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Abstract Hyperspectral remote sensing has the potential to map numerous attributes of the Earth’s surface,
including spatial patterns of biological diversity. Grasslands are one of the largest biomes on Earth. Accurate
mapping of grassland biodiversity relies on spectral discrimination of endmembers of species or plant functional
types. We focused on spectral separation of grass lineages that dominate global grassy biomes: Andropogoneae
(C4), Chloridoideae (C4), and Pooideae (C3). We examined leaf reflectance spectra (350–2,500 nm) from 43
grass species representing these grass lineages from four representative grassland sites in the Great Plains region
of North America. We assessed the utility of leaf reflectance data for classification of grass species into three
major lineages and by collection site. Classifications had very high accuracy (94%) that were robust to site
differences in species and environment. We also show an information loss using multispectral sensors, that is,
classification accuracy of grass lineages using spectral bands provided by current multispectral satellites is
much lower (accuracy of 85.2% and 61.3% using Sentinel 2 and Landsat 8 bands, respectively). Our results
suggest that hyperspectral data have an exciting potential for mapping grass functional types as informed by
phylogeny. Leaf‐level hyperspectral separability of grass lineages is consistent with the potential increase in
biodiversity and functional information content from the next generation of satellite‐based spectrometers.

Plain Language Summary Understanding and identifying changes in plant diversity along broad
environmental gradients requires scalable and reliable data. Spectroscopy has been shown to provide data across
scales with the ability to measure plant reflectance at various extents (e.g., leaf, plot, and landscapes) with high
spectral resolution and broad coverage of the electromagnetic spectrum (350–2,500 nm). In grasses,
evolutionary lineage captures major axes in plant biodiversity and functional variation. We show that
identifying grass evolutionary lineages from spectroscopy is possible based on common characteristics in their
leaf‐level spectra. We classified 43 grass species from four sites in North America into their respective
evolutionary lineages with very high accuracy (>90%) based on similarities in their leaf spectra. Classifying
grass species into lineages using coarser spectral resolution data, similar to existing multispectral satellites,
Sentinel 2 and Landsat 8, resulted in lower accuracy due to a loss of information from decreasing the spectral
resolution. Grass lineages likely have similar spectra because of common leaf traits that evolved under similar
ecological contexts. The importance of these distinctions found in the spectral reflectance of dominant grass
lineages, should help our efforts in mapping and understanding grassland ecosystem function and patterns of
biodiversity.

1. Introduction
A major goal for imaging spectroscopy is to remotely monitor dimensions of biodiversity (Cawse‐Nicholson
et al., 2021; Griffith et al., 2023a, 2023b; Rocchini et al., 2022). To that end, numerous studies have sought to
relate spectral diversity to taxonomic, functional, and phylogenetic diversity across scales (e.g., Cavender‐Bares
et al., 2017; Schweiger et al., 2018). Leaf spectra may represent a scalable feature of field to remote sensing
observations (Cavender‐Bares et al., 2017, 2022; Serbin et al., 2014). The first step in using leaf spectra to scale to
larger extent remote sensing observations is to identify which properties of vegetation are detectable by spectra.

Remote sensing enables continuous mapping of species distributions, functional types, and traits along envi-
ronmental gradients, thereby improving understanding of linkages among plants, traits, and their ecological
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contexts, as well as spatial patterns from local to global scales. Precursor sensors on the International Space
Station (ISS), such as DLR Earth Sensing Imaging Spectrometer (DESIS), Hyperspectral Imager Suite (HISUI),
and Earth Surface Mineral Dust Source Investigation (EMIT), and the upcoming satellite hyperspectral missions
Environmental Mapping and Analysis Program (EnMAP), Copernicus Hyperspectral Imaging Mission for the
Environment (CHIME), and surface biology and geology (SBG), as well as airborne missions such as NEON
AOP and the AVIRIS campaigns provide repeat measurements of hundreds of narrow wavelength reflectance
bands across broad spectral regions (300–2,500 nm) at ∼30 m or higher spatial resolution. The broad spectra
measured can be grouped into three main regions–the visible (VIS), near‐infrared (NIR), and short‐wave infrared
(SWIR)–each capturing different features of leaves and canopies (Ustin et al., 2004). Reflectance in the VIS
region is generally dominated by pigments such as chlorophyll and carotenoids, which can indicate photosyn-
thetic capacity (Curran et al., 1990; Gitelson & Merzlyak, 1998; Ustin et al., 2004). The NIR region is controlled
by the internal structure of leaves, such as intercellular spaces within a leaf, and air‐water interfaces (Jen-
sen, 2007; Ustin et al., 2004). Lastly, the SWIR region is sensitive to differences in water content and biochemical
constituents such as lignin, cellulose, and components critical for biochemistry such as leaf Nitrogen (Jen-
sen, 2007; Ustin et al., 2004). Thus, the broad coverage of hyperspectral imaging can help discriminate between
different species and traits in ways that multispectral sensors often cannot.

