Open Letter to Senator Rita Levi-Montalcini

WE ARE A GROUP OF RESEARCHERS (1). WE WRITE THIS LETTER TO YOU WITH THE UTMOST respect and gratitude for what you have done and still do for research in Italy. We appreciated all the statements of intent of the past governments as well as the current one: more money for research, transparent competitions, and the like. But all this never went beyond mere words.

Professor, in Italy there are 60,000 university researchers with temporary contracts! This is no “marginal phenomenon”—we make up 50% of the university labor force.

Unfortunately, the situation is no better in research agencies. We do research work, lecture, supervise students writing graduation theses, publish articles, attend congresses, and draw up appeals for funds (in which our names do not even appear).

We work at least as much as long-term employees but we do not have the same rights. In Italy there are only a few open competitions, and, even worse, they often look like farces: The name of the winner is known even before the call for expression of interest is issued! Meritocracy in Italy is an empty word seldom translated into reality. Fast university careers are only for the chosen ones or the descendants of families traditionally connected with the university. Everybody knows that it takes good opportunities to improve one’s skills, but opportunities are not for everyone according to their merits. And the situation is even worse for women.

As we strive to defeat cancer, discover new molecules and genes, develop new software, support an ever-changing culture, and identify new ways to teach and learn, remember that achieving these goals is partly due to the work of university researchers with temporary contracts, who have worked for years hoping to finally obtain a job that would give them economic stability and freedom.

University researchers with temporary contracts are not free. They have to make compromises or their contracts won’t be renewed; they have to withdraw from open competitions to let a “chosen one” be hired; they have to accept that their data are published without their names among the authors. They do all this to survive. We will be a generation of pensioners without a pension.

Then, maybe, the state will take care of us. For many years, many people (and governments) forgot all about us. Researchers who are now 30, 40, 45 years old still have temporary contracts and may now be too old for a long-term contract as university researchers. Many among us have had a temporary contract for 10 to 15 years; they have had many different kinds of short-term contracts and their work has been evaluated every year before their contract could be renewed. We wonder what else we have to endure before we are considered suitable for a long-term contract.

Professor, with your usual strength of mind you will certainly be able to pass on the message that the university in Italy can be saved only if this problem is solved.

Thank you in advance for your understanding and support.

RITA CLEMENTI,1* LEONARDO BARGIGLI,2 SILVIA SABBIONI3

1 Via Corridoni 5, 27100 Pavia, Italy. 2 Via della Greve 12D, 50018 Scandicci (Fi), Italy. 3 Department of Experimental and Diagnostic Medicine, University of Ferrara, Luigi Borsari 46, 44100 Ferrara, Italy.

*To whom correspondence should be addressed. E-mail: rita.clementi@gmail.com

Response

I AM WELL AWARE OF THE PRECARIOUS SITUATION in Italy regarding researchers with temporary employment contracts. During the approval of Italy’s 2008 Budget, I supported measures to stabilize employment for those working under temporary contracts. Although the government was not able to invest heavily in this expenditure, the Budget Law did allocate funds to reduce unsteady employment.

I hope the new government will be able to ameliorate this long-standing problem, and I also assure my continued support during the next legislature.

RITA LEVI-MONTALCINI

President, European Brain Research Institute, Via del Fosso di Fiorano 64, 00143 Rome, Italy.

Reference

1. This Letter has been signed by 776 researchers with temporary contracts in Italy or abroad. The complete list is available as Supporting Online Material at www.sciencemag.org/cgi/content/full/319/5870/1615a/DC1.
Preserving Accuracy in GenBank

GENBANK, THE PUBLIC REPOSITORY FOR nucleotide and protein sequences, is a critical resource for molecular biology, evolutionary biology, and ecology. While some attention has been drawn to sequence errors (1), common annotation errors also reduce the value of this database. In fact, for organisms such as fungi, which are notoriously difficult to identify, up to 20% of DNA sequence records may have erroneous lineage designations in GenBank (2). Gene function annotation in protein sequence databases is similarly error-prone (3, 4). Because identity and function of new sequences are often determined by bioinformatic analyses, both types of errors are propagated into new accessions, leading to long-term degradation of the quality of the database.

Currently, primary sequence data are annotated by the authors of those data, and can only be reannotated by the same authors. This is inefficient and unsustainable over the long term as authors eventually leave the field. Although it is possible to link third-party databases to GenBank records, this is a short-term solution that has little guarantee of permanence. Similarly, the current third-party annotation option in GenBank (TPA) complicates rather than solves the problem by creating an identical record with a new annotation, while leaving the original record unflagged and unlinked to the new record.

Since the origin of public zoological and botanical specimen collections, an open system of cumulative annotation has evolved, whereby the original name is retained, but additional opinion is directly appended rather than solves the problem by creating an identical record with a new annotation, while leaving the original record unflagged and unlinked to the new record.

The topmost priority in any national planning. It cannot be secured, economic gains and reduction in suffering may be worth the effort. The drop from a million to a thousand deaths in 10 years’ time if India matched the USAID grant for malaria eradication. Subsequently, I felt guilty because total eradication had not been achieved. However, comparison of the statements on malaria in the first and 10th 5-year economic plans of India shows the value of investments in malaria eradication.

