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Background 

 
Although scientific irrigation scheduling techniques have been available for over 
30 years, most growers do not use them.  Reasons include complexity, time 
required, and lack of confidence in the predictions.  The three primary 
approaches are soil water monitoring, plant stress monitoring, and weather-
based water use predictions.  Soil water monitoring is either labor intensive or 
equipment intensive.  Many automatic sensors have been developed and 
marketed in the last few years, but all have shortcomings.  Reliable methods tend 
to be expensive or labor intensive.  Soil water monitoring is tedious as a primary 
monitoring technique, but valuable as a periodic check on other methods.  Plant 
stress based techniques are poorly developed for most crops, although they may 
become more useful as remote sensing methods and our understanding of plant 
stress improve. 
 
Weather-based irrigation scheduling remains the most common and practical 
method.  Direct estimation of water use by a crop using surface energy balance 
techniques (Bowen Ratio or Eddy Correlation) remain too complex for other than 
research use.  Exciting new surface energy balance methods using remotely 
sensed information from satellites is being tested.  These techniques include 
SEBAL, METRIC, and RESET, which are all based on the same basic concepts.  
However, all require thermal infrared data which is not readily available in the 
frequency or resolution required to schedule irrigations on fields. 
 
The most common method to estimate crop water use and schedule irrigations is 
through use of reference evapotranspiration, ETo, calculated from local weather 
parameters, and a crop coefficient, based on crop and stage of growth (Allen et 
al. 1998).  Many irrigated regions in the Central Plains have weather station 
networks to calculate regional ETo (eg: Colorado Agricultural Meteorological 
Network (CoAgMet) http://ccc.atmos.colostate.edu/~coagmet/ , High Plains 
Regional Climate Center network  http://www.hprcc.unl.edu/ , and Texas High 
Plains Evapotranspiration Network http://txhighplainset.tamu.edu/ ).  Several 
scheduling programs are available to assist users in estimating crop water use 
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from ETo (eg. Wateright http://www.wateright.org/ , KanSched  
http://www.oznet.ksu.edu/mil/Resources/User%20Guides/KanSchedExcel.pdf  
Oregon Irrigation Scheduling OnLine  
http://oiso.bioe.orst.edu/RealtimeIrrigationSchedule/index.htm , and Basic 
Irrigation Scheduling http://biomet.ucdavis.edu/irrigation_scheduling/bis/BIS.htm). 
 
The weakest link in this weather based approach to predict crop water use and 
irrigation requirements is the difficulty in reliably estimating the crop coefficient.  
Crop coefficients are commonly estimated based on days since planting or 
(occasionally) growing degree days (Allen et al. 1998).  A wide variety of irrigated 
crops are grown under a wide range of conditions, and dependable crop 
coefficients are not available for many of the crops and growing conditions.  This 
is especially true for horticultural and other specialty crops that are increasingly 
important in irrigated areas.  These crops are often not well studied and include 
widely varying varieties grown under a wide range of planting densities and 
cultural practices. 
 
Crop water use is related to the interception of incoming solar radiation and the 
amount of transpiring leaf surface.  Sunlit leaves transpire at a higher rate than 
shaded leaves.  Both leaf area index (LAI) and crop light interception have been 
related to crop transpiration.  Light interception, as represented either by the 
portion of the ground surface that is shaded or the crop canopy cover, is much 
easier to measure than LAI.  Although light interception varies with the crop 
canopy structure and the sun angle, several studies have found that mid-day 
shading, or equivalently, canopy cover measured vertically, provides a good 
relative representation of crop transpiration (Johnson et al. 2004, Williams and 
Ayars 2005, Trout and Gartung 2006, Grattan et al. 1998). 
 
Previous studies have shown that various spectral vegetation indices, calculated 
from visible and near-infrared reflectance data, are linearly related to the amount 
of photosynthetically active radiation absorbed by plant canopies.  Related efforts 
have tried to estimate crop coefficients in specific crop systems by ground-based 
and airborne spectral data (Bausch, 1995; Hunsaker et al. 2005; Johnson and 
Scholasch 2005).  Moran et al. (1997) describe the potential and limitations of 
using satellite imagery for crop management. 
 
