PREDATION BY NONNATIVE FISH ON NATIVE FISHES IN THE SAN JUAN RIVER, NEW MEXICO AND UTAH

W. HOWARD BRANDENBURG AND KEITH B. GIDO

Division of Fishes, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque NM 87131
Present address of KBG: Department of Zoology, University of Oklahoma, Norman, OK 73019

Introduced predaceous fishes can decrease the abundance or result in extirpation of native fish species (Miller et al., 1989; Krueger and May, 1991). In particular, studies of fishes in the American Southwest have suggested that predation of larvae and juveniles may affect recruitment of native fish (Ruppert et al. 1993; Scoppettone, 1993; Marsh and Douglas, 1997). Although adults of many native fishes in the San Juan River (e.g., catostomids) are too large to be consumed by some nonnative fishes, their larvae are vulnerable to predation. In addition, because many nonnative fishes use similar low velocity habitats as do larval and juvenile native species, the potential for negative interactions among species is increased (Tyus et al., 1982; Gido and Propst, 1999).

Some nonnative fishes have exhibited different feeding behaviors depending on location. In a study within the Colorado River system, Ruppert et al. (1993) found a relatively high occurrence (15%) of larval fish in stomachs of Cyprinella lutrensis. They compared those results to a study by Jennings and Saiki (1990) who found no larval fish in stomachs of C. lutrensis from the San Joaquin River drainage. The disparity between these studies could be a function of site specific characteristics such as availability of alternative food items (Ruppert et al., 1993), or it could be due to specific behavior and vulnerability of prey (e.g., Johnson et al., 1993). The purpose of our study was to determine if nonnative fishes, primarily C. lutrensis and Pimephales promelas, prey on larval of native species in the San Juan River, New Mexico and Utah.

In the San Juan River, the syntopic occurrence of native and nonnative fishes provided the opportunity to assess specific interactions in this system. Although we concentrated on food habits of C. lutrensis and P. promelas, several individuals of Cyprinus carpio, Fundulus zebrinus, Micropterus salmoides, and Ameiurus melas also were examined. Fish were collected from four study sites located in the middle reach of the San Juan River between Shiprock, New Mexico and Bluff, Utah. For a detailed description of the study area and fish assemblage in this reach of the San Juan River see Gido et al. (1997).
Table 1—Nonnative species taken from the San Juan River that were examined for the presence of larval fish in the gut.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number examined</th>
<th>Size range (mm SL)</th>
<th>Percent occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprinella lutrensis</td>
<td>414</td>
<td>31-68</td>
<td>0.97</td>
</tr>
<tr>
<td>Cyprinus carpio</td>
<td>7</td>
<td>20-50</td>
<td>0.00</td>
</tr>
<tr>
<td>Pimephales promelas</td>
<td>95</td>
<td>33-62</td>
<td>0.00</td>
</tr>
<tr>
<td>Ameiurus melas</td>
<td>4</td>
<td>58-71</td>
<td>0.00</td>
</tr>
<tr>
<td>Fundulus zebrinus</td>
<td>3</td>
<td>20-25</td>
<td>50.00</td>
</tr>
<tr>
<td>Micropipichthys salmoides</td>
<td>6</td>
<td>33-68</td>
<td>33.33</td>
</tr>
</tbody>
</table>

Fish were collected with a 1.6 mm-mesh seine during daylight hours in June–July 1994 and June 1995. Collections were taken in low velocity backwater habitats that typically contained inundated vegetation. During our sampling, larval native fish were present, but most of the nonnative species had not yet spawned (Gido and Propst, 1999). Fish from each seine haul were preserved as discrete collections in 5% buffered formalin.

To maximize the likelihood of documenting larval fish predation, we only examined digestive tracts of nonnative fish from collections where larval native fish were present (n = 35). Food items of nonnative fish (>20 mm standard length, SL) were examined under a stereomicroscope. All fish larvae discovered were identified to family, and most were identified to species. Contents in the bottom of collecting jars also were examined to ensure that any regurgitated fish were detected.

