins as well as portions of the Virgin, mainstem 

Colorado, and Verde river basins.   

There were 173 AES’ and 103 AESUP with fish data used to relate risk values to fish 

traits.  The first three axes of the PCA for the AES and upstream of AES scales explained 47.4% 

of the variation among sites.  The first axis explained 25.0% of total variation and had high 

loadings of fish which spawn on various substrates (generalist spawners) and had high length at 



 

14 

 

maturity.  Fish species that scored high on this axis included channel catfish (Ictalurus 

punctatus) and flathead catfish (Pylodictis olivaris).  The second axis explained 12.9% of total 

variation and had high loadings of fish considered to be benthic, not fluvial dependent and 

herbivorous/detrivorous, preferring cold temperatures, rubble or silt/mud substrate, moderate to 

fast currents, and having low spawning temperature.  Fish species that scored high on this axis 

included desert sucker and Sonora sucker while species scoring low on this axis included 

topminnow and western mosquitofish.  The third axis explained 9.5% of total variation and had 

high loadings of fish that preferred sand substrate and moderate current and were external 

bearing and pelagic spawning while having low maximum size, narrow diet breadth and low 

fecundity.  Fish species associated with this axis included woundfin and longfin dace (Agosia 

chrysogaster).  This PCA was used for both AES and AESUP scales. 

 At the AES scale there were no significant relationships between fish trait PC axes and 

risk indices after Bonferroni correction (Table 1.5).  The equal severity x density-weighted risk 

values tended to be related to PCII (p=0.05) and PCIII (p=0.033), and severity-weighted x 

presence/absence values tended to be related to PCI (p=0.04) and PCII (p=0.042).  However, all 

relationships had p-values greater than the Bonferroni-adjusted alpha level of 0.0004 and were 

considered non-significant.  

Upstream of Aquatic Ecological System (AESUP) scale 

Mean risk values varied from 46 to 86 among indices (Table 1.5).  Similar to all other 

scales, density-weighted indices tended to have lower risk values than presence/absence indices.  

Also similar to other scales, values for the equal severity x presence/absence index were strongly 

related to values for the severity-weighted x presence/absence index (r
2
=1.00, slope=0.98, 

p<0.0001; Table 1.6), and risk values for the equal severity x density-weighted index were 
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strongly related to risk values for the severity-weighted x density-weighted index (r
2
=0.97, 

slope=0.98, p<0.0001).  Values for the equal severity x presence/absence index were less 

strongly related to values for the equal severity x density-weighted index (r
2
=0.54, slope=0.76, 

p<0.0001) as were values for the severity-weighted x presence/absence index when related to 

values for the severity-weighted x density-weighted index (r
2
=0.54, slope=0.77, p<0.0001). 

Density-weighted frequency scores at the upstream of the AES scale indicated greatest 

risk indices in the Lower Gila and Santa Cruz basins (Figure 1.12).  Presence/absence indices at 

this scale show high risk to be widespread throughout the entire LCRB.  All indices consistently 

indicate the mainstem Colorado River to have low risk between the confluences of the Little 

Colorado and Virgin rivers. 

No significant relationships were found between risk indices and fish trait PC axes (Table 

1.5).  The severity-weighted x density-weighted and equal severity x density-weighted indices 

were both related to PCII (p=0.047; p=0.013; respectively).  However, all relationships had p-

values greater than the Bonferroni-adjusted alpha level of 0.0004 and were considered non-

significant.  

Discussion 

Our results suggest that the development of an ERI may be a useful tool for native fish 

conservation, but the scale and methods used to create the index are important.  Most stressors 

were consistent in density across scales implying these stressors are homogenous throughout the 

landscape.  Inconsistent densities across scales would suggest stressors are not uniform 

throughout the landscape.  In the case of dams, since the catchment scale had the highest mean 

density it is suggestive that although dams can impact various scales (Poff and Hart 2002) they 

often have more influence at the localized catchment scale.  Mean risk values of indices 
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increased as spatial scale increased. The lowest mean risk values were at the catchment scale and 

increased at watershed, AES and AESUP scales.  However, the catchment and watershed scales 

were the only two scales to have significant relationships with fish trait PC axes, and relationship 

between risk values and fish traits was strongest at the watershed scale.   

While anthropogenic disturbances affect aquatic systems through multiple processes 

within different scales (Stewart et al. 2001; Wang et al. 2003), our results suggest the most 

meaningful scale to utilize risk indices for conservation efforts was the watershed scale.  These 

results are similar to numerous studies which have assessed the influence of the landscape at the 

watershed scale to different aspects of stream ecology (Schlosser 1991; Roth et al. 1996; Allan et 

al. 1997).  Wang et al. (2003) suggested with natural landscapes, local environmental factors are 

more related to fish assemblages, whereas fish assemblages in increasingly modified landscapes 

have stronger relationships with watershed factors.  Although large protected areas have been 

established to protect freshwater systems (Saunders et al. 2002), these preserves are rare and 

primarily focus on protecting terrestrial ecosystems.  Citizen-based watershed groups are 

increasingly common (Griffin 1999) and regularly focus aquatic conservation efforts at the 

watershed scale, but can be restricted by political boundaries within watersheds (Allan et 

al.1997).  These boundaries can challenge the watershed approach to river management; however 

restoration efforts are often localized undertakings which are part of a larger watershed 

management plan (Bernhardt et al. 2007).  This suggests that integrative watershed management 

can be effective, and an ERI could be easily incorporated into watershed management plans.   

While indices using the presence/absence frequency method typically resulted in greater 

risk values than density-weighted indices, there was a high degree of correlation between all 

indices.  The presence/absence indices are predisposed to have greater risk because, prior to 
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standardization, there were narrower ranges of risk values as compared to the density-weighted 

indices and therefore resulted in greater risk values.  Density-weighted indices account for 

varying densities of stressors therefore greatly inflate the range of risk values prior to 

standardization.  Since density-weighted scores are based on equal quartiles, it is highly unlikely 

that many spatial units will have high risk scores for these indices. 

Although density-weighted indices were hypothesized to be more strongly correlated 

with fish traits, results suggest that presence/absence indices are slightly more robust than 

density-weighted indices.  At the catchment scale, all indices were significantly related to at least 

one of the fish trait PC axes; however, these relationships are likely driven by large sample size 

of sites and had low predictive power.  At the watershed scale, the strongest relationships with 

stressor indices were with non-fluvial dependent fishes (e.g., common carp) preferring low 

velocities and silt/mud substrates.  While all four indices at the watershed scale were related to 

these life history traits, the presence/absence indices had higher regression coefficients. 

Even the most robust risk indices had fairly low predictive power (r
2
=0.20) at the 

watershed scale, which is likely related to the coarse scale of the fish traits (presence/absence) 

and landscape-level stressors used.  Nonetheless, our analysis suggests that the ERI is related to 

biotic communities (fish traits) and therefore is applicable for prioritizing areas for native fish 

conservation.  Incorporating cost-effective risk indices into conservation planning may greatly 

increase the effectiveness of conservation efforts.  As risk indices are utilized and as links 

between anthropogenic activities and ecosystem drivers are better established, indices are likely 

to be improved, increasing predictive ability.  Ecological risk indices can also identify patterns in 

the landscape which can be useful not only for conservation and management purposes but also 

land-use planning (Mattson and Angermeier 2007).  However, limitations in the development of 
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risk indices include 1) incorporating stressors in which no spatial data is available; 2) 

incorporating a ‘distance-weighting’ in which risk is weighted by distance of a stressor from a 

stream reach; and 3) incorporating landscape-level factors which lower or lessen risk to aquatic 

fauna such as mitigation efforts, riparian buffers and other landscape-level patterns (Wang et al. 

2008; Mattson and Angermeier 2007). 

While this analysis was primarily conducted to better understand the effectiveness of the 

risk indices using different scales and methods, use of the LCRB allows us to make insights on 

the influence of risk indices on fish assemblages within the basin.  As hypothesized, risk was 

consistently highest near the urban centers of Phoenix, Las Vegas and Tucson metropolitan areas 

for all indices, and near St. George, Prescott and Flagstaff in most indices.  This is likely because 

the presence and densities of urban land use, roads, railroads, canals, stream crossings, NPDES, 

waste facilities tend to be highest near population centers.  Changes brought about with increased 

urban land area include increases of pollutants in runoff, altered hydrology due to increased 

impervious surface area, increased water temperatures, bank destabilization, channelization, and 

limited interactions between the river and its floodplain (Paul and Meyer 2001; Allan 2004). 