Related plant species can share spectral features because of similar leaf traits and niche space (Crisp et al., 2009;
Meireles et al., 2020). Because traits underlie most differences in leaf spectra, and these traits have evolutionary
histories and constraints, leaf spectra should contain a phylogenetic signal, a phenomenon also known as
phylogenetic conservatism (Cavender‐Bares et al., 2016, 2017, 2022; Schweiger et al., 2018). Early work
revealing a phylogenetic signal in remote sensing observations showed that phylogeny helped explain the foliar
chemistry and spectroscopic signatures among tree canopies of a lowland tropical forest (Asner & Martin, 2011).
Analysis of over 540 plant species found phylogenetically driven variation in leaf reflectance, and that the spectral
region with the strongest phylogenetic signals varied with lineage (Meireles et al., 2020). For example, in
monocots, the visible and NIR regions were most closely associated with phylogenetic signal whereas in gym-
nosperms the SWIR region was most strongly associated with phylogenetic signal (Meireles et al., 2020). Spectral
diversity or spectral dissimilarity from experimental plots also increases with evolutionary divergence time and
was linked to variation in productivity (Schweiger et al., 2018). Phylogeny‐based approaches have enabled the
partitioning of sources of spectral variability in regional floras (Griffith, Byrd, Anderegg, et al., 2023) and the
mapping of dominant plant lineages (Griffith et al., 2023a, 2023b). Most studies showing phylogenetic conser-
vatism in leaf spectra, however, are limited to single sites and few sampling periods despite recognition that leaf
traits are highly plastic within a given species and change under varying resource limitations (Bachle & Nip-
pert, 2022). Thus, a key question is which leaf spectra wavelengths vary with phylogeny, and are changes in these
wavelengths discernible under different environmental contexts?

The Poaceae (grasses) have radiated into one of the most diverse plant families on Earth, with over 11,500 extant
species (Soreng et al., 2017). Grass‐dominated ecosystems represent a model system for the early development of
lineage‐based classification and mapping (Griffith et al., 2020). Grasses exhibit a high degree of variation in their
ecological behavior (Liu et al., 2012; Taylor et al., 2010). This variability has traditionally been grouped into
coarse plant types based on photosynthetic pathway, that is, C3 versus C4. The distribution of C3 and C4 grasses is
well studied, with C4 grasses generally more abundant and more productive in warm and high light environments
(Still et al., 2003). However, the C4 photosynthetic pathway has evolved independently in at least 24 grass lin-
eages (Aliscioni et al., 2012; Griffith et al., 2020) that differ in their ecology, climate niches, and lineage ages
(Edwards & Smith, 2010; Edwards & Still, 2008). The Andropogoneae and Chloridoideae lineages are globally
dominant C4 lineages, and Pooideae is the most dominant C3 lineage (Griffith et al., 2020; Lehmann et al., 2019).
These lineages sort along environmental gradients and exhibit a very different biogeographic distribution than
classic C3–C4 turnover would suggest (Griffith et al., 2020). Because each lineage evolved in a different
ecological context, similarities among their morphological, biochemical, and physiological traits should be more
accurately captured by lineage than by functional groupings based on photosynthetic pathway (Donnelly
et al., 2023; Griffith et al., 2020).

Despite being one of the most species‐rich Angiosperm families and dominating one of the largest biomes on
Earth, the distribution of grasses remain misrepresented in ecosystem models (Still et al., 2019). This issue is
significant because grassland ecosystems are threatened globally, and account for a large proportion of terrestrial
productivity and are a center of biodiversity (Bond et al., 2005; Bond & Midgley, 2000; Griffith et al., 2017;
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Strömberg & Staver, 2022). Given the vast areas on Earth where grasses exist, their functional diversity is key to
understanding global patterns of plant diversity and primary productivity. In this paper, we used spectroscopy to
examine if three dominant grass lineages (Andropogoneae, Chloridoideae, and Pooideae) can be distinguished
from each other based on leaf‐level reflectance data from taxa in each lineage. We developed a library of grass
leaf spectra from four grassland sites that span diverse grass‐dominated ecoregions of North America (Figure 1).
We used a classification method to investigate how well lineages group based on their spectral reflectance. We
then identified which spectral regions contributed the most to separating grass lineages. Finally, we aggregated
hyperspectral leaf‐level spectra to the spectral resolution matching multispectral sensors and compare their
classification accuracy. Our goal in this last analysis was not to perform an upscaling of our leaf reflectance data
but rather to examine the information content of hyperspectral data for classifying grass lineages.

