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1 Introduction

Croushore (2011) and others have noted that monetary policy may be sensitive to

inconsistencies between the real-time data available to policy makers at the time

their decisions are made and revised data which more accurately measure economic

performance.1 The reason these inconsistencies may be important is due to the fact

that policy makers really want to influence the performance of the actual economy,

but because of long lags associated with the revised data that most accurately mea-

sures this performance, they may be forced to take action based on the most readily

available data which arrives in real-time. As noted by Croushore (2011), if the dif-

ference between the real-time data and the revised data is small and random, then

this distinction would not be an issue. However, this is not the case, as there is some

predictability for these differences, and this predictability may induce policy makers

to undertake policies that are stronger or weaker than might be optimal.

This paper undertakes both a theoretical and empirical investigation of the poten-

tial deviations from optimal monetary policy due to data revisions in two extended

asymmetric preference models of the type suggested by Ruge-Murcia (2003, 2004).2

The two extensions are related to each other with similar asymmetric preference

structures and differ only by one of the policy objective variables. One posits that

the central banker targets a weighted average of real-time and revised inflation as

1The impact of the revision process on the empirical evaluation of monetary policy has been well
documented in the literature. An early study by Maravall and Pierce (1986) studies how prelimi-
nary and incomplete data affect monetary policy. They show that even if revisions to measures of
money supply are large, monetary policy would not be much different if more accurate data were
known whenever policymakers are able to optimally extract the signal from the data. More recently,
Orphanides (2001), among others, have found that real-time measurement problems of conceptual
variables, such as output gap, may induce policymaking errors. By using a VAR approach to analyze
monetary policy shocks, Croushore and Evans (2006) have shown evidence that the use of revised
data may not be a serious limitation for recursively identified systems. However, their analysis also
reveals that many simultaneous VAR systems identifiable when real-time data issues are ignored can-
not be completely identified when these measures are considered. These studies have considered US
real-time data. More recently, Fernandez, Koening and Nikolsko-Rzhevskyy (2011) have assembled
a real-time data set for the OECD countries. In line with US data revision features reported below,
they find that statistical agencies of OECD countries tend to underestimate both real output growth
and inflation.

2Early papers considering central banker asymmetric preferences are Cukierman (2002) and Nobay
and Peel (2003). Another approach taken by Surico (2007) focusses on monetary policy rule asym-
metries.
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well as a weighted average of real-time and revised output and can be seen as a

generalization of Cassou, Scott and Vázquez (2012), and the other posits that the

central banker targets a weighted average of real-time and revised inflation as well as

weighted average of real-time and revised unemployment and can be seen as a gener-

alization of Ruge-Murcia (2003). The analysis of these two alternative models allows

us to empirically test various theoretical hypotheses using different economic data

sets and in addition to more strongly draw conclusions should these alternative data

sets show agreement for these tests. Our analysis mainly focuses on the output and

inflation model because real-time output is substantially revised during the first three

years after the first release and those revisions provide a much improved measure for

the output data.3 On the other hand, unemployment revisions are rather small and

mainly due to statistical adjustments to account for seasonal variations taking place

during the first year after the first release of unemployment data.

This paper contributes to the long theoretical literature which investigates the

possibility that monetary policy makers may induce an upward bias in inflation.

Among the earliest works in this literature is Barro and Gordon (1983), which sug-

gests that, because the monetary policy maker is unable to make long term policy

commitments, it is possible that instead they pursue policies which create surprise

inflation. This proposition has generated considerable interest with numerous empir-

ical studies, including Ireland (1999), Ruge-Murcia (2003, 2004) and others, showing

mixed results. Papers by Ruge-Murcia (2003, 2004) are particularly noteworthy

because these developed a new theory showing that an inflation bias may arise from

asymmetric preferences on the part of the monetary authority. In the Ruge-Murcia

model, the inflation bias arises because the monetary authority takes stronger action

when unemployment is above the natural rate than when it is below the natural

rate. A similar finding is found by Cassou, Scott and Vázquez (2012) who develop

an asymmetric preference model which focuses on an output asymmetry rather than

3See Landefeld, Seskin and Fraumeni (2008) for a detail description of the timing associated with
the sequence of GDP releases.
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an unemployment asymmetry. In their model, the inflation bias arises because the