Stream segments in the LCRB with high risk commonly have fishes such as fathead 

minnow and common carp present whereas stream segments with low watershed risk did not 

have those species.  Common carp are ubiquitous throughout the LCRB (Minckley et al. 2003) 

and are considered highly adaptable, generalist species with high fecundity, rapid growth, 

longevity, tolerance of a broad range of water quality, and a wide diet breadth (Harris 1996).  

Common carp have been found to be associated with highly disturbed streams (Schade and 

Bonar 2005).  Fathead minnows are widespread throughout the LCRB, tolerant to pollution and 

often reach high abundance where few other species would be able survive (Minckley 1973; 

Becker 1983).  Stream segments that had fewer fish which are native, benthic, 
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herbivorous/detrivorous, have low maximum size, short lifespan, narrow diet breadth, low 

fecundity, high shape factor and prefer moderate velocities were related to areas of high risk at 

the watershed scale.  Therefore, sites with less risk have native species such as desert sucker, 

Sonora sucker, and woundfin present whereas sites with greater risk do not have these species 

present.  Woundfin are classified as an endangered species (U.S. Fish and Wildlife Service 1994) 

while desert sucker and Sonora sucker are considered sensitive species (U.S. Department of the 

Interior 2005).  Conservation efforts for these and other native desert fishes need to include 

protection of suitable habitats within watersheds, of which an ERI can help prioritize.  

The Southwestern United States is the fastest growing region in the nation, with a human 

population growth rate of 20.7% in Arizona between 1990 and 2000 (U.S. Census Bureau 2001).  

Currently at just over 6 million people in Arizona alone, population trends are projected to 

continue with population approaching 11 million by 2030 (U.S. Census Bureau 2004).  These 

population increases not only exert increased demands on natural resources, but also suggest 

increased levels of anthropogenic activities.  Human population has been proven a predictor of 

biotic homogenization of fishes (Olden et al. 2006b) while ecological risk indices show increased 

levels of anthropogenic risk to be related to declines in native, fluvial dependent species and 

increases in nonnative generalist species, suggesting anthropogenic activities increase nonnative 

introductions, native extirpations and habitat alteration driving biotic homogenization.  The 

LCRB has a rapidly changing landscape which will likely continue at the expense of losing 

aquatic habitat and diversity, unless planning and management can work together to minimize 

risk to prioritized watersheds.  Ecological risk indices can be a useful tool in prioritizing 

watersheds for conservation needs to achieve conservation goals. 
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Table 1.1  Sources of spatial data for anthropogenic stressors used to derive ecological risk 

indices for the Lower Colorado River Basin. 

 

Stressor Data Source* 

Canals (km/km
2
) US Geological Survey, National Hydrography Dataset (2005) 

Dams (m
2
/ km

2
) US Army Corp of Engineers, National Inventory of Dams (2000) 

Diversion (no./km
2
) California State Water Resources Control Board (2007), Nevada 

Division of Water Resources (2006), Utah Division of Water Rights 

(2004), Arizona Department of Water Resources (2000), New Mexico 

Office of the State Engineer (2007) 

303d  Impaired stream 

classification (no./km
2
) 

Environmental Protection Agency, Water Quality Standards Database 

(2002) 

Urban and Agricultural 

Landcover (km
2
/ km

2
) 

National Landcover Database (2000) 

Mines (no./km
2
) US Geological Survey, Mineral Resources Database (2005) 

Non-point Discharge 

Elimination System (no./ km
2
) 

Environmental Protection Agency, Permit Compliance System (2006) 

Railroads (km/km
2
) US Census Bureau, Tiger files (2006) 

Roads (m/km
2
) US Census Bureau, Tiger files (2006) 

Stream Crossings (no./km
2
) US Census Bureau, Tiger files (2006) 

Superfund/Toxic 

Release/Hazardous Waste 

Facilities (no./ km
2
) 

Environmental Protection Agency, Superfund (2006), Toxic Release 

Inventory (TRI; 2006) and Resource Conservation and Recovery Act 

(RCRA; 2006) databases 

*Year signifies the most current year of data included in the dataset.  
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Table 1.2.  Summary of severity scores by the ecological integrity categories (Karr 1991).  

Weighted severity scores are based upon peer-reviewed literature whereas equal severity scores 

were assigned on the assumption that all stressors have equal influence.  A score of zero suggests 

no influence whereas a score of 3 suggests severe influence on the variable of ecological 

integrity.  Values are summed across ecological integrity variables to produce the weighted 

severity score. 

 

 Severity Weightings 
Severity Score 

Methods 

Stressors 
Water 

Quality 

Habitat 

Quality 

Biotic 

Interactions 

Flow 

Regime 

Energy 

Source 

Weighted 

Severity  

Equal 

Severity  

Agriculture 3 3 1 2 3 12 1 

Canals 2 3 2 3 2 12 1 

Dams 3 3 3 3 3 15 1 

Diversions 0 1 0 3 0 4 1 

Mines 3 2 1 1 1 8 1 

NPDES 3 1 1 2 3 10 1 

Railroads 2 2 0 0 1 5 1 

Roads 2 2 0 1 2 7 1 

Stream 

Crossings 
2 2 1 1 1 7 1 

Urban 3 3 1 2 3 12 1 

Waste 

Facilities 
3 2 1 0 2 8 1 

303d 

Streams 
3 0 1 0 1 5 1 
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Table 1.3.  Breakdown of density-weighted frequency scores at the catchment scale. 

 

Density-weighted frequency scores  

Stressor 0 1 2 3 4 

 

Ranking method 

Agricultural (km²/km²)  0 1-10% 11-25% 26-50% >50% Wang et al. 1997; 

Allan 2004 

Canals (m/km²) 0 1-79 80-348 349-927 >927 
Equal Quartile 

Dams (m²/km²) 0 1-18 19-73 74-787 >788 
Equal Quartile 

Diversions (no./km²) 0 0.1-0.2 0.3-0.5 0.6-1.0 >1.0 
Equal Quartile 

Mines (no./km²) 0 0.1-0.2 0.3-0.4 0.5-0.7 >0.7 
Equal Quartile 

NPDES (no./km²) 0 

0.01-

0.07 

0.008-0.15 0.16-0.3 >0.3 
Equal Quartile 

Railroads (m/km²) 0 1-117 118-307 308-790 >790 
Equal Quartile 

Roads (m/km²) 0 1-416 417-838 

839-

1474 

>1474 
Equal Quartile 

Stream Crossings (no./km²) 
0 0.1-0.2 0.3-0.4 0.5-1.0 >1.0 

Equal Quartile 

Urban (no./km²) 
0 0.1-1% 2-3% 4-8% >8% 

Wang et al. 2000; 

Wheeler et al. 

2005; Allan 2004 

Waste Facilities (no./km²) 
0 

0.01-

0.04 

0.05-0.10 

0.11-

0.30 

>0.30 
Equal Quartile 

303d (m/km²) 0 1-256 257-834 

835-

1538 

>1539 
Equal Quartile 
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Table 1.4.  Summary of the mean and range of stressor densities at the four scales used to 

calculate the density-weighted ecological risk indices in the Lower Colorado River basin. 