2. Methods
We analyzed leaf‐level spectra from 43 grass species from four sites in North America during the summers of
2020–2022. Three of the four sites are part of the National Ecological Observatory Network (NEON): (a) Konza
Prairie (KONZ), Manhattan, Kansas, (b) Colorado Plains Experimental Range (CPER), Colorado, (c) Chase Lake
National Wildlife Refuge (WOOD), North Dakota, as well as (d) the Cedar Creek Ecosystem Science Reserve
(CCR), Minnesota. All sites were sampled during peak greenness to account for any potential differences in
phenology. Peak greenness was determined from a National Ecological Observatory Network (NEON) model
using more than 15 years of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference
Vegetation Index (NDVI) data. These sites span a broad geographic gradient ranging from warm and dry con-
ditions (CPER) to warm and wet (KONZ) or wet and cold (CCR) environments, and the range of photosynthetic
pathway abundance varied accordingly. We grouped dominant grass species at each site into three groups
(Figure 2; Table 1): Andropogoneae (n = 8 spp), Chloridoideae (n = 13 spp), and Pooideae (n = 22 spp). In total
we sampled 54 species (Table S1). Notably, the small sample size of certain groups within the Panicoideae
subfamily may limit broader inference. While results using all Panicoideae species did not substantively change
results (Table S2), we focused on species in the Andropogoneae tribe, which is the dominant lineage within the
Panicoideae subfamily and represents an independent origin of C4 photosynthesis. Eleven species occurred in
more than one site: Andropogon gerardii, Bouteloua curtipendula, Bouteloua dactyloides, Bouteloua gracilis,
Bromus inermis, Elymus smithii, Hesperostipa spartea, Phalaris arundinacea, Poa pratensis, Schizachyrium
scoparium, and Sorghastrum nutans.

Five to eight samples of fresh leaf spectra for each species were measured using an ASD FieldSpec 4 Hi‐Res NG
spectroradiometer with a leaf contact probe containing an internal calibrated light source and a leaf clip with the
standard black surface behind the leaves (Malvern Panalytical Ltd., Malvern, United Kingdom). In the case of a

Figure 1. Map of study sites where grass species and spectra were collected. These sites are dominated by different grass
lineages and span a broad environmental gradient: Colorado Plains Experimental Range (CPER; mean annual temperature
(MAT)= 8.6°C, mean annual precipitation (MAP) = 344.2 mm), Konza Prairie (KONZ; MAT = 12.4°C, MAP= 870 mm),
Cedar Creek Ecosystem Science Reserve (CCR; MAT = 6.7°C, MAP = 660.4 mm), and Chase Lake National Wildlife
Refuge (WOOD; MAT = 4.9°C, MAP = 495 mm). Here we represented the distribution of the three major lineages by
overlaying the ranges of dominant species in each lineage using the Global Biodiversity Information Facility (GBIF) web
portal (http://www.gbif.org/; accessed August 2020).
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single leaf area being too small to cover the area of the black background, several leaves were placed side‐by‐side
with the adaxial surfaces oriented toward the sensor. (See Figure S1 for photographs of our measurement set‐up.)
Leaves were carefully placed side‐by‐side as close as possible to ensure no visible gaps between leaves while
avoiding overlap. Occasionally, when leaves were especially narrow, small gaps were unavoidable. The Field-
Spec 4 Hi‐Res NG measures reflectance in the electromagnetic spectrum from 350 to 2,500 nm with 2,150 bands
at 1 nm intervals. Fresh leaf spectra were measured within a 2‐hr window of sampling from the field. A standard
white reference built into the leaf clip (ASD Leaf Clip Version 2) was measured for calibration before each
species was measured and also every 10 minutes (Hellmann et al., 2015). The spectroradiometer was set to 25
internal repetitions, allowing the spectroradiometer to reduce measurement variability and noise by measuring
each leaf 25 times and then averaging the measurements to generate one spectral reflectance for the sample. The
data were corrected for spectral discontinuities between the three spectroradiometer sensors using a jump
correction as in (Bachmann & Heldens, 2006).