Functional relationships between remotely sensed vegetation indices and crop 
light interception, and light interception and basal crop coefficient, Kcb, allow 
efficient estimation of crop water use where reference ETo is available.  This 
could allow estimation of crop water use in near real time for individual fields on a 
regional scale.  Such a process was proposed in the DEMETER project in 
southern Europe (Calera-Belmonte et al. 2003).  In this paper, I present 
preliminary relationships between vegetation indices, light interception, and Kcb 
developed from data collected in the San Joaquin Valley on horticultural crops, 
and propose a possible structure for an irrigation scheduling system based on 
remotely-sensed vegetation indices and ETo. 
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VEGETATION INDEX vs. CANOPY COVER 
 
On July 1, 2005, and June 19-20, 2006, canopy cover, CC, of 12 high value 
crops (watermelon, cantaloupe, pepper, bean, tomato, lettuce, onion, garlic, 
cotton, pistachio, almond, grape) in various stages of growth was measured on 
33 fields on the west side of the San Joaquin Valley in California.  Most fields 
were drip irrigated and essentially weed free with a dry soil surface. These fields 
were selected to represent a wide range of major SJV perennial and annual 
horticultural crops with widely varying canopy cover.  Fields were selected that 
had uniform cropping patterns.  Most fields were at least 200 m in the smallest 
dimension.  Details of this study are given in Trout et al. (2008). 
 
Canopy cover was measured with a TetraCam®1 ADC multispectral camera 
suspended from a frame directly above the crop and aimed vertically downward.  
The camera was designed for capture of red, green and near-infrared 
wavelengths of reflected light.  The photos were analyzed to determine the 
percentage of the photo area that contained live vegetation.  Landsat 5 satellite 
images of the study area for July 1, 2005 and June 18, 2006 were acquired from 
the U.S. Geological Survey Landsat Project (http://landsat.usgs.gov/gallery/).  On 
both days there were no clouds over the study area.  The Landsat red and near 
infrared (NIR) data were converted to surface reflectance (SR) and used to 
calculate the normalized difference vegetation index, NDVI (Tucker, 1979) as: 
 

NDVI = (SRNIR – SRred) / (SRNIR + SRred)  (1) 
 

for each Landsat image pixel (100 x 100 ft). 
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Figure 1.  Relationship between Landsat NDVI and Camera Canopy Cover, CC, and 
the linear regression line for the data represented by blue diamonds. 
                                                           
1 Reference to specific equipment and brand names are for the benefit of the reader and do not imply 
endorsement of the product by USDA 
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Figure 1 shows the relationship between NDVI and CC.  NDVI increased linearly 
with CC to about 0.8, but did not increase further with increasing CC.  This 
finding agrees with past work showing that NDVI levels off at high vegetation 
biomass.  One field of dark red lettuce had a very low NVDI (= 0.1) in comparison 
to CC and was excluded as an outlier. 
 
For the remaining 28 fields containing 12 different crops, NDVI correlated well 
with CC (R2=0.95). The intercept value (0.17) represents the NDVI value for bare 
soil in the area.  These results confirm that NDVI can be a good indicator of crop 
canopy cover for a wide range of crops with large differences in canopy structure 
and cover.  The linear relationship is valid up to a CC of 0.8.  For most crops, 
water use does not increase for canopy cover above 0.8, so this limitation does 
not impact estimates of crop water use. 
 
We also estimated CC for each field using measurements of canopy widths or 
crown diameters and estimates of percent shade within the canopy.  Our 
estimates were consistent (R2 = 0.93) but tended to be about 10% lower than 
that measured with the camera.  This indicates that visual measurements can 
provide useful estimates when NDVI measurements are not available. 
 