 

Catchment Watershed AES* Upstream of AES Stressor 

 

 Mean (Range) Mean (Range) Mean (Range) 

 

Mean (Range) 

Area (km²) 5.1 (0.0003 - 7,683) 4180 (1 - 

343,896) 

966 (54 - 7,683) 38,953 (550 - 

343,971) 

Agriculture (km²/ 

km²) 

0.8 (0 - 100) 0.2 (0 - 78) 1.6 (0 - 44) 0.7 (0 - 9.1) 

Canals (m/km²) 12.2 (0 -  20,053) 2.8 (0 - 1,117) 17.7 (0 - 565) 7.8 (0 - 147.6) 

Dams (m²/km²) 201.3 (0 -

7,660,974) 

7.4 (0 - 66,584) 172.5 (0 - 

55,967) 

11.0 (0 - 212.6) 

Diversions 

(no./km²) 

0.3 (0 - 587) 0.2 (0 - 23) 0.2 (0 - 6.4) 0.2 (0 - 0.9) 

Mines (no./km²) 0.05 (0 - 79) 0.05 (0 - 7.2) 0.05 (0 - 0.4) 0.04 (0 - 0.3) 

NPDES (no./km²) 0.001 (0 - 5) 0.0006 (0 - 0.6) 0.001 (0 - 0.03) 0.001 (0 - 0.01) 

Railroads (m/km²) 22.6 (0 - 9,437) 6.1 (0 - 823) 14 (0 - 253) 11.6 (0 - 82.9) 

Roads (m/km²) 789 (0 – 28,927) 679 (0 - 11,730) 822 (13 - 5,779) 941 (33 - 4911) 

Stream Crossings 

(no./km²) 

0.6 (0 - 673) 0.3 (0 - 20) 0.3 (0 - 1.1) 0.3 (0.008 - 0.7) 

Urban (km²/ km²) 1.3 (0 - 100) 0.8 (0 - 100) 2 (0 - 50.5) 2 (0 - 39) 

Waste Facilities 

(no./km²) 

0.0006 (0 - 3) 0.0003 (0 - 0.3) 0.002 (0 - 0.2) 0.0014 (0 - 0.04) 

303d (m/km²) 42.7 (0 - 61,067)  11.6 (0 - 2,671) 19.9 (0 - 1,531) 20 (0 - 758) 

*AES= aquatic ecological system 
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Table 1.5.  Analysis of covariance results of relationships between risk indices and fish trait PC 

axes with stream order (at catchment and watershed scales only) and basin as covariates.  Mean 

and range of standardized risk values for each index are listed as we ll.  Significance levels were 

adjusted with a Bonferroni correction at each scale (α=0.05/12 or 0.004), with bolded P-values as 

significant after correction. 

 

Scale Index* Mean Range PCI PCII PCIII 

SW x PA  12.7 0-100 p=0.001 p<0.0001 p<0.0001 

ES x PA 14.7 0-100 p=0.078 p<0.0001 p<0.0001 

SW x DW 7.6 0-65 p=0.0003 p=0.0002 p<.0001 

Catchment 

ES x DW 8.9 0-60 p=0.208 p=0.0062 p<0.0001 

SW x PA  25 0-100 p<0.0001 p<0.0001 p<0.0001 

ES x PA 35.5 0-100 p<0.0001 p<0.0001 p<0.0001 

SW x DW 17.1 0-80 p<0.0001 p<0.0001 p<0.0001 

Watershed 

ES x DW 20.3 0-85 p<0.0001 p<0.0001 p<0.0001 

SW x PA  58.6 13-100 p=0.040 p=0.042 p=0.385 

ES x PA 60.3 17-100 p=0.570 p=0.208 p=0.325 

SW x DW 31.1 3-90 p=0.391 p=0.657 p=0.786 

AES 

ES x DW 33.6 4-88 p=0.889 p=0.050 p=0.033 

SW x PA  85.3 36-100 p=0.051 p=0.055 p=0.084 

ES x PA 85.1 33-100 p=0.102 p=0.139 p=0.880 

SW x DW 46 10-89 p=0.096 p=0.047 p=0.402 

Upstream 

AES 

ES x DW 48.2 10-90 p=0.208 p=0.013 p=0.092 

*Index method codes: SW=severity-weighted, ES=equal severity, DW=density-weighted, 

PA=presence/absence 
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Table 1.6.  Linear regression statistics of regressing each risk assessment method with each other 

at four different spatial scales.  A slope of 1.0 indicates indices produce similar risk values.  High 

r2 values would indicate that the two indices were highly related, even if the slope may not be 

close to 1.0.  Samples sizes are 73,078 for the catchment scale, 36,379 for the watershed scale, 

386 for the AES scale, and 197 for the upstream AES scale.  All tests were significant 

(p<0.0001). 

 

Scale Index Test* Slope 
Standard 

Error 
r² 

SW PA = ES x PA 0.92 0.0008 0.95 

SW x DW = ES x DW 1.06 0.0009 0.95 

ES x PA = ES x DW 0.61 0.0012 0.78 

Catchment 

SW x PA = SW x DW 1.34 0.0025 0.80 

SW PA = ES x PA 1.03 0.0007 0.98 

SW x DW = ES x DW 1.09 0.0011 0.96 

ES x PA = ES x DW 0.55 0.0013 0.82 

Watershed 

SW x PA = SW x DW 1.73 0.0043 0.82 

SW PA = ES x PA 1.08 0.0108 0.96 

SW x DW = ES x DW 0.96 0.0089 0.97 

ES x PA = ES x DW 0.80 0.0239 0.74 

AES 

SW x PA = SW x DW 1.00 0.0297 0.75 

SW PA = ES x PA 1.00 0.0101 0.98 

SW x DW = ES x DW 0.97 0.0098 0.98 

ES x PA = ES x DW 0.76 0.0506 0.54 

AESUP 

SW x PA = SW x DW 0.77 0.5044 0.54 

*Index method codes: SW=severity-weighted, ES=equal severity, DW=density-weighted, 

PA=presence/absence 
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Figure 1.1.  The geographic location of the Lower Colorado River Basin with major river basins 

shaded and labeled.  Major rivers are highlighted in white, major cities are denoted with black 

triangles and states by background lines. 
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Figure 1.2.  Catchment and watershed scale for an individual stream segment of interest. 

 

 

Individual 
stream 
segment  



 

35 

 

 

 

Figure 1.3. Lower Colorado River Basin delineated by the 386 aquatic ecological systems (AES) 

boundaries. 
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Figure 1.4.  Schematic for developing the four ecological risk indices created for each of four 

scales within the Lower Colorado River Basin.  Severity scores are multiplied by frequency 

scores to generate risk values.  Each index uses different methods for quantifying risk from the 

same raw spatial data. 

Presence/Absence –  
scores assigned  

based on presence 

Density-weighted – 
scores assigned 
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relative density 
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based on presence 

 Density-weighted –  
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 based on 
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Raw Stressor Data 

 Severity-weighted   
scores assigned 

based on 
ecological 
influence 

 Equal Severity –  
scores assigned 
equally across 

stressors 

Tier 1: Severity Tier 2: Frequency 
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Figure 1.5.  Two methods for quantifying frequency scores.  The large circles represent the 

spatial unit of analysis (e.g., catchment) while the small circles represent a single point stressor 

(e.g., mine).  Presence/absence scores are based on presence of a stressor while density-weighted 

frequency scores are based on equal quartiles of the density of the stressor. 

 

 

 

Spatial Unit 

Presence/ 

Absence 

Score 

0 1 1 

Density-

weighted 

Score 

0 3 1 
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Figure 1.6.  Ecological risk values at the catchment scale for the Lower Colorado River Basin.  

Major rivers are outlined in black.  Index methods are noted on the left-hand side and top of 

maps. 
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Figure 1.7.  Fish trait principal components analysis results showing the first two principal 

components used for the catchment and watershed scales.  Fishes that scored high on PC I 

include fathead minnow and common carp whereas fishes that scored high on PC II include 

desert sucker and Sonora sucker.  Stream segments are color-coded by risk according to the 

severity-weighted x density-weighted index at the watershed scale. 
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Figure 1.8.  Linear regressions between risk indices at the catchment scale and fish trait PC III.  

Fish species scoring high on PC III included rainbow and brown trout and fishes scoring low on 

PC III included western mosquitofish.  Sample size for all analyses was 1,718. 
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Figure 1.9.  Ecological risk values at the watershed scale of the Lower Colorado River Basin.  

Index methods are noted on left-hand side and top of maps. 
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Figure 10.  Linear regressions between risk indices at the watershed scale and fish trait PC I.  

Fish species scoring high on PC I include fathead minnow and common carp. 
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Figure 1.11.  Ecological risk values at the AES scale for the Lower Colorado River Basin.  

Major rivers are outlined in white.  Index methods are noted on the left-hand side and top of 

maps. 
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Figure 1.12.  Ecological risk values at the upstream of AES scale for the Lower Colorado River 

Basin.  Major rivers are outlined in white.  Index methods are noted on the left-hand side and top 

of maps. 
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Chapter 2 - Alteration of flow regime and its effects of fish assemblages in the 

Lower Colorado River Basin 

Abstract 

We determined hydrologic alteration of 33 different hydrologic variables using current 

(1986-2006) and historical US Geological Survey discharge data for 48 gage stations within the 

Lower Colorado River Basin (LCRB) to understand associations with landscape-level influences 

and fish assemblages.  The Indicators of Hydrologic Alteration (IHA) software was used to 

calculate hydrologic alteration values using the range of variability approach (RVA).  