Figure 2. Mean spectra and 95% confidence interval for each of the three dominant grass lineages in the Continental United
States: Andropogoneae (yellow), Chloridoideae (green), and Pooideae (blue).

Table 1
Relative Abundance (%) of Each Lineage and the Number of Species (n) in Each Lineage Collected at Each Site

Site Andropogoneae Chloridoideae Pooideae Total number of unique species for each site

CCR 59% (n = 3) <1% (n = 0) 37% (n = 11) n = 11

CPER 0% (n = 0) 51% (n = 8) 46% (n = 10) n = 10

KONZ 71% (n = 8) 19% (n = 11) 2% (n = 32) n = 32

WOOD 3% (n = 1) 5% (n = 4) 90% (n = 6) n = 6

Total number of unique species for each lineage n = 8 n = 13 n = 22 n = 43

Note. Relative abundance was calculated by summing % cover for species at each site using data from 1 m2 plots provided by NEON for CPER, KONZ, and WOOD,
while CCR data came from NutNet (Carroll et al., 2022). Each species was represented by 5–8 leaves taken from different populations across each site (445 total
observations), with 11 species occurring at multiple sites.
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Spectral resampling was performed to reduce multicollinearity among predictor variables. Wavelengths shorter
than 400 nm or longer than 2,400 nm were removed to address spectrally noisy regions. Then a spline interpo-
lation with a moving window of 10 nm (Meireles et al., 2020) using the “hsdar” package (Lehnert et al., 2019) in
the software R (R Core Team, 2022) was used to reduce spectral bands from 2,150 to 2,201 bands (Figure 2).
Linear Discriminant Analysis (Lehmann et al., 2019) was used to classify grass lineage membership based on
spectral differences among groups. LDA reduces the dimensionality of the data by maximizing the component
axis across feature space. An LDA approach maximizes variation and separability between the classes. Due to the
presence of correlations among numerous bands in hyperspectral data, we opted to employ LDA as a dimension
reduction technique and a classifier (Garcia‐Allende et al., 2008; Seetohul et al., 2013). The LDA analysis was
performed using the ‘caret’ package (Kuhn, 2008) in the software R (R Core Team, 2022).

We first classified leaf spectra of the three dominant lineages (Andropogoneae, Chloridoideae, Pooideae) using
LDA, and then classified lineages across sites. Although some lineages were not well represented at all sites (≤2
species samples at some sites), limiting our classification groups to greater species representation did not sub-
stantively change results (Table S3). We used a 10‐fold cross‐validation with 80% of the data for training the
model, and 20% to test the model’s performance, rounding to the nearest integer. This cross‐validation used
stratified random sub‐sampled data from each lineage for training and validation, but never used the same data
subset twice. The overall prediction accuracy and Kappa scores were averaged. Classification accuracy is rep-
resented with confusion matrices showing their classification accuracy, sensitivity, specificity, and Kappa scores.

We used the coefficients of the linear discriminants to identify variable importance (i.e., influential bands) for
separating each lineage. The linear discriminants coefficients are weights to assess the separability among groups
from the input variables. We extracted k‐number of linear discriminants that explained >80% of the variance in
the data to assess which bands were most influential on spectra. We did this twice, once using raw spectra, which
included differences in albedo (i.e., absolute differences in reflectance), and again on normalized spectra to
compare individual absorption features (i.e., the shape of the spectra irrespective of differences in reflectance).
Spectra were normalized using continuum removal (CR), a common method used to identify and compare ab-
sorption features across the spectra (Clark & Roush, 1984; Mutanga & Skidmore, 2004). We performed the
continuum removal transformation using the “hsdar” function. Reflectance is normalized to a continuum line,
which is established by connecting the local maxima of the reflectance spectrum.

To assess the classification accuracy of lineages using spectral bands provided by multispectral sensors, we
implemented spectral resampling from the “hsdar” package. This links the characteristics of satellite sensors to
the input spectra, generating an aggregated multispectral leaf‐level spectra. The function encompasses each
band’s central wavelength and full‐width‐half‐maximum values of each sensor.