monetary authority takes stronger action when output is below its permanent level

than when it is above. The models explored in this paper extend these previous

structures by assuming that the central banker targets a weighted average of both

revised and real-time inflation together with a weighted average of both revised and

real-time output (or alternatively a weighted average of both revised and real-time

unemployment). We rationalize the inclusion of real-time data in the central banker

targets because of the lengthy lag in final data revision releases. In particular, final

revisions of inflation and output are released around three years later whereas the rate

of unemployment takes up to a year to be revised.4 Therefore, market participants’

evaluation of the monetary policy performance, and by the same token the central

bank targets, are likely to be based at least partially on real-time data. This idea of

real-time central bank targets also reflects the inability of central bankers to make

long term policy commitments as in Barro and Gordon (1983), but the inability in

this paper is due to a different issue. In particular, here central bankers might be

forced to react quickly to real-time data as a result of short-term pressure coming

from other policy makers, economic pundits or public opinion. Therefore, the im-

portance of an inflation bias induced from the inconsistencies between revised and

real-time data, as in the traditional inflation bias sources suggested by Barro-Gordon

(1983) and Ruge-Murcia (2003, 2004), is likely to be a consequence of the degree of

central bank independence, which can differ between countries.

Our models with data revisions identify several new potential sources for an in-

flation bias that arise due to the lag between the real-time data measurements of

the economy and the revised data measurements. We explore these models using

reduced form maximum likelihood estimation methods and US data. Two groups of

empirical results are noteworthy. First, a preliminary empirical investigation shows

4U.S. National Accounts are further revised due to benchmark revisions. These benchmark revi-
sions take place every five years and involve changing methodologies or statistical changes such as
base years. We ignore benchmark revisions because they do not add much valuable information for
the monetary policy decision-making process since it mainly focuses on short-term goals.
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that US output and unemployment revisions are well characterized by autoregres-

sive processes whereas inflation revisions are negatively anticipated by their initial

announcements. These results are consistent with findings in Aruoba (2008) and

Vázquez, María-Dolores and Londoño (2013), who find that US data revisions for

these variables are not white noise. The fact that all three types of revision processes

have an empirical structure is important because, as noted by Croushore (2011),

the lag between revised data and real-time data needs to have some level of pre-

dictability for revisions to be important. Because of this predictability for output,

unemployment and inflation, these series may produce persistent inflation biases as

our theoretical model predicts.

The second group of empirical results focus on these new, as well as the old,

sources for inflation bias by estimating reduced forms derived from the theoretical

models. These reduced forms are similar to others found in the literature because

they include several previously described inflation biases. However, they differ in

that they also contain several additional bias terms which are introduced because

of data revision process. Estimation results provide evidence for some of these ad-

ditional sources of inflation bias arising from the data revisions. In particular, our

empirical results suggest that the Federal Reserve Bank (Fed) mainly focuses on tar-

geting revised inflation, but it also weighs real-time inflation, and this induces one

type of new bias. We found that this new bias increases inflation by 12.6 basis points

on average, but this figure becomes roughly twice as large at the start of recessions

when discrepancies between revised and real-time data increase. Moreover, the evi-

dence that the Fed mainly reacts to revised inflation rather than reacting quickly to

real-time inflation provides an alternative explanation of policy inertia to those found

in the literature.5 Second, we find somewhat weaker evidence that biases induced

by the revision structure for output and unemployment are also present. In addition,

5These explanations range from the traditional concern of central banks for financial market
stability (see Goodfriend, 1991) to the more psychological one suggested by Lowe and Ellis(1997),
who argue that central bankers are likely to be embarrassed by reversals in the direction of policy
changes. On the other hand, Rudebusch (2002) argues that the evidence of policy inertia is due to
the existence of relevant omitted variables.
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as in Ruge-Murcia (2003, 2004) and Cassou, Scott and Vázquez (2012) we find that

the Barro and Gordon type of bias is not present while the Ruge-Murcia asymmet-

ric preference bias remains significant. In particular, we find that the preferences

of the monetary authority are asymmetric with stronger action taken when output

(unemployment) is below (above) its permanent (natural) level than when it is above

(below). Furthermore, we find that the monetary authority targets permanent out-

put (natural unemployment) rather than some higher (lower) level of the weighted

average of revised and real-time output (unemployment) which would be required in

a version of the Barro-Gordon model with data revisions.