Landscape-level sources of hydrologic alteration analyzed include percent agriculture, urban, 

forest and scrub as well as densities of roads, canals and dams.  Life history traits of fish 

assemblages near each gage station were summarized by presence/absence of current (1980-

2006) species records.  Hydrologic alteration did not differ among basins due to high variability 

among and within basins (p>0.14).  Percent agriculture was positively related with indices of 

alteration of low flows (r=0.402, p=0.006) while forested land covers was negatively related with 

alteration of low flow events (r=-0.384, p=0.008).  Occurrence of piscivorous, nonnative fishes 

increased with alteration of low flow events whereas occurrence of fluvial dependent fishes 

preferring rubble substrate decreased with alteration of low flow events (r=0.64, p=0.001). Our 

results suggest that land use was associated with hydrologic alteration in the LCRB and these 

alterations do affect fish assemblage structure.  Understanding landscape influences of river 

flows and biotic responses to modified flow regimes are a necessity in sustainable development 

of water resources as human populations grow and water resources decrease in the LCRB. 
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Introduction 

Hydrologic variability is a well established habitat characteristic of lotic systems (Poff 

1996).  Stream flow largely determines the physical instream habitat (i.e. riffle, runs and pools) 

which strongly affects the aquatic (Gorman and Karr 1978; Bunn and Arthington 2002) and 

riparian communities (i.e., vegetation, birds, insects, small mammals; Busch and Smith 1995; 

Richter and Richter 2000).  Native flora and fauna have evolved to natural flow regimes via 

adaptations in life history, morphology and behavioral characteristics (Lytle and Poff 2004).   

Flow regimes are naturally shaped by geographical constraints such as climate, elevation 

and geology (Poff et al. 1997; Sankarasubramanian et al. 2001).  However, human alterations, 

such as, land use, roads and dam construction, often change the natural flow regime (Schlosser 

1991; Changnon and Demissie 1996).  Road corridors increase runoff, which can subsequently 

alter channel morphology and increase stream discharge (Forman and Alexander 1998).  Dams 

change upstream waters from predominantly lotic to lentic, reducing flows while increasing 

depth and width, and impacting downstream waters by altering discharge, often resulting in 

further alterations in channel morphology, sediment loads, water chemical properties, and 

thermal conditions (Baxter 1977).  Structural changes such as dams and channelization often 

restrict lateral and longitudinal flow connectivity of river systems as well (Bunn and Arthington 

2002).  These and other anthropogenic activities can strongly influence fish communities as a 

result of modified flows. 

In the arid southwestern United States, tributaries are primarily fed by summer monsoons 

and rainstorms, historically creating highly variable hydrologic conditions.  Therefore, in the 

Lower Colorado River Basin (LCRB), the natural flow regime is often characterized by high 

annual variability, large spring and late summer monsoon-driven floods, and extended periods of 
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low to no flow.  However, the LCRB now has numerous dams and diversions, and a rapidly 

increasing human population, highly regulating the once turbid and flashy system (Mueller and 

Marsh 2002).  These changes in hydrology consequently alter resource timing and availability, 

and therefore favor species with different life-history traits than historic flow patterns (Marchetti 

and Moyle 2001; Bernardo et al. 2003).   

Historically few species could adapt and survive in the Lower Colorado River Basin and 

only 31 species are listed as native to the basin.  However, in part due to drastic human 

alterations to the flow regime, approximately half of over 90 introduced non-native species now 

occur throughout the LCRB (Rinne and Janisch 1995).  Within the LCRB, Meffe (1984) found 

the native Sonoran topminnow (Poeciliopsis occidentalis occidentalis) was more behaviorally 

adapted than the non-native western mosquitofish (Gambusia affinis) to persisting through flash 

flooding in central Arizona.  In the San Juan River, native species increased when the river 

discharge emulated a natural flow regime (Propst and Gido 2004).  Since many species 

synchronize life history traits with specific flow events, altered flow regimes may put these 

species at risk (Bunn and Arthington 2002; Humphries et al. 2002).  The successful 

establishment of exotic and introduced species is regularly linked to hydrologic alteration (Moyle 

and Light 1996; Bunn and Arthington 2002), often at the expense of native species.  Therefore, 

native species have to adapt not only to modified flows, but also to competition and predation 

from non-native species.  The native fish of the LCRB are quickly declining, with 25% of fish 

species listed as threatened or endangered under the Federal Endangered Species Act (Whittier et 

al. 2006), while non-natives are spreading (Mueller and Marsh 2002; Olden and Poff 2005).   

Therefore, the objectives of this study are to 1) quantify hydrologic alteration throughout 

the LCRB to determine 2) relationships between hydrologic alteration and possible sources of 
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alteration (e.g., land use, dams), and 3) the influence of hydrologic alteration on fish life-history 

characteristics.  As human population grows, climate changes and water becomes more valuable, 

it is essential to understand how alterations in the natural flow regime impact natural systems and 

imperiled species.   

Methods 

Site Description 

The LCRB drains 362,750 km² from Arizona, California, New Mexico, Utah and Nevada 

(Figure 2.1; Blinn and Poff 2005).  The LCRB begins below the confluence of Paria River in 

northwestern Arizona and includes all tributaries flowing into the Colorado River thereafter, 

encompassing 26,000 km of stream (Blinn and Poff 2005; Olden and Poff 2005).  Major 

tributaries include the Gila, Virgin, Bill Williams and Little Colorado rivers.  Major watersheds 

within the basin include Salt, Verde, Gila, San Pedro, Santa Cruz, Lower Colorado, Virgin, Little 

Colorado, and Bill Williams (Figure 2.1).  

The LCRB is located within the Southwestern United States, which has the fastest human 

population growth in the nation with a growth rate of 20.7% between 1990 and 2000 (U.S. 

Census Bureau 2001).  Currently Nevada and Arizona are the two fastest growing states 

(Bernstein 2007b).  The human population in Arizona has grown 20.2% from 5,130,632 in 2000 

to 6,166,318 in 2006 (http://quickfacts.census.gov/qfd/states/04000.html).  Population trends are 

projected to continue with Arizona’s population approaching 11 million by 2030 (U.S. Census 

Bureau 2004).  These population increases exert demands on natural resources in the LCRB, 

which in turn influence hydrology and aquatic biota. 
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Data collection 

All US Geological Survey (USGS) gaging stations within the LCRB with sufficient 

current and historic daily discharge records (i.e. 20 years continuous data; Olden and Poff 2003) 

were used in the analysis.  Gage stations within the LCRB were screened for long-term discharge 

data; current discharge was defined as between the years 1986 and 2006 whereas historic 

discharge was defined as the earliest twenty years of continuous discharge data, which ranged 

from 1909-1929 to 1965-1985.  Gage stations on canals or those that did not have two periods of 

20 years of continuous data were removed from further analysis 

Possible sources of hydrologic alteration examined included urban land use (Paul and 

Meyer 2001; Roy et al. 2005), agricultural land use, dams (Rosenberg et al. 2000; Poff et al. 

2007), roads, canals and diversions.  Forest and scrub (shrubs <5 m tall with shrub canopy 

typically greater than 20% of total vegetation) land covers were also included in analysis as these 

two land cover classes make up the majority of land cover in this region (20% and 70% of the 

basin’s land cover, respectively).  Land use data came from the Multi-Resolution Land 

Characteristic Consortiums 2001 National Land Cover Data (http://www.epa.gov/mrlc/nlcd-

2001.html).  Dam data was retrieved through the US Army Corps of Engineers National 

Inventory of Dams database (http://crunch.tec.army.mil/nidpublic/webpages/nid.cfm).  Road data 

came from US Census Bureaus 2006 TIGER files (http://www.census.gov/geo/www/tiger/).  

Surface water diversions (including rights and claims under public water codes) came from state 

water agencies.  Densities of each of these possible sources of hydrologic alteration were 

calculated at the watershed scale, representing the entire upstream drainage area.  Urban, 

agriculture, forested and scrub land covers were calculated as percent area of the respective land 

cover within the watershed.  Densities of roads and canals were calculated as total road or canal 
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length (km) divided by land area (km
2
) while density of diversions was calculated as number of 

diversions divided by land area (km
2
).  To incorporate size of dam, dam density was calculated 

as storage area (km
2
) divided by land area (km

2
).  