3. Results
3.1. Classification Accuracy of Grass Lineages

The leaf‐level spectra of three dominant grass subfamilies separated well using both the raw spectra and the
normalized spectra. The overall prediction accuracy using raw spectra was 94% and the Kappa coefficient was
0.91 (Table 2a). The overall prediction accuracy and Kappa coefficient using normalized spectra were the same
(Table S4a). Only two components were required to explain 100% of the variation in the spectra. The first
discriminant (LD1) explained 80.8% of the variance in the raw spectra, the second discriminant (LD2) explained
19.2% of the remaining variance (Figure 3). Using the normalized spectra, LD1 explained 77.1% of the variance in
the spectra and LD2 explained 22.9% of the remaining variance. While the three lineages clearly separated along
LD1, Andropogoneae and Pooideae overlapped along LD2, but LD2 did separate the C4 lineages Andropogoneae
and Chloridoideae (Figure 3).

When lineages were considered by site, classification accuracy of raw spectra was 98% and the Kappa coefficient
was 0.97 (Table 2b). The overall accuracy of the normalized spectra improved to 98% and the Kappa coefficient
increased to 0.97 (Table S4b). Eleven components were required to explain 100% of the variation in the spectra,
with the first five discriminant axes explaining over 80% of the variance in the spectra (Figure 4). Using the raw
spectra the first component (LD1) explains 39% of the variation in the spectra where the second component (LD2)
explains 18.4%. The third component (LD3) explained 13.1%, while the fourth and fifth components (LD4 and
LD5) explained 9.5% and 8.1%, respectively.

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007852

SLAPIKAS ET AL. 5 of 13

 21698961, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007852 by K
ansas State U

niversity, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.2. Identification of Spectral Band Importance

For the classification of spectra by lineage only, coefficients for the two LD axes showed that the “red edge” and
NIR regions were the most influential variables (Figure 5a; Table 3). SWIR and VIS regions were also important
but to a lesser degree (Figure 5a). For the classification of spectra by lineage at different sites, coefficients showed
that similarly the “red edge” and NIR regions were the most influential variables. For classification of the
normalized spectra by lineage only, coefficients for the two LD axes showed that the VIS, the “red‐edge”, and two
regions in the SWIR were the most influential (Figure 5b; Table 3). The NIR region was no longer important for

Table 2
Classification Matrices of Leaf Spectra From LDA Models for Identifying (a) Lineages and (b) Lineages at Each Site

a.)

Reference

Prediction Andropogoneae Chloridoideae Pooideae Total Prediction accuracy (%)

Andropogoneae 20 1 0 21 95%

Chloridoideae 2 20 1 23 87%

Pooideae 0 1 43 44 98%

Total 22 22 44 88

Reference accuracy (%) 91% 91% 98%

Overall classification accuracy = 94% and the Kappa statistic = 0.91

b.)

Prediction

Reference

Andropogoneae Chloridoideae Pooideae

Total

Prediction
accuracy

(%)CCR KONZ WOOD CPER KONZ WOOD CCR CPER KONZ WOOD

Andropogoneae
(CCR)

5 0 0 0 0 0 0 0 0 0 5 100%

Andropogoneae
(KONZ)

0 13 0 0 0 0 0 0 0 0 13 100%

Andropogoneae
(WOOD)

0 0 2 0 0 0 0 0 0 0 2 100%

Chloridoideae
(CPER)

0 0 0 1 0 0 0 1 0 0 2 50%

Chloridoideae
(KONZ)

0 0 0 0 18 0 0 0 0 0 18 100%

Chloridoideae
(WOOD)

0 0 0 0 0 2 0 0 0 0 2 100%

Pooideae (CCR) 0 0 0 0 0 0 12 0 0 0 12 100%

Pooideae
(CPER)

0 0 0 0 0 0 0 11 0 0 11 100%

Pooideae
(KONZ)

0 0 0 0 0 0 0 0 15 0 15 100%

Pooideae
(WOOD)

0 0 0 0 0 1 0 0 0 4 5 80%

Total 5 13 2 1 18 3 12 12 15 4 85

Reference
accuracy (%)

100% 100% 100% 100% 100% 67% 100% 91.70% 100% 100%

Overall classification accuracy = 98% and the Kappa statistic = 0.97

Note. Correctly identified lineages are shown on the diagonal while false positives and false negatives are shown on the off
diagonals.
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Figure 3. Linear Discriminant Analysis for classifying major grass evolutionary lineages based on the leaf reflectance spectra
(400–2,400 nm). The first component (LD1) explains 80.8% of the variation in the spectra, whereas the second component
(LD2) explains 19.2%.