The rest of the paper is organized as follows. Section 2 goes through the theoretical

models describing the asymmetric monetary planner with both revised and real-time

data targets. Section 3 shows the estimation results. Section 4 discusses estimation

results across alternative model formulations and sample periods in order to assess

robustness of the empirical results. Section 5 concludes.

2 The Model

We empirically investigate two related monetary planning models. One is a planner

who weighs inflation and unemployment in making their decisions, which is similar

to planners investigated by Barro and Gordon (1983) and Ruge-Murcia (2003), and

the other is a planner that weighs inflation and output in making their decisions as

in Cassou, Scott and Vázquez (2012). Using them both allows one to empirically

investigate our optimal monetary policy theory using two different types of data

series.

In addition, each model can be written in two empirical forms: One in terms of

revised output (or unemployment) data and output (or unemployment) data revi-

sions and one in terms of real-time output (or unemployment) data and output (or

unemployment) data revisions. Each of these structures are estimated to further

investigate the robustness of the empirical results.

To simplify the exposition, we present only the inflation and output planning
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model in detail since it is modestly more complicated than the inflation and unem-

ployment model. In the next subsection this inflation and output planning model is

presented, while the following subsection simply presents the empirical equations for

the inflation and unemployment model.

2.1 Inflation and Output Planner

The model begins with several elements whose structure is unaffected by the revised

data lag issue. Here we use a popular short run supply curve formulation suggested

by Lucas (1977) given by

Yt = Y
p
t + α(Pt − P et ) + ηt,

where Yt is output produced at time t, Y pt is permanent or potential output at time

t, Pt is the price level at time t, P et is the expected price level at time t based on

information at time t − 1, ηt is a supply disturbance and α reflects the sensitivity

of firm output to unexpected price changes. Variables are expressed in log terms.

Adding and subtracting Pt−1 inside the parenthesis term on the right gives

Yt = Y
p
t + α(πt − πet ) + ηt, (1)

where πt = Pt − Pt−1 and πet = P et − Pt−1. To understand why the structure

of these equations are not impacted by the data lag issue, one need only recall the

foundations for them. In Lucas (1977), the supply derivation comes from aggregating

up from individual firm decision rules where firms make output decisions based on

observed prices for their products relative to some expected price. Because this

aggregation of the individual supply curves is just a simple addition process, the

structure is unaffected as are the observed terms Yt and Pt. However, it is possible

for the distinction between revised and real-time data to work into the P et term and

then into πet , since this term includes price aspects that lead to misperceptions about

what is the true common price change and what is the relative price change for a

firm. So, although the structure of the equation is unaffected, the actual output
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level can be impacted by the data revision process and this is incorporated into the

central planners problem.

The structure for how permanent output is related over time as well as the value

for permanent output at any date is assumed to be unaffected by data release issues.

Here we assume that permanent output fluctuates over time in response to a real

shock ζt according to the autoregressive process

�Y pt − �Y pt−1 = ψ − (1− δ)�Y pt−1 + θ(�Y pt−1 − �Y
p
t−2) + ζt, (2)

where �Y pt = Y
p
t − (1 − δ)t is detrended output, −1 < θ < 1, 0 < δ ≤ 1 and ζt is

serially uncorrelated and normally distributed with mean zero and standard deviation

σζ . As in Ruge-Murcia (2003, 2004) and Cassou, Scott and Vázquez (2012) we use

δ to capture different types of trend possibilities in the permanent output process.

To understand these different trends, rewrite (2) as

Y
p
t − Y

p
t−1 = ψ′ + (1− δ)2t− (1− δ)Y pt−1 + θ(Y pt−1 − Y

p
t−2) + ζt, (3)

where ψ′ = ψ + (1 − δ) [1− θ − (1− δ)]. This formulation shows that when δ = 1,

the model has no deterministic trend, ψ′ = ψ and there is a unit root. On the other

hand, when δ < 1, there is a deterministic trend and no stochastic trend.