All fish locations were obtained as part of an ongoing study of the LCRB Aquatic Gap 

Analysis Project (GAP) database which has over 80,000 fish sampling locations and 1.5 million 

individual fish records within the LCRB from various sources (e.g. Arizona Game and Fish 

Department, US Geological Survey, Arizona State University, US Forest Service, etc.).  Data 

collected includes geo-referenced point locations verified by agency personnel, species name, 

site description, and date collected.  Fish were sampled with various gears (e.g., hoop nets, dip 

nets, gill nets, minnow traps, trammel nets, seines and electrofishing) however electrofishing and 

seining accounted for 88% of all samples with a recorded gear type.  Although samples were not 

collected for the objectives of this study, various studies exhibit how large, historical databases 

can be effectively utilized (e.g., Fagan et al. 2002; Fagan et al. 2005; Olden and Poff 2005; 

Olden et al. 2006). 

All fish collected from 1980 to 2006 within the catchment (i.e., land draining into a single 

stream segment) of where a gage station was located were considered representative of the 

current fish assemblage near that gage station.  Sampling events from hatcheries and ponds were 

removed from analysis as were fish recorded as re-introduced and not established.  Numerous 

sampling events occurred at each gage station throughout 1980 to 2006; therefore 

presence/absence records for all sampling events within a catchment were compiled.  Because of 

the possible influence of collecting an individual species at just one sampling event (out of 

numerous events at that catchment), the proportion of sampling events in which individual 

species were found was calculated by dividing the number of sampling events in which a species 
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is caught by the total number of sampling events occurring within that stream segment.  The 

proportion of sampling events by species was then translated to proportion of sampling events by 

life history characteristics for each catchment.  Because LCRB encompasses a large area in 

which species assemblages may differ due to biogeographic constraints, life history traits were 

used to allow functional comparison of sites throughout the basin (Poff and Allan 1995; Scott 

and Helfman 2001).  Life history characteristics thought to be influenced by hydrologic 

alteration (Poff and Allan 1995; Roy et al. 2005) served as biotic variables used in analysis, 

including trophic guild (e.g., herbivore/detritivore, invertivore, omnivore and piscivore), fluvial 

dependence, substrate preference (e.g., rubble, sand, silt/mud and general), velocity preference 

(e.g., slow, slow to moderate, and moderate to fast), swim factor (ratio of minimum depth of 

caudal peduncle to the maximum depth of caudal fin) and shape factor (ratio of total body length 

to maximum body depth).  Life history characteristic data primarily came from Olden et al. 

(2006) with additional species data collected from various sources including peer-reviewed 

literature and online databases (e.g., FishBase).  All life history variables were categorical (e.g., 

trophic guild) therefore numerical variables (e.g., shape factor) were divided into equal thirds 

based upon frequency resulting in three categories per variable (e.g. low, medium and high).   

Range of Variability Approach 

The Indicators of Alteration (IHA) software (Richter et al. 1996; The Nature 

Conservancy 2006) was used to produce flow variables of magnitude, timing, frequency, 

duration and rate of change of flow events (Table 2.1).  The IHA methodology has been used 

extensively in rivers including the Colorado River (Richter et al. 1998), Missouri River (Galat 

and Lipkin 2000; Pegg and Pierce 2002), Henry’s Fork of the Snake River (Benjamin and Van 

Kirk 1999), Tallapoosa River (Irwin and Freeman 2002), and Illinois River (Koel and Sparks 
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2002).  Hydrologic indices of each gage station were calculated for both historic and current 

(1986-2006) time periods so an assessment of alteration between time periods can be used.   

The range of variability approach (RVA) was used to assess alteration from historic 

discharge (Richter et al. 1997; Richter et al. 1998).  The RVA values range from -1 to 1 in which 

decreases in variability (from historic discharge) are represented by positive values, increases in 

variability by negative values and no change in variability is represented by zero. An example of 

how RVA values are calculated is found in Figure 2.2.  The frequency of years of current 

discharge (1986-2006) which fall between the 25
th

 and 75
th

 percentile of historic discharge 

(1922-1942) is subtracted from the historic frequency and then divided by the historic frequency.  

This example uses June discharge at a gage station on the Colorado River within the Grand 

Canyon, AZ.  After Glen Canyon Dam was constructed in 1963, substantial changes occurred in 

discharge.  In this case, the frequency of years in the current time period (1986-2006) which fall 

between the 25
th

 and 75
th

 percentile of historic equals zero.  Therefore the RVA value is 

calculated as 1, suggesting a high degree of alteration.  Absolute values of RVA values were 

used in analysis so values closer to zero suggest little alteration whereas values closer to one 

suggest greater alteration.  An RVA value is calculated for each of the 33 IHA variables for each 

gage station. 

Data Analysis 

A principal components analysis (PCA) was used to reduce the 33 hydrologic alteration 

(RVA) scores into fewer metrics that described variation in hydrologic alteration across sites 

(Johnson 1998).  Analysis of covariance was used to determine if mean PC scores varied by river 

basin using year of historic period and stream order as covariates.  Spearman rank correlations 

were used to determine relationships between land cover/land use variables and hydrologic 



 

53 

 

alteration PC scores with significance levels adjusted with a Bonferroni correction for the eight 

comparisons (α=0.1/8 or α=0.013).  Another PCA was used to reduce the dimensionality of the 

16 fish life history characteristics into a few metrics that best described life history 

characteristics among sites.  Spearman rank correlations were used to determine associations 

between hydrologic alteration PC scores and fish life history traits PC scores. 

Results 

 A total of 48 of 294 USGS gage stations within the LCRB had at least 20 years of 

historical and current gage data and were used in this study (Figure 3).  These gage stations were 

distributed throughout the LCRB, with relatively high numbers (>6) within the Upper Gila, Little 

Colorado, Verde and Virgin basins (Table 2.2).  Several gage stations had numerous temporal 

breaks in historic records thus making it difficult to assess a static twenty-year historical period 

for each gage.  Therefore, while all current hydrologic records include data from 1986 to 2006, 

historic records include a continuous set of 20 years of data beginning between 1909 and 1966.   

The PCA reduced the set of 33 individual hydrologic alteration variables into a smaller, 

uncorrelated subset of variables.  The first three PCs cumulatively explained 43.8% of the 

variance among sites (Table 2.3).  Component loadings greater than |0.25| were used to interpret 

PC axes (Fischer and Paukert In press).  The first PC axis (PC1; 24.8%) was primarily related to 

alteration of low flows and baseflow (annual thirty-day minimum flow, average June flows, and 

baseflow).  The second PC axis (PC2; 10.5%) was an index of alteration of maximum flows with 

high loadings of annual maximum one, three, seven, thirty and ninety-day flows.  The third PC 

axis (PC3; 8.5%) was an index of alteration of rate of change and low flows (number of zero-

flow days, Julian date of minimum flow, fall rate, rise rate, reversals and annual one-day 

minimum flows). 
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Mean PC scores of hydrologic alteration did not differ by basin due to high variability 

within basins (Figure 2.4).  In general, the mainstem Colorado, Bill Williams, Santa Cruz and 

Virgin river basins had positive values on PC1, an index of alteration of low flows and baseflow, 

while the Little Colorado, Salt Gila, San Pedro and Verde river basins had negative values but 

means did not differ (F=1.19, df=8, 37, p=0.329).  PC2, an indicator of alteration of the 

magnitude of maximum flows, had positive values in the Colorado and Little Colorado river 

basins and negative values in the Bill Williams and Salt river basins and near zero in other 

basins, but means did not differ (F=1.55, df=8, 37, p=0.174).  A second axis signifying alteration 

of low flows and rate of change, PC3, had positive PC scores in the Santa Cruz, Little Colorado 

and Bill Williams river basins and negative PC scores in the Virgin River Basin and near zero 

scores in other basins, but means did not differ (F=1.66, df=8, 37, p=0.141).  Based on the mean 

value of the first three hydrologic alteration principal components, the five most altered gage 

stations include the Santa Cruz River near Laveen, AZ, the Muddy River near Moapa, NV, the 

Colorado River near the Grand Canyon, AZ, the Gila River at Kelvin, AZ and the San Pedro 

River at Charleston, AZ (Figure 2.3).  The five least altered gage stations include the New River 

near Rock Springs, AZ, Cherry Creek near Globe, AZ, San Francisco River near Reserve, NM, 

Aravaipa Creek near Mammoth, AZ, and the Verde River near Clarkdale, AZ (Figure 2.3). 