Figure 4. Linear Discriminant Analysis for each major lineage collected from different sites, which includes a different
composition of species at each site (see Table 1). Eleven components were required to explain 100% of the variation in
spectra, with the first two components explaining more than 57% of the variation in spectra.
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classification when spectra were normalized, which is expected because the
NIR is the highest reflectance region. The same regions were also important
for classification of spectra by lineage at different sites.

3.3. Classification of Lineages Using Multispectral Data

When aggregating the leaf‐level spectra to the bands available with Sentinel 2
and Landsat 8 OLI, the spectral resolution dropped over fifteenfold. Using the
aggregated leaf‐level spectra with Sentinel 2 bands, overall prediction ac-
curacy was 85.2% and the Kappa coefficient was 0.76 (Table 4a). The first
discriminant (LD1) explained 86.4% of the variance in the raw spectra and the
second discriminant (LD2) explained 13.6% of the remaining variance
(Figure 6a). Aggregating the leaf‐level spectra to Landsat 8 OLI resulted in an
overall prediction accuracy of 61.3% and the Kappa coefficient was 0.37
(Table 4b). The first discriminant (LD1) explained 67.8% of the variance in
the raw spectra, the second discriminant (LD2) explained 32.2% of the
remaining variance (Figure 6b).

4. Discussion
Grasslands and savannas cover substantial extents of the Earth’s surface,
amounting to over one‐quarter of the terrestrial surface (Asner et al., 2004).
We demonstrate an ability to differentiate ecologically dominant evolutionary
lineages of North American grass species using solely leaf reflectance
spectra. Our analysis is robust to site differences at peak greenness across the
North American Great Plains. Within each lineage, species turnover at or
among sites does not degrade these spectral features in the context of our
study. Recent work using hyperspectral monitoring of grasslands has exam-
ined key biodiversity metrics such as alpha or beta taxonomic diversity and
functional trait variation (Gholizadeh et al., 2019, 2022; Wang et al., 2022). In
examining phylogenetic diversity, our results suggest that the ecological
behavior of grasses can be accurately captured by “lineage functional types”,
which explicitly include evolutionary history as a framework for functional
groupings (Griffith et al., 2020). These groupings reflect deep evolutionary
branches within the grass phylogeny that relate to important trait differences.

Our analysis was robust to using either raw or normalized spectra, indicating
that our classifiers were related to spectral features present regardless of
overall leaf albedo (i.e., differences in leaf area or surface traits). However,
different regions of the spectra were important for classification when
examining absolute leaf reflectance (i.e., percent reflectance) or leaf reflec-
tance that were normalized (i.e., differences in the shape of the reflectance
curve). When using raw spectra, the most important regions for classification

were the “red edge” (700–800 nm) and the NIR region (810–1300 nm). The “red edge” region is where infrared
reflectance increases rapidly from the chlorophyll absorption region in the visible spectrum to the NIR region of
high leaf reflectance. The red edge has been identified as important for separating C3 and C4 grass types because
of its relationship to leaf nitrogen concentration (Shoko &Mutanga, 2017), though this region is more commonly
thought to capture differences in chlorophyll absorption (Curran et al., 1990).

While we did not analyze leaf traits, in a recent analysis of grass leaf traits, the photosynthetic traits Vcmax

(maximum carboxylation rate) and C:N was found to differ significantly among grass lineages, illustrating
linkages between leaf N/chlorophyll content and overall photosynthetic activity (Donnelly et al., 2023). The NIR
region is highly sensitive to leaf structural traits. Leaf structural traits such as specific leaf area and leaf dry matter
content, as well as and leaf thickness for perennial species, are significantly different among grass lineages
(Donnelly et al., 2023) and may have contributed to spectral separation. In addition, leaf surface traits such as
pubescence or waxiness, can strongly affect NIR reflectance.

Figure 5. The Linear Discriminant Analysis (LDA) Coefficients are used to
determine which spectral regions are influential in separating the dominant
grass lineages. LDA coefficients using raw spectra for classifying dominant
grass lineages (a). Coefficients of linear discriminants from the LDA model
using the normalized spectra through continuum removal for classified
dominant grass lineages (b).
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In our data NIR reflectance was large (Figure 2) and can overwhelm important variation in other regions of the
spectra. When spectra were normalized to remove differences in leaf albedo, the near infrared region of leaf
spectra was less important for classification. Instead, in addition to the red‐edge still being important, the visible
region (530–690 nm) and two regions in the SWIR (1,410 nm–1,500 nm and 1,930 nm–1,970 nm) were the most
important. Visible regions are known to be highly sensitive to chlorophyll a and b concentration (Gitelson &
Merzlyak, 1998) suggesting an important difference in photosynthetic capacity among grass lineages. The SWIR
region is sometimes related to leaf nitrogen content (Adjorlolo et al., 2012). More often, portions of the SWIR are
linked to water content and the curing rate of leaves (Ceccato et al., 2001; Hunt & Yilmaz, 2007). Reflectance in
the SWIR and visible region can be related because chlorophyll content and curing rate can covary (Ceccato

