This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Methodological Advances

An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology

R. Henrik NILSSONa,b,\ast, Vilmar VELDREb, Martin HARTMANNc, Martin UNTERSEHERd, Anthony AMENDe, Johannes BERGSTENf, Erik KRISTIANSSONg,h, Martin RYBERGi, Ari JUMPPONENj, Kessy ABARENKOVb

aDepartment of Plant and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
bDepartment of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005 Tartu, Estonia
cDepartment of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, 4504-2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
dErnst-Moritz-Arndt University Greifswald, Institute of Botany and Landscape Ecology, Grimmer Str. 88, D-17487 Greifswald, Germany
eDepartment of Plant and Microbial Biology, University of California at Berkeley, 321 Koshland Hall, Berkeley, CA 94720-3102, USA
fDepartment of Entomology, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden
gDepartment of Zoology, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
hThe Sahlgrenska Academy at the University of Gothenburg, Department of Neuroscience and Physiology, Box 434, 405 30 Göteborg, Sweden
iDepartment of Ecology and Evolutionary Biology, University of Tennessee at Knoxville, TN 37996-1610, USA
jDivision of Biology, Kansas State University, Manhattan, KS 66506, USA

\begin{abstract}
We introduce an open source software utility to extract the highly variable ITS1 and ITS2 subregions from fungal nuclear ITS sequences, the region of choice for environmental sampling and molecular identification of fungi. Inclusion of parts of the neighbouring, very conserved, ribosomal genes in the sequence identification process regularly leads to distorted results. The utility is available for UNIX-type operating systems, including MacOS X, and processes about 1 000 sequences per minute.
\end{abstract}
Fungi form a ubiquitous group of heterotrophic organisms with a largely subterranean or otherwise inconspicuous life cycle (Blackwell et al. 2006). The poor correspondence between aboveground fruit bodies and the diversity of the fungal community below ground (or in the substrate) has precluded a detailed understanding of the species composition of fungal communities, although the access to DNA sequence data is starting to change this (Peay et al. 2008; Hibbett et al. 2009). The most commonly sequenced genetic marker for molecular identification of fungi from environmental samples is the internal transcribed spacer (ITS) region of the nuclear ribosomal repeat unit (Ryberg et al. 2009; Abarenkov et al. 2010). It is cumbersome to attain the sequence depth needed for reasonably accurate views of the underlying community, but emerging sequencing technologies such as massively parallel (“454”) pyrosequencing (Margulies et al. 2005) address this and shift the focus from sequence depth to sequence processing and quality control (Huse et al. 2007; Shendure & Ji 2008; Galand et al. 2009; Kunin et al. 2010).

Massively parallel pyrosequencing generates reads shorter than those obtained by traditional Sanger sequencing. As a result, sequencing the ITS region in full (450–650+ bp.) is presently impossible. The ITS offers three potential target subregions for which numerous PCR primers are readily available: ITS1, 5.8S, and ITS2 (Fig 1). The ITS1 is highly variable and about 180-base pairs (bp.) in length. The ITS2 is nearly as variable although slightly shorter (~170 bp.); the lengths of ITS1 and ITS2 do, however, vary substantially among taxa (Nilsson et al. 2008). The intercalary 5.8S gene (~160 bp.) is very conserved and can be aligned across the fungal phyla. The flanking ribosomal genes nuclear small subunit (nSSU/18S) upstream of ITS1 and nuclear large subunit (nLSU/28S) downstream of ITS2 make good primer anchors (for ITS1 and ITS2, respectively), with the intercalary 5.8S serving as the second anchor region (cf. Buée et al. 2009; Jumpponen & Jones 2009). Depending on how far into these genes the primer sites are, however, the residual portions of the genes left in the ITS sequence may skew sequence similarity searches involving, e.g., BLAST (Altschul et al. 1997). These extra sequence segments, many times more conserved than ITS1 and ITS2, will always find matches in the sequence databases even when ITS1 and ITS2 do not—and so will invariably add to the length of the BLAST alignment. This makes automated interpretation of the BLAST results problematic and regularly has the effect that a different sequence or even species is presented as the best match than if ITS1 or ITS2 alone had been analyzed (Bruns & Shefferson 2004). This was observed for 11 % of the 86 000 ITS-based BLAST searches studied by Nilsson et al. (2009). Sequence clustering into hypothetically conspecific taxonomic units may similarly be distorted by these segments.

Though conserved, the nSSU and nLSU are variable enough that they cannot be located and deleted using regular expressions or pattern matching for a wide selection of fungi. They can be removed manually given a multiple alignment and a primer chart or an annotated reference alignment such as the one provided by Hibbett et al. (1995), but this becomes unfeasible as datasets grow. The present study introduces a software utility to extract the ITS1 and ITS2 from large fungal ITS datasets. The software accounts for partial sequence data—such as when only nSSU and half of ITS1 are available—as well as input sequences in the reverse complementary direction. It is available at http://www.emerencia.org/Fungal-ITSExtractor.html (Supplementary material 1) for UNIX-based operating systems, including MacOS X.