CANOPY COVER vs. BASAL CROP COEFFICIENT 
 
The USDA-ARS Water Management Research Unit in Fresno, CA uses weighing 
lysimeters to develop crop coefficients for horticultural crops.  Past lysimeter 
research has shown that the basal crop coefficient for grape vines and fruit trees 
are closely related to mid-day light interception (Johnson et al., 2000, Williams 
and Ayars, 2005).  Current research is determining the relationship between light 
interception and basal crop coefficient for annual vegetable crops.  The objective 
is to develop relationships between light interception, represented by canopy 
cover, and basal crop coefficient.  Results from lettuce, bell pepper, and garlic 
crops were presented by Trout and Gartung (2006) and are summarized here. 
 
Canopy cover was measured several times throughout the growing season by 
the same camera technique described above.  The crop coefficient was 
calculated as the ratio of the daily crop water use from the lysimeter to ETo 
(grass reference) measured by the CIMIS weather station #2 (CDWR 2006) 
located on an adjacent grass field.  The crops were sub-surface drip irrigated and 
only data from days with a dry soil surface were used so that soil surface 
evaporation was very small and the calculated crop coefficient represented the 
basal crop coefficient, Kcb.  Figure 2 shows the daily crop coefficient and 
measured canopy cover for the bell pepper crop.  The early season Kc spikes 
result from sprinkler irrigations under low plant cover and illustrate the effects of 
soil surface evaporation.  The late Kc decline results from termination of irrigation 
on day of year 226 and plant stress due to declining soil water content. 
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Figure 2.  Daily crop coefficient, Kc, and canopy cover for a bell pepper 
crop grown on a weighing lysimeter on the west side of the San Joaquin 
Valley, CA in 2005.  Peppers were transplanted on day of year (DOY) 115, 
five sprinkler irrigations were applied before DOY 140, and irrigation was 
terminated on DOY 226. 
 
Figure 3 shows the relationship between Kcb and CC for the three crops.  The 
lettuce and bell pepper crops, although structurally very different, followed the 
same linear relationship with an intercept of 0.14 and slope of 1.13 and a very 
high correlation coefficient.  The garlic crop exhibited a higher intercept but 
smaller slope than the other two crops. The positive intercept is expected 
because with a sparse canopy during early growth, actual sunlight interception by 
the crop substantially exceeds vertical light interception and air movement within 
the canopy is high, resulting in a higher Kcb to CC ratio.  As canopy cover 
increases, most light is intercepted by the top of the canopy and air movement 
within the canopy is reduced.  Once the canopy approaches maximum cover 
(about 0.9 for these crops), the ratio should approach 1.0 to 1.2 (based on a 
grass reference), depending on crop height and roughness (Allen et al., 1998).  
The garlic crop exhibited unexpectedly high Kcb values, possibly due to its 
upright but fairly dispersed canopy structure. 
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Kcb = 1.13*CC + 0.14
R2 = 0.99
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Figure 3.  Relationships between basal crop coefficient, Kcb, and canopy 
cover for three crops grown on a weighing lysimeter on the west side of the 
San Joaquin Valley, CA. Regression equation is for lettuce and pepper 
data. 

 
ESTIMATION OF FIELD AND REGIONAL CROP WATER USE 

 
The two above relationships can be used to estimate Kcb from remotely sensed 
reflectance information. 
 
  CC = 1.22 * NDVI – 0.21   (2)  (from Fig 1) 
 

Kcb = 1.13 * CC + 0.14   (3)  (from Fig 3) 
 
This process should be carried out in two steps rather than attempting to directly 
link Kcb to NDVI.  The intermediate step allows interpolation and extrapolation of 
CC between and beyond NDVI measurements, ground truthing of CC estimates, 
and crop specific Kcb:CC relationships.   
 