Table 3
Selected Features for the Raw and Normalized Spectra That Were Important for Classifying Dominant Grass Lineages and Dominant Grass Lineages at Different Sites

Spectral regions (nm)

LDA model VIS Red edge NIR SWIR

Dominant
Lineages (raw)

580–650 710–800 810–840, 870–910, 930–950, 970, 990, 1,070,
1,080, 1,100, 1,110, 1,140, 1,170, 1,180, 1,210–

1,230, 1,290

1,300, 1,310, 1,350, 1,500, 1,550, 1,590, 1,640,
1,650, 2,030

Dominant Lineages
(normalized)

510–550, 570–590,
610–690

700–730 1,410, 1,430, 1,450, 1,480–1,500, 1,520, 1,530,
1,930, 1,970, 2,010, 2,040

Dominant
Lineages × Site
(raw)

640 740–800 840, 870–910, 950, 960, 990, 1,000, 1,110, 1,120,
1,180, 1,190, 1,230, 1,260, 1,280

1,580

Dominant
Lineages × Site
(normalized)

540–560, 580, 590,
610, 620, 640–690

700–730 1,400–1,440, 1,460–1,480, 1,530, 1,540

Table 4
Classification Matrices From LDA Models for Identifying Lineages Aggregated to Sentinel 2 (a) and Landsat 8 (b)

a.)

Reference

Prediction Andropogoneae Chloridoideae Pooideae Total Prediction accuracy (%)

Andropogoneae 20 0 1 21 95.20%

Chloridoideae 3 15 5 23 65%

Pooideae 0 4 40 44 91%

Total 23 19 46 88

Reference accuracy (%) 87% 80% 87%

Overall classification accuracy = 85% and the Kappa statistic = 0.76

b.)

Reference

Prediction Andropogoneae Chloridoideae Pooideae Total Prediction accuracy (%)

Andropogoneae 13 0 8 21 61.90%

Chloridoideae 7 9 7 23 39%

Pooideae 4 8 32 44 73%

Total 24 17 47 88

Reference accuracy (%) 54.17% 52.94% 68.09%

Overall classification accuracy = 61% and the Kappa statistic = 0.37

Note. Correctly identified lineages are shown on the diagonal while false positives and false negatives are shown on the off
diagonals.
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et al., 2001). Curing rate can be an especially important trait for grasses, such as in the Andropogoneae lineage,
that occur in regions with frequent fire.

Understanding variation in spectra, which provide an integrated measure of leaf traits that often covary (Cav-
ender‐Bares et al., 2017; Kothari & Schweiger, 2022), across different sites could provide insight into how plants
function under changing environments. Furthermore, this understanding is needed for more accurate mapping
using spectral endmembers. Although we classified lineages with high accuracy (>90%), some of the variability
in leaf spectra was associated with site differences. This suggests that in addition to lineage identity, site dif-
ferences may have contributed to our spectral separation. This result is in part related to species turnover at each
site but also apparent in the spectra of the same species at different sites (Figure S2 and S3). Plant spectra of the
same species can vary in different environmental contexts (Andrew &Ustin, 2008) given that different genotypes
and intraspecific traits are known to respond to changing climate conditions, resource limitations, and biotic
interactions, in addition to life history and ontogeny (although in our case spectra were collected during peak
greenness at each site; Figure S3). The competitive environment and presence of co‐occurring species has rarely
been considered in spectral endmember mapping but could affect available resources and thus plant traits
(Andrew&Ustin, 2008). For example, imaging spectroscopy detected decreased foliar nitrogen concentrations of
a native tree species in Hawaii in the presence of a nutrient‐demanding invasive plant (Asner & Vitousek, 2005).
Because plasticity can be an adaptive trait (Bachle & Nippert, 2018; Bradshaw, 1965; Donoghue &
Edwards, 2014), examining which lineages show more or less variability in their spectra across environmental
gradients, and in which spectral regions, will help us understand grassland responses to future environmental
change.