The software is written in Perl and processes FASTA format (Pearson & Lipman 1988) input sequences sequentially. ITS1 and ITS2 are located using long (30–50 bp.) and short (18–25 bp.) Hidden Markov models (HMMs) computed in the HMMER package (v. 2; Eddy 1998) from inclusive alignments of the nSSU (3’ region; Tehler et al. 2003), 5.8S (5’ and 3’ regions; Nilsson et al. 2008), and nLSU (5’ region; James et al. 2006). The query sequence is compared to the long HMMs for each of nSSU, 5.8S (5’ and 3’), and nLSU using the HMMER package. If the boundaries of these genes can be detected, ITS1 and ITS2 are extracted from the sequence based on those positions. If not, an attempt is made to locate the genes using the shorter HMMs to account for sequences with shorter included conserved regions. Partial extractions are performed if one or more, but not all, genes are detected; if, for instance, only the 5’ end of 5.8S is found, the ITS1 is extracted as the region upstream of 5.8S. A set of FASTA files comprises the core output of the software; these include all ITS1 and ITS2 sequences extracted from the input sequences and all sequences for which neither subregion could be found. The program outputs detailed information to the screen, including a summary of the extraction process for each input sequence and the absolute position of each of the subregions in the sequence. The feature to highlight sequences for which none of the flanking regions could be found is of particular relevance to massively parallel pyrosequencing, where artificial sequences consisting entirely of noise are sometimes produced and may pass filters based solely on quality scores (Quince et al. 2009). Furthermore, provided that the query sequences feature the 5’ region of 5.8S, reverse complementary sequences are indicated as such and given in the correct direction.

The software performs better the more of nSSU/5.8S/nLSU are available (up to about 50 bp.). We found that the use of HMMs down to ca. 18 bp. in size (matching as little as 18 bp. of the distal part of any of the genes) still provide satisfactory

Fig 1 — Overview of the fungal ITS region. The spacer ITS1 is found between the 3’ end of the nSSU (18S) gene and the 5’ end of the 5.8S gene, and the ITS2 is found between the 3’ end of 5.8S and the 5’ end of the nLSU (28S) gene. The long bars above the genes indicate the location of the long HMM for that particular gene, and the short bars indicate the location of the short HMMs. All HMMs are positioned in such a way as to cover the very end and the very beginning of the respective genes. The individual lengths of the HMMs were adjusted to reflect the position of the most commonly used primers.
matches with few false positives. Any HMMs shorter than that are difficult to construct if they still are to be used for a wide selection of fungi. Sequences of poor read quality may pose a problem to the software insofar as the region to which the HMM is compared is obfuscated by incorrect or ambiguous nucleotides. The software may also perform suboptimally on taxa with very deviant rRNA genes — notably the genera Cantharellus and Tulasmella as well as some basal lineages such as the Microsporidia (Feibelman et al. 1994; James et al. 2006; Moncalvo et al. 2006; Taylor & McCormick 2008) — and taxa with large insertions or deletions in the regions targeted by the HMMs (cf. Shinohara et al. 1996; Bhattacharya et al. 2000; Holst-Jensen et al. 2004). To seek to modify general fungal HMMs to also include these deviant lineages may detract from the usefulness of the HMMs for the non-deviant lineages; instead, such taxa should be addressed using tailored HMMs.

We evaluated the software on 1,500 ITS sequences from all fungal phyla in GenBank (Benson et al. 2008) and from the Quercus phyllosphere pyrosequencing data of Jumpponen & Jones (2009) (Supplementary material 2). All sequences were compared with Hibbett et al. (1995) to identify the subregions, and the results were juxtaposed with those obtained from the software. The respective subregions were identified and extracted successfully for 1,462 (97.5 %) of the sequences. The 38 cases where the extraction of either subregion failed were explained by poor sequence data (17 instances), the failure of the usefulness of the HMMs for the non-deviant lineages; instead, such taxa should be addressed using tailored HMMs.

Acknowledgements

RHN and KA gratefully acknowledge support from the Frontiers in Biodiversity Research Centre of Excellence (University of Tartu) and the Fungi in Boreal Forest Soils Network. Dr. David Taylor of Unilever is thanked for valuable input on the project.

Supplementary data

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.funeco.2010.05.002.

References

Margulis M, Egholm M, Altmann WE, Attiya S, Bader JS, Bembrin LA, Berk J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes NV, Godwin BC, He W,