Of the six nonnative species collected, only C. lutrensis, M. salmoides, and A. melas had consumed larval fish (Table 1). The occurrence of larval predation, however, was relatively low; only eight of the 529 individuals dissected had consumed larval fish. The larval fish were unidentified cyprinidae (n = 3), R. osculus (n = 2), C. latipinnis (n = 2), and C. discobolus (n = 1). The largest number of larval fish (n = 4) was found in C. lutrensis. Ameiurus melas and M. salmoides, although represented by a few specimens, had the highest frequency of consuming larval fish. No larval fish remains were observed in the bottom of collection jars.

Despite targeting habitats where adult nonnative and larval native fishes occurred together, only a few specimens had consumed larval fish. It is possible we may have underestimated predation of larvae due to rapid digestion or potential shredding of flesh by pharyngeal teeth. However, because water temperatures were relatively low (<18°C) during the time of collection, digestion presumably would be relatively slow. Tearing by pharyngeal teeth was most likely to occur in P. promelas, which has been documented to shred its prey (Dunsmoor, 1995). In the other specimens in which we found larval fish, there was little indication of tearing by pharyngeal teeth.

Alternatively, larval predation by C. lutrensis and P. promelas in the San Juan River appeared to be relatively low in comparison to Ruppert et al. (1993). Several factors may limit larval predation by nonnative cyprinids in the San Juan River. Gape size could have limited the availability of larval prey for smaller nonnative fishes. Some support for this conclusion is provided by the high frequency of larval fish in stomachs of juvenile A. melas and M. salmoides, which, even as juveniles, have relatively large gapes. In addition, C. lutrensis that consumed larvae were relatively large (40, 51, 51, and 64 mm SL). Other factors that could reduce the occurrence of larval predation include high abundance of alternate food sources (Ruppert et al., 1993) or availability of refugia habitats to escape predation (e.g., Meffe, 1985).

Recruitment for the common native fishes in the San Juan River (C. latipinnis, C. discobolus, and R. osculus) is sufficient to sustain relatively large populations (D. Propst, pers. comm.). Thus, along with results of this study, larval predation by nonnative fishes does not appear to greatly reduce recruitment for these species. However, larvae of rare species such as Ptychochilus lucius and Xyrauchen texanus have been shown to have poor recruitment (Platania et al., 1991). Therefore, we cannot discount the importance of larval predation by nonnative fishes. Rather, we have documented that larval predation does occur, but further studies should be designed to determine the relative importance to the various native species within this system. In particular, indirect effects of predators (e.g., Mittelbach and Chesson, 1987) must also be considered when assessing the impact to native fish populations.

Resumen—La de predacion de peces nativos por especies introducidas se considera uno de
los mayores factores que contribuyen a la disminución de peces endémicos, en el Suroeste American. En este estudio, examinamos la dieta de peces no-nativos obtenidos del Río San Juan, New Mexico y Utah, para documentar la depredación de la larva de peces nativos. La mayoría del contenido estomacal que analizamos corresponden a dos especies: Cyprinella lutrensis y Pimelodus promelas, también examinamos varios especímenes de Gymnocypris carpio, Fundulus zebra, Micropterus salmoides, y Ameiurus melas. Se encontró que únicamente C. lutrensis, M. salmoides, y A. melas consumieron la larva de peces nativos. Aunque logramos documentar la depredación de la larva de peces nativos, la presencia de estos fue pequeña. Solamente 8 de 529 ejemplares tuvieron larva de peces en su dieta diaria. Estudios adicionales deben designarse para determinar la importancia relativa de la depredación de la larva de especies nativas dentro del sistema.

This project was supported in part by contracts from the New Mexico Department of Game and Fish (contract No. 93-516-63) and United States Bureau of Reclamation (contract No. 2-F144-12140). We thank N. M. Johnston for laboratory assistance and M. C. Molles, Jr. and D. L. Probst for valuable discussions. Comments by S. P. Platainia, H. M. Tyus, and an anonymous reviewer greatly improved this manuscript.

LITERATURE CITED


Associate Editor was Bruce Demarais.