Sources of hydrologic alteration had few significant correlations with PC scores at the 

watershed scale.  The percent agriculture in the watershed increased with PC3 (r=0.402, 

p=0.006), while percent forest decreased with PC3 (r=-0.384, p=0.008; Figure 2.5).  Therefore 

agriculture was positively and forested land cover negatively related to alteration of low flows at 

the watershed scale.  No other land cover or stressor variables had a significant relationship 

(p>0.10) with any of the hydrologic alteration principal components. 
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Of the 48 gage stations with at least 20 years of current and historical flow data, 23 had 

fish records within the same catchment (Figure 2.3).  The gage stations with fish were distributed 

throughout the basin with at least three in the Salt, Verde and Upper Gila River Basins (Table 

2.2).  Of the 36 total species collected from 1980-2006 throughout all basins, 18 were native and 

18 were nonnative (Table 2.4).  The number of sampling events summarized for each gage 

station ranged between 1 and 175 with a mean of 17.   

The PCA of life history variables reduced the 16 life history characteristics into three  

axes that cumulatively explained 79.6% of variation among sites (Table 2.5).  Component 

loadings greater than |0.25| were used to interpret PC axes.  The first fish life history trait PC 

(PCLH1; 43.7%) had high loadings of fishes that had both high and low swim factors, high shape 

factors, were considered herbivorous/detrivorous, omnivorous, or invertivorous and preferred 

slow currents.  Fish species scoring high on this principal component included fathead minnow 

(Pimephales promelas) and common carp (Cyprinus carpio).  Components which scored high on 

the second PC (PCLH2; 23.9%) included piscivory, low shape factors and preference of silt or 

mud substrate.  Components scoring low on PCLH2 included fluvial dependence, preference of 

rubble substrate and moderate to fast currents.  Fish species associated with high scores on PCLH2 

included flathead catfish (Pylodictis olivaris), channel catfish (Ictalurus punctatus) and 

largemouth bass (Micropterus salmoides); fish species associated with low scores on PCLH2 

included rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta), speckled dace 

(Rhinichthys osculus) and loach minnow (Rhinichthys cobitis).  Component loadings which 

scored high on the third PC (PCLH3; 12.0%) included preference of sand or general substrates and 

slow to moderate currents.  Fishes that scored high on PCLH3 included red shiner (Cyprinella 

lutrensis) and longfin dace (Agosia chrysogaster). 
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Fish assemblages based on life history traits were related to indices of hydrologic 

alteration related to low flows.  The first life history PC was not related to any of the hydrologic 

alteration principal components (p>0.16).  The second life history PC was related with the third 

hydrologic alteration principal component (r=0.64, p=0.001; Figure 2.6).  This relationship 

suggests alteration of zero flow days, Julian date of minimum flows and fall rate was positively 

associated with piscivorous fishes with low shape factors which prefer silt or mud substrates 

such as largemouth bass and flathead catfish.  Fishes which are fluvial dependent and prefer 

moderate to fast currents and rubble substrate, such as rainbow trout, brown trout, speckled dace 

and loach minnow, were negatively correlated with hydrologic alteration PC3.  No correlations 

were found between the third life history trait and any hydrologic alteration principal 

components (p>0.11). 

Discussion 

Alteration by basin 

Hydrologic alteration within the LCRB was highly variable within and among basins.  

The mainstem Colorado, Santa Cruz, Bill Williams and Little Colorado had positive mean scores 

for at least two of the three principal components analyzed, suggesting these basins tended to 

have higher alteration, but even within a basin there was high variability of alteration.  The 

mainstem Colorado River is widely known for the alteration of its flow regime due to major dam 

construction (Patten et al. 2001).  The Santa Cruz River Basin is highly influenced from 

diversions and effluent discharge (Stromberg et al. 2007).  The Bill Williams River was a 

perennial stream for part of its reach before Alamo Dam was constructed in 1968 (Wolcott et al. 

1956), but is now ephemeral and flows only in response to precipitation.  The Upper Gila River 

and Salt River basins have negative mean PC scores for all four hydrologic alteration PC axes, 



 

57 

 

suggesting they tended to be less altered systems.  The Upper Gila has numerous diversions and 

groundwater pumping primarily for irrigation, however nine of the ten gage stations within this 

basin are located upstream of the first major dam (Coolidge).  Although the Salt River flow 

regime is highly regulated due to the Salt River Project (SRP) dams, which supply water to the 

Phoenix metropolitan area, all gage stations analyzed were located at least 30 km upstream of the 

first SRP dam and therefore were in the relatively unregulated and unaltered portion of the river 

(Collier et al. 2000).    

Landscape sources of hydrologic alteration 

Our results suggest that flow alteration throughout the LCRB was not strongly influenced 

by a single land use or landscape-level metric analyzed.  While stream flow at individual gage 

stations may be influenced by a single or multiple stressors, we were interested whether any 

individual stressor had a strong influence on hydrologic alteration throughout the LCRB.  

Agriculture increased with increased alteration of low flows and rates of change at the watershed 

scale.  Alteration from agriculture is most likely due to water extraction for irrigation as 85% of 

water in the LCRB is allocated to agricultural and irrigation (Blinn and Poff 2005).  Irrigation 

practices lead to decreased ground water storage (Kjelstrom 1995) and stream flow 

(Ramireddygari et al. 2000; Haddeland et al. 2006) and our results indicate irrigation practices 

had impacts on stream flows within the LCRB.  Decreased ground water storage and stream flow 

have substantial influence on baseflow, especially during dry times of the year (June) in which 

often occurs the annual 30-day minimum flow, and the highest number of days in which flow 

equals zero.  In some cases, diversions and groundwater extractions which exceed recharge rates 

have caused some perennial rivers to become ephemeral (Wolcott 1956; Stromberg et al. 1996), 

proving these practices can have lasting effects on hydrology and biota (Harding et al. 1998). 
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Decreased forest land cover at the watershed scale was associated with increased 

alteration of low flow and rates of change.  Decreases in low flow events may be driving the 

decline of forests by decreasing the water table from groundwater extraction (Busch and Smith 

1995) or by reservoirs which trap sediments and dissolved nutrients that naturally flow 

downstream resulting in bare saline plains replacing riparian forests and scrubland (Abell et al. 

2000).  Increases in low flow events may be a result of clearing forests which would have 

otherwise used water for photosynthesis (Bari et al. 1996).   

Dams profoundly alter the habitat of a river and are notorious for their impacts on stream 

flow, however our analysis showed no relationship between dam density and indices of 

hydrologic alteration.  Richter et al. (1997) indicated impoundments to be one of three significant 

threats associated with freshwater aquatic ecosystems, primarily due to altered flows, habitat 

degradation and fragmentation, and blockages for fish migration.  Lack of association with dams 

is likely due to the complex manner in which dams are managed.  There are a number of 

different variables that could be used to assess the size of dams, including dam height and 

hydraulic residence time (defined as the ratio of dam storage volume [m
3
] to its flow-through 

rate [m
3 

per year]; Poff and Hart 2002).  However, each dam is managed differently according to 

its purpose, making it unlikely that a single variable would be able to capture dam complexity. 

As the Southwestern U.S. grows, its rapidly increasing population has and will likely 

continue to lead to increases in urbanized land cover while displacing desert and agricultural 

landscapes, especially in central Arizona (Jenerette and Wu 2001).  Gage stations analyzed had a 

mean density of 1.3% urban land use within associated watersheds, suggesting relatively little 

urban land use at these sites.  However, St. George (UT), Las Vegas (NV), Phoenix (AZ) and 

Prescott (AZ) were respectively listed as the 1
st
, 5

th
, 10

th
 and 11

th
 fastest growing metropolitan 
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areas within the U.S. in 2007 (Bernstein 2007a).  Due to increases in impervious surfaces in 

urban land covers, runoff increases, lag times are shortened and peak discharges are increased in 

magnitude, but shortened in duration over naturally pervious land covers (Paul and Meyer 2001).  

As an area becomes urbanized, water courses get paved over, channelized, rerouted, transformed 

into storm sewers or completely eliminated (Cairns and Palmer 1995).  Impervious surfaces, 

including roofs, parking lots, roads, shopping malls, and industrial buildings, alter the flow of 

natural systems considerably.  Instead of percolating through the soil to groundwater aquifers or 

being transpired by vegetation, urban runoff is forced across various surfaces, picking up 

suspended solids, pesticides, nutrients, oil, and human and animal waste, before entering the 

waterways (Cairns and Palmer 1995).  Reduced pervious surfaces can reduce baseflow discharge 

as a result (Paul and Meyer 2001).  Therefore, as land cover continues to change, these changes 

will have direct results on flow regimes.   