Imagery to calculate NDVI will only be available at intermittent times, depending 
on the source, cost, and weather.  For example, Landsat photos are available on 
16 day intervals.  Curve fitting of CC values or simple crop simulation models can 
be used to fill in between and extend beyond measured values.  For a crop that 
has been studied previously, a generic CC vs. growing degree day (or days since 
planting) relationship can be developed and then adjusted using NDVI 
measurements for the current crop.  Many crop simulation models output 
information on plant growth and phenology that can be converted to CC.  
Measured NDVI estimates of CC can be used to calibrate the models for the 
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current crop and improve model CC projections into the future. When NDVI 
measurement intervals are long, visual estimates of CC can be used in place of 
NDVI-based estimates. 
 
The measurements (Fig. 3) indicate that the Kcb:CC relationships are highly 
linear, and may be similar for broad crop types.  Current data are inadequate to 
confidently project Kcb:CC relationships for a wide range of crops.  Collecting 
these basic data should be a priority.  Lysimetry is the most accurate way to 
develop this relationship. Surface energy balance measurements can also be 
used to estimate crop ET (bowen ratio, eddy correlation, SEBAL) and Kcb.  Crop 
simulation models coupled with atmospheric energy balance relationships may 
be able to generate Kcb:CC relationships if the models have been adequately 
calibrated with field data. 
 
Daily values of Kcb calculated from measured or interpolated CC values can be 
converted to Kc values by adding the soil evaporation coefficient, Ke.  Soil 
evaporation can be estimated from irrigation schedule and method, canopy 
cover, soil type, and ETo (Allen et al 1998, chap. 8).  Kc is then used with values 
for ETo from local weather stations, or interpolated ETo maps (Lehner et al. 
2006) to estimate total water use for a field. 
 
Information required to estimate crop water use/requirements includes: 

1. Daily canopy cover from NDVI measurements and interpolation models 
2. Daily ETo from weather stations 
3. Soil type 
4. Crop 
5. Irrigation method and previous irrigation schedule 

 
The first three items can be generated regionally from satellite or aerial images 
and ETo and soils databases.  The last two can be provided by the farmer or 
from government or water district surveys.  The first, second, and fourth items 
are required to estimate crop transpiration.  The first, second, third, and fifth 
items are required to estimate soil evaporation, which becomes relatively less 
important as canopy cover increases.  Farmer inputs of crop type, planting date, 
soil type, and irrigation method are common for irrigation scheduling programs. 
 
When this method is used to generate regional estimates of crop water use, field-
specific crop and irrigation method/schedule information will generally not be 
available.  In this case, regional crop surveys may be used to assign the most 
appropriate Kcb:CC relationships, and regional irrigation methods/patterns used 
to estimate soil evaporation losses.  Where crop information is altogether lacking, 
a generic Kcb:CC relationship can be assumed. 
 
Figure 4 shows an example of maps of a 200 square kilometer region of San 
Joaquin Valley fields depicting NDVI, CC, Kcb and crop transpiration values for 
about 350 fields for July 1, 2005 based on a Landsat 5 image, Eqs. 2 and 3, and 
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a daily ETo for the region on that day of 6 mm.  Farmers could use such maps in 
a GIS framework to identify fields, verify crop canopy cover, and input and store 
crop and irrigation information for individual fields.  The system could then 
estimate daily crop water use for the field up to the current day, project crop 
water demand based on historical ETo averages or weather forecasts, and 
produce maps and tables of cumulative crop water use for a chosen time period.  
This system would be more accurate than current methods for most crops.  
Aggregated information such as is shown on the maps, can be used by water 
suppliers to estimate water demand for individual canals or the whole district.  By 
virtue of large-scale measurements offered by remote sensing and efficient data 
processing capabilities, such a system could be very efficient and require fewer 
ground-based measurements, than most current scheduling programs.  Instead 
or providing users with information they would then use to calculate crop water 
use for their fields, it would provide growers with direct estimates of water use 
tailored to their crop and field. 
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Figure 4.  Maps of (a) NDVI from a July 1, 
2005 Landsat 5 image, (b) Canopy Cover 
converted from (a) with Eq. 2, (c) Kcb 
from Eq 3, and (d) Crop Transpiration for 
the day based on ETo = 6 mm from the 
regional CIMIS weather station. 
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