We did not identify explicit relationships between leaf spectra and traits, which limits mechanistic understanding
of leaf traits that underpin differences in leaf spectral reflectance. Furthermore, spectra‐trait relationships can
potentially be used to develop trait maps across larger regions and forecast how altered future climates may drive
changes in ecosystem functions. In addition, our four sites did not provide coverage of hotter and drier regions of

Figure 6. Linear Discriminant Analysis (LDA) for classifying major grass evolutionary lineages based on the leaf reflectance
spectra using spectral bands that correspond to the spaceborne sensor Sentinel 2 (a) resulted in the first component (LD1)
explaining 86.4% of the variation in the spectra and the second component (LD2) explaining 13.6%. Classifying grass
lineages using spectral bands from the spaceborne sensor Landsat 8 (b) resulted in the first component (LD1) explaining
67.8% of the variation in the spectra while LD2 explains 32.2%.
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the Great Plains where the Chloridoideae lineage is dominant and resource constraints may be different than in
other regions. Of the three dominant lineages we examined, Chloridoideae had the lowest classification accuracy
(Table 2). Chloridoideae spectra did not appear to be more variable compared to other lineages (Figure 1) but did
appear to overlap with other lineages (Figure 4), perhaps because we did not accurately capture Chloridoideae
dominant regions. We note that leaf spectra may differ for different species due to internal or external traits and
the effect of these individual traits on leaf spectra is often much smaller than the effect of site. Therefore, how
transferable our results are across diverse grasslands of North America or globally is not clear. Additionally, in
natural settings, plant canopies can interact with light differently than a single leaf, thus canopy structural pa-
rameters such as leaf area index and leaf angle distribution are required for a full upscaling to satellite obser-
vations. The high species diversity at fine spatial scales in many grassland communities is also a challenging
consideration in future attempts to upscale leaf‐level spectra across landscapes, though mapping lineage
composition may be more tractable. Future work using remote sensing imagery should identify the strength of
relationships between leaf spectra and canopy spectra with varying compositions of structural and taxonomic
diversity and expand the environmental coverage of sites to fully explore variation among grass lineages and sites.

Our work shows that detailed spectral signatures at the leaf‐level can diagnose dominant grass lineages, providing
insight into the origins of biodiversity patterns and potential differences in ecological function in one of the
Earth’s largest biomes. It is unclear if classification accuracy into lineages using leaf spectra has a similar ac-
curacy when using plot or canopy scale spectra. However expanding this work to map the distributions of these
lineages across landscapes would provide a major improvement over studies focused on C3–C4 grass distribu-
tions; these studies have previously provided an incomplete picture of grassland functional diversity in ecological
modeling and macrosystem ecology (Griffith et al., 2020; Still et al., 2019). Existing multispectral satellite
sensors, such as those on Landsat and Sentinel, provide longer records and more frequent observations than
available on proposed hyperspectral missions, and therefore can be complementary to hyperspectral data. We
found, however, that the poorer spectral resolution and spectral coverage are not optimal for detecting differences
among the most dominant grass lineages at the leaf level (Tables 4a and 4b). Information is lost when using
spectral regions available on multispectral sensors compared to the full hyperspectral range. Sentinel 2, which
includes a band covering the red‐edge, resulted in much higher classification accuracy than Landsat 8, which does
not include any bands in the red‐edge. This study identifies added information that repeated and global hyper-
spectral imagery might bring to macroecological understanding compared to multispectral remote sensing (e.g.,
Cawse‐Nicholson et al., 2022, 2023).

Our work reveals exciting potential for broad mapping of dominant grass evolutionary lineages across diverse
grassy landscapes. Advances in grassland macroecology require accurately mapping the spatial distribution and
environmental context of functionally distinct grass lineages. While decades of multispectral satellite observa-
tions have revealed the potential for systematic observations of plant species distributions and biodiversity
patterns across the globe (e.g., Skidmore et al., 2021), important spectral regions for separating grass lineages are
not well covered in existing multispectral sensors. Our work illustrates the need for future hyperspectral satellite
missions to advance macroecological understanding.

Data Availability Statement
All data used for the creation of this manuscript are available at Zenodo DOI 10.5281/zenodo.10575929. Figures
were made with “ggplot2” version 3.3.6 (Wickham, 2016). Maps were created using “tmap” version 3.3‐3
(Tennekes, 2018). Part of the software used with this manuscript for the calculation and jump correction is
licensed under MIT and published on GitHub https://github.com/EnSpec/SpecDAL.
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