Influence of alteration on fish assemblages 

Natural flow regimes are more favorable towards native species, which in response have 

evolved life history strategies enabling these species to persist (Meffe 1984; Poff et al. 1997; 

Brouder 2001; Marchetti and Moyle 2001; Bunn and Arthington 2002; Propst and Gido 2004; 

Propst et al. In press).  Natural flow regimes, however, have become highly altered and regulated 

(Benke 1990; Lytle and Poff 2004).  Alteration of natural flow regimes can facilitate the 

establishment of nonnative fishes which have not evolved under the same natural flow conditions 

(Bunn and Arthington 2002).  Relationships between life history characteristics and hydrologic 

alteration support evidence that hydrologic regimes are important drivers of biotic communities 

(Poff et al. 1997; Bunn and Arthington 2002).  Our results support the notion that declines in 

native species as well as increases in nonnative species are, in part, a result of hydrologic 
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alteration.  While responsibility of the decline in native fishes in the LCRB has largely been 

placed on water development and the resulting modifications to the flow regime (Mueller and 

Marsh 2002), variability among dams and other environmental disturbances (e.g., nonnative 

fishes) make it difficult to distinguish individual biotic and abiotic effects (Rosenberg et al. 

2000). 

Our results suggest alteration of rate of change and low flow events influences biotic 

assemblages.  Occurrence of piscivorous fishes preferring silt or mud substrate, slow velocities 

and having low shape factors (e.g., channel catfish, flathead catfish and largemouth bass) 

increased when alteration of zero flow days, Julian date of minimum flows and fall rate were 

greatest.  Channel catfish and largemouth bass are ubiquitous nonnative fish species throughout 

the western U.S. (Schade and Bonar 2005), introduced for the purpose of sport fishing.  These 

fishes were introduced through stocking, but are likely persisting due to altered hydrology and 

other environmental factors.  Such piscivorous fishes, including channel and flathead catfish, 

have been documented to consume native razorback sucker (Xyrauchen texanus) ova and 

juveniles (Minckley 1983) while largemouth bass has been documented to consume native 

Colorado pikeminnow (Ptychocheilus lucius) juveniles (Marsh and Brooks 1989).  These 

nonnative species can cause drastic declines in the recruitment of native, endemic species and 

can therefore further detrimentally manipulate biotic communities.   

Alteration of rate of change and low flow events was also negatively related to fishes 

which are fluvial dependent and prefer rubble substrate and moderate to fast velocities.  These 

life history characteristics describe both native and nonnative species found in the LCRB.  

Speckled dace are widespread throughout the basin (Minckley 1973) while loach minnow are 

listed as threatened by the Endangered Species Act (U.S. Fish and Wildlife Service 1990).  
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Rainbow trout were first introduced in the early 1900’s and are stocked to maintain a blue-ribbon 

trophy fishery on the mainstem Colorado River between Glen Canyon Dam and Lees Ferry 

(Schmidt et al. 1998).  Therefore, altered hydrology does not universally benefit nonnatives and 

disadvantage natives, particularly in tailwater environments such as Lee’s Ferry where nonnative 

salmonids thrive. 

The mechanism behind the influence of low flow events on fish assemblages may be 

related to habitat changes under low flow conditions.  With an increased frequency or duration of 

low flow events, driven by natural climate conditions or diversions of water, riffle habitats 

disappear first, leaving pool habitats (Propst and Bestgen 1991; Aadlund 1993).  Channel catfish, 

among other nonnative fishes, have been found to be associated with decreased flows and 

increased pools and less abundant with increased flows (Aadlund 1993; Marchetti and Moyle 

2001; Propst et al. in press).  Loach minnows are often restricted to riffle habitat (Minckley 

1973; Rinne 1989; Propst and Bestgen 1991) where dewatering and impoundments threaten local 

populations (U.S. Fish and Wildlife Service 1990).  During drought conditions, declines in loach 

minnow abundance associated with increased pool habitat have been documented (Propst et al. in 

press).  Speckled dace typically are found below riffles and often have low abundance or are 

completely gone during years of low discharge (Minckley 1973; Propst and Gido 2004).  Both 

rainbow and brown trout are dependent upon cold, running waters to complete their life histories 

(Raleigh 1986; Fausch et al. 2001; Marchetti and Moyle 2001).  Abnormally low flows, to the 

point of no flow, can be destructive to developing embryos in riffle habitat (Raleigh et al. 2001).  

The timing of low flows has been hypothesized to influence rainbow trout invasion success 

where low flows occurring after rainbow trout fry emergence are considered beneficial (Fausch 

et al. 2001).  Therefore, the interaction between low flow and creations or destruction of habitats, 
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may be the reason why alteration in low flow events was the most significant relationship with 

fish life history traits.  

Native fishes in the LCRB are highly imperiled as a result of numerous anthropogenic 

factors, including altered flow regimes.  Our results suggest alteration of flow regimes 

throughout the LCRB is not strongly linked to any single threat; however significant 

relationships do exist with agriculture and forested land cover at the watershed scale.  These 

alterations, primarily related to low flow events, led to shifts in fish assemblages.  Human 

population in the southwestern U.S. is growing rapidly, leading to increased water consumption 

and extraction and expansions of urban land cover.  These factors as well as global climate 

change projections of a more arid climate in this region (Seager et al. 2007) will likely lead to 

increases in the alteration of low flow events.  Our results suggest increases in the alteration of 

low flow events lead to increases in predatory species and a continued decline of native fishes.   
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Table 2.1.  Hydrologic indices calculated using Indicators of Hydrologic Alteration software 

representing all five flow components (in bold), calculated for historic and current (1986-2006) 

periods of time for 48 gage stations in the Lower Colorado River Basin. 

 

Flow Component Hydrologic Indices 

Magnitude of flow events  

Mean flow conditions Monthly means: January, February, March, April, 

May, June, July, August, September, October, 

November, December 

 

Base flow 

Frequency of flow events    

Low flow conditions Low flow pulse count 

High flow conditions High flow pulse count 

Duration of flow events    

Low flow conditions Number of zero-flow days, annual minimum of one, 

three, seven, thirty and ninety day means, Low flow 

pulse duration 

High flow conditions High flow pulse duration, annual maximum of one, 

three, seven, thirty and ninety day means 

Timing of flow events  

Low flow conditions Julian date of minimum flow 

High flow conditions Julian date of maximum flow 

Rate of change in flow events Number of reversals, rise rate, fall rate 
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Table 2.2.  Number of total gage stations and gage stations with fish data by sub-basin for data 

in the Lower Colorado River Basin.  Fish data include samples from 1986-2006. 

 

 

Basin 

 

Gage Stations 

Gage Stations  

with fish data 

Bill Williams 2 1 

Little Colorado 6 2 

Lower Colorado 2 1 

Lower Gila 1 1 

Salt 4 4 

San Pedro 2 2 

Santa Cruz 3 1 

Verde 7 5 

Virgin 9 2 

Upper Gila 11 4 
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Table 2.3.  Principal component (PC) loadings from principal component analysis of 33 

hydrologic alteration variables from 48 gage stations throughout the Lower Colorado River 

Basin.  Variable loadings with absolute values >|0.25| in bold. 

 

Hydrologic Alteration  

Flow Component 

 

IHA variable PC1 PC2 PC3 

January 0.22 0.08 0.09 

February 0.17 0.09 0.07 

March 0.14 -0.02 0.06 

April 0.10 -0.07 0.18 

May 0.23 -0.17 0.08 

June 0.26 -0.09 -0.13 

July 0.16 -0.18 -0.03 

August 0.19 -0.03 0.11 

September 0.18 -0.13 0.15 

October 0.16 -0.03 -0.01 

November 0.17 0.03 0.17 

December 0.20 0.06 0.03 

Magnitude 

Baseflow 0.26 0.01 -0.07 

Low flow pulse count 0.16 -0.09 -0.18 Frequency 

High flow pulse count 0.13 0.11 -0.07 

Zero-flow days -0.03 0.17 0.43 

1 day minimum 0.22 -0.01 -0.29 

3 day minimum 0.24 -0.06 -0.22 

7 day minimum 0.24 -0.06 -0.20 

30 day minimum 0.26 -0.13 0.02 

90 day minimum 0.18 -0.21 -0.02 

Low flow pulse duration 0.23 -0.14 -0.05 

High flow pulse duration 0.07 -0.08 0.11 

1 day maximum 0.07 0.34 -0.20 

3 day maximum 0.11 0.42 -0.13 

7 day maximum 0.08 0.41 -0.13 

30 day maximum 0.14 0.38 0.04 

Duration 

90 day maximum 0.16 0.33 0.02 

Julian date of minimum flow 0.20 -0.03 0.35 Timing 

Julian date of maximum flow 0.08 -0.01 -0.01 

Number of reversals 0.08 0.03 0.31 

Fall rate 0.03 0.10 0.33 

Rate of Change 

Rise rate 0.08 0.03 0.31 

    

Eigenvalue 8.2 3.5 2.8 

Percent variance explained 24.8 10.5 8.5 

 

Cumulative variance explained 24.8 35.3 43.8 
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Table 2.4.  Native (N) and nonnative (I) fish species in the Lower Colorado River Basin used in 

analysis. 