Since part of our objective is to sort out the degree to which the monetary author-

ity weighs real-time versus revised data, we assume the inflation target is a weighted

average of these two data types and use a parameter λ1 ∈ [0, 1] to index the pos-

sibilities, with λ1 = 0 indicating that the policy target is entirely a real-time data

target, λ1 = 1 indicating that the policy target is entirely a revised data target and

λ1 ∈ (0, 1) indicating that the two data types are averaged for the target. Under

this formulation one can interpret (1 − λ1) as a measure of the short-term pressure

the central bank gets from the government and economic agents to react to real-

time inflation data. We extend the policy structure in Ruge-Murcia (2003, 2004)

in formulating the connection between the policy variable chosen by the monetary

authority in the preceding period, denoted by it, a control error, denoted by εt, and
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the weighted average of the revised (actual) inflation data, denoted by πt, and the

real-time inflation data, denoted by πrt,t+1.
6 Thus, our modified rule is given by

λ1πt + (1− λ1)π
r
t,t+1 = it + εt, (4)

where εt is serially uncorrelated and normally distributed disturbance with mean zero

and standard deviation σε. Here the two subscript notation for πrt,t+1 indicates that

date t real-time inflation is first observed immediately after the period ends, which

is date t+ 1.7

Similarly, we assume that the central banker wants to monitor a weighted average

of revised and real-time output data given by

λ2Yt + (1− λ2)Y
r
t,t+1, (5)

where λ2 ∈ [0, 1] and for the sake of generality, we allow the possibility that λ1 �= λ2.

The different weights associated with real-time inflation and real-time output (i.e.

(1 − λ1) and (1 − λ2), respectively) may capture the different ability of the initial

releases of inflation and output to forecast final revised inflation and output, respec-

tively. Here, λ2 = 0 indicates that policy focuses entirely on real-time output, λ2 = 1

indicates that policy focuses entirely on revised output and λ2 ∈ (0, 1) indicates that

policy focuses on an average of the two data types. Again, we use the two subscript

notation on the real time data to indicate that date t real time data is not observed

until date t+ 1.

The data release issues crop up in the planner’s decisions whenever data revisions

are somewhat predictable. Otherwise, as pointed out by Croushore (2011), when

revisions are unpredictable, the distinction between real-time and final revised data

is not so important. We model the relationship between the real-time data and the

6Because the policy variable is chosen in the previous period it follows that Et−1[it] = it.
7One could consider a similar two subscript notation for revised inflation such as πt,t+s which

would indicate that date t revised (actual) inflation is first observed s periods after date t at date
t+ s. Although this notation does provide greater clarity on the timing of the data release, it may
also introduce confusion that somehow this variable might be different than the standard variable.
To avoid this potential confusion, we choose to stick with the more conventional notation using a
single subscript.

8



revised data by two simple identities,

Yt = Y rt,t+1 + rYt,t+s, (6)

πt = πrt,t+1 + rπt,t+s, (7)

where rYt,t+s and rπt,t+s denote the final revision of the date t output data and date

t inflation data, which are released s periods later (i.e. date t + s). Based on the

empirical evidence reported below, we assume the output and inflation data revision

processes are given by

rYt,t+s − µ = βY (r
Y
t−1,t−1+s − µ) + εYt,t+s, (8)

rπt,t+s = απ + βππ
r
t,t+1 + επt,t+s, (9)

where εYt,t+s and επt,t+s are assumed to have mean zero and be serially uncorrelated

with normal distribution for all t, 0 < βY < 1 and µ, απ and βπ are unrestricted para-

meters.8 These expressions show the predictability features of the revision processes.

Focusing on the output revision process, this formulation can be written as a moving

average,

�rYt,t+s = rYt,t+s − µ =




∞�

j=0

(βY L)
j


 εYt,t+s. (10)

Taking expectations gives

Et−1
�
�rYt,t+s

	
= (βY )

s+1�rYt−s−1,t−1,

or

Et−1
�
rYt,t+s

	
= µ



1− (βY )

s+1
�
+ (βY )

s+1rYt−s−1,t−1, (11)

which we will find useful for some of the calculations below.9

Following Ruge-Murcia (2003, 2004), we define ξt to be a vector that contains

the model