The first 5-year plan states, “Malaria is the most important public health problem in India and its control should therefore be assigned topmost priority in any national planning. It has been estimated that about a million deaths are caused in India every year by malaria among the 100 million people who suffer from this disease. The economic loss is estimated at several hundred crores (a crore equals 10 million) of rupees every year. Vast fertile areas remain fallow and natural resources remain unexploited, largely due to the ravages of malaria. Aggregation of labor in irrigation, hydroelectric and industrial projects is at-...ted with severe outbreaks of malaria if special steps are not taken for its control. The use of DDT as a residual insecticide has brought about far-reaching changes in the technique of the control of malaria...” (1).

Fifty years later, the 10th 5-year plan reports less than a thousand deaths in a population double the size of that in 1950 (2). The drop from a million to a thousand deaths underscores the value of the malaria program.

The fact that malaria has been eliminated in the United States and Western Europe and largely controlled in India does not ensure success of eradication programs in Africa. However, there is cause for some optimism, given that the most effective mosquito vector in Africa, Anopheles gambiae, has been eradicated in northeast Brazil.

Information from India’s 5-year economic plans shows that even if complete eradication cannot be secured, economic gains and reduced suffering may be worth the effort.

TIMOTHY D. BAKER

Department of International Health, and Environmental Health Sciences, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA.

References

Malaria Eradication in India: A Failure?

IN THE 7 DECEMBER 2007 ISSUE, L. ROBERTS and M. Ensor discuss malaria eradication in the News Focus story “Did they really say … eradication?”

In the mid-1950s, I optimistically promoted malaria eradication by promising the Minister of Finance of India that there would be no need to spend money on malaria control in 10 years’ time if India matched the USAID grant for malaria eradication. Subsequently, I felt guilty because total eradication had not been achieved. However, comparison of the statements on malaria in the first and 10th 5-year economic plans of India shows the value of investments in malaria eradication.

The first 5-year plan states, “Malaria is the most important public health problem in India and its control should therefore be assigned topmost priority in any national planning. It has been estimated that about a million deaths are caused in India every year by malaria among the 100 million people who suffer from this disease. The economic loss is estimated at several hundred crores (a crore equals 10 million) of rupees every year. Vast fertile areas remain fallow and natural resources remain unexploited, largely due to the ravages of malaria. Aggregation of labor in irrigation, hydroelectric and industrial projects is attended with severe outbreaks of malaria if special steps are not taken for its control. The use of DDT as a residual insecticide has brought about far-reaching changes in the technique of the control of malaria...” (1).

Fifty years later, the 10th 5-year plan reports less than a thousand deaths in a population double the size of that in 1950 (2). The drop from a million to a thousand deaths underscores the value of the malaria program.

The fact that malaria has been eliminated in the United States and Western Europe and largely controlled in India does not ensure success of eradication programs in Africa. However, there is cause for some optimism, given that the most effective mosquito vector in Africa, Anopheles gambiae, has been eradicated in northeast Brazil.

Information from India’s 5-year economic plans shows that even if complete eradication cannot be secured, economic gains and reduced suffering may be worth the effort.

TIMOTHY D. BAKER

Department of International Health, and Environmental Health Sciences, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA.

References

M. I. BIDARTONDO ET AL.

Imperial College London and Royal Botanic Gardens, Kew TW9 3DS, UK.

Letters to the Editor

Letters (~300 words) discuss material published in Science in the previous 3 months or issues of general interest. They can be submitted through the Web (www.submit2science.org) or by regular mail (1200 New York Ave., NW, Washington, DC 20005, USA). Letters are not acknowledged upon receipt, nor are authors generally consulted before publication. Whether published in full or in part, letters are subject to editing for clarity and space.

References
5. The names of all 256 authors can be found in the Supporting Online Material (www.sciencemag.org/cgi/ content/full/319/5870/1616a/DC1).

TECHNICAL COMMENT ABSTRACTS

COMMENT ON “Physical Model for the Decay and Preservation of Marine Organic Carbon”

Bernard P. Boudreau, Carol Arnosti, Bo Barker Jørgensen, Donald E. Canfield

Rothman and Forney (Reports, 1 June 2007, p. 1325) described a model for the decay of marine organic carbon. However, the enzyme deactivation rates required by their model are too fast compared with available data, and the model fails to explain the similarity in observed decay rate constants from different experiments. Alternative models provide equally good fit to the observed temporal trend in decay rate constants.

Full text at www.sciencemag.org/cgi/content/full/319/5870/1616b

RESPONSE TO COMMENT ON “Physical Model for the Decay and Preservation of Marine Organic Carbon”

Daniel H. Rothman and David C. Forney

Fast enzyme deactivation rates are not required by our physical model of organic matter decay. Instead, low effective diffusivities arising from sorption of enzymes and physical protection by minerals are sufficient. Our model predicts observed temporal trends in organic-matter decay rather than specific rate constants. Existing statistical models of intrinsic reactivity explain observed trends empirically but not theoretically.

Full text at www.sciencemag.org/cgi/content/full/319/5870/1616c