 

Common Name Scientific Name Nativity 

Longfin dace Agosia chrysogaster N 

Black bullhead Ameiurus melas I 

Yellow bullhead Ameiurus natalis I 

Desert sucker Catostomus clarkia N 

Bluehead sucker Catostomus discobolus N 

Sonora sucker Catostomus insignis N 

Flannelmouth sucker Catostomus latipinnis N 

Little Colorado sucker Catostomus sp. N 

Common carp Cyprinus carpio I 

Red shiner Cyprinella lutrensis I 

Northern pike Esox lucius I 

Western mosquitofish Gambusia affinis I 

Humpback chub Gila cypha N 

Gila chub Gila intermedia N 

Roundtail chub Gila robusta N 

Virgin River chub Gila seminude N 

Channel catfish Ictalurus punctatus I 

Green sunfish Lepomis cyanellus I 

Bluegill Lepomis macrochirus I 

Little Colorado spinedace Lepidomeda vittata N 

Spikedace Meda fulgida N 

Smallmouth bass Micropterus dolomieu I 

Largemouth bass Micropterus salmoides I 

Golden shiner Notemigonus crysoleucas I 

Rainbow trout Oncorhynchus mykiss I 

Fathead minnow Pimephales promelas I 

Woundfin Plagopterus argentissimus N 

Black crappie Pomoxis nigromaculatus I 

Gila topminnow Poeciliopsis occidentalis 

occidentalis 

N 

Colorado pikeminnow Ptychocheilus lucius N 

Flathead catfish Pylodictis olivaris I 

Loach minnow Rhinichthys cobitis N 

Speckled dace Rhinichthys osculus N 

Brown trout Salmo trutta I 

Walleye Sander vitreus I 

Razorback sucker Xyrauchen texanus N 
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Table 2.5.  Principal component (PC) loadings from principal component analysis of 16 life 

history variables from 24 gage stations throughout the Lower Colorado River Basin.  Variable 

loadings with absolute values > |0.25| in bold. 

  

 

 

Life History Characteristic PC1 PC2 PC3 

Percent Sand 0.23 -0.18 0.31 

Percent Rubble 0.20 -0.27 -0.32 

Percent Silt/mud 0.24 0.29 -0.24 

Substrate Preference 

Percent General 0.19 0.23 0.29 

Fluvial Dependence Percent Fluvial Dependent 0.17 -0.38 -0.09 

Percent Herbivore/Detritivore 0.28 -0.21 -0.04 

Percent Invertivore 0.26 0.13 0.33 

Percent Omnivore 0.27 -0.13 0.28 

Trophic Guild 

Percent Piscivore 0.05 0.39 0.11 

Percent Low Swim Factor 0.29 -0.09 0.16 

Percent High Swim Factor 0.30 0.07 -0.21 

Percent Low Shape Factor 0.19 0.39 -0.32 

Body Morphology 

Percent High Shape Factor 0.29 0.25 -0.10 

Percent Slow  0.26 0.26 -0.23 

Percent Slow to Moderate 0.21 0.18 0.42 

Velocity Preference 

Percent Moderate to Fast 0.09 -0.25 -0.03 

     

 Eigenvalue 7.9 4.3 2.2 

 Percent variance explained 43.7 23.9 12.0 

 Cumulative variance explained 43.7 67.6 79.6 
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Figure 2.1.  The geographic location of the Lower Colorado River Basin.  Major watersheds 

within the basin are denoted by shading and labels, cities by black triangles and major rivers in 

white. 
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Figure 2.2.  An example of the range of variability approach for average June discharge over 

time at a gage station on the Lower Colorado River within the Grand Canyon.  The high bar 

represents the 75th percentile for the historic period whereas low bar represents the 25
th

 

percentile for the historic period.  This example shows extreme hydrologic alteration as no 

current records occurred within the 25
th

 and 75
th

 percentiles of the historic period. 
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Figure 2.3.  The 48 gage stations within the Lower Colorado River Basin with highly greatest 

altered sites in black and least altered sites in white.  Rankings (i.e., low, high) were based on 

hydrologic alteration principal component scores.  The 24 gage stations with fish records are 

symbolized with diamonds. 
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Figure 2.4.  Mean hydrologic alteration principal component (PC) scores by sub-basin of the 

Lower Colorado River Basin.  Higher PC scores suggest more alteration of the variables 

represented by that PC axis.  Error bars represent 1 standard error. 
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Figure 2.5.  Spearman rank correlations between hydrologic alteration principal component (PC) 

axes and landscape-level sources of hydrologic alteration at the watershed scale.  Hydrologic 

alteration PC1 represents an index of alteration of low flows while PC3 represents an index of 

alteration of low flows and rates of change.   
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Figure 2.6.  Regression results between hydrologic alteration principal components (PC) scores 

and life history PC scores.  Fish species which scored high on PCLH2 included flathead catfish, 

northern pike and largemouth bass whereas fish species which scored low on the axis included 

rainbow trout, brown trout, speckled dace and loach minnow. 
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Appendix A.  Description of Indicators of Hydrologic Alteration variables used in this analysis. 

Flow 

component 

IHA variable Description* 

January Mean January flow (cfs) 

February Mean February flow (cfs) 

March Mean March flow (cfs) 

April Mean April flow (cfs) 

May Mean May flow (cfs) 

June Mean June flow (cfs) 

July Mean July flow (cfs) 

August Mean August flow (cfs) 

September Mean September flow (cfs) 

October Mean October flow (cfs) 

November Mean November flow (cfs) 

December Mean December flow (cfs) 

Magnitude  

Baseflow Annual 7-day minimum flow/mean annual flow (cfs) 

Low flow 

pulse count 

Number of annual occurrences during which the magnitude of 
flow remains below the 25th percentile (low pulse) of all daily 
values  

Frequency 

High flow 

pulse count 

Number of annual occurrences during which the magnitude of 
flow remains above the 75th percentile (high pulse) of all daily 
values  

Zero-flow 

days 

Mean annual number of days having zero daily flow 

1 day 

minimum 

Magnitude of minimum annual flow of 1 day (cfs) 

2 day 

minimum 

Magnitude of minimum annual flow of 3 day (cfs) 

7 day 

minimum 

Magnitude of minimum annual flow of 7 day (cfs) 

30 day 

minimum 

Magnitude of minimum annual flow of 30 day (cfs) 

90 day 

minimum 

Magnitude of minimum annual flow of 90 day (cfs) 

Low flow 

pulse duration 

Duration (days) of annual occurrences during which the 
magnitude of flow remains below the 25th percentile (low pulse) 
of all daily values  

High flow 

pulse duration 

Duration (days) of annual occurrences during which the 
magnitude of flow remains above the 75th percentile (high pulse) 
of all daily values 

1 day 

maximum 

Magnitude of maximum annual flow of 1 day (cfs) 

Duration 

2 day Magnitude of maximum annual flow of 3 day (cfs) 
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maximum 

7 day 

maximum 

Magnitude of maximum annual flow of 7 day (cfs) 

30 day 

maximum 

Magnitude of maximum annual flow of 30 day (cfs) 

90 day 

maximum 

Magnitude of maximum annual flow of 90 day (cfs) 

Julian date of 

minimum 

flow 

Mean Julian date of the 1-day annual minimum flow  Timing 

Julian date of 

maximum 

flow 

Mean Julian date of the 1-day annual maximum flow 

Number of 

reversals 

Number of negative and positive changes in water conditions 
from one day to the next 

Fall rate Mean rate of negative changes in flow from one day to the next 
(cfs/day) 

Rate of 

change 

Rise rate Mean rate of positive changes in flow from one day to the next 
(cfs/day) 

* cfs= cubic feet per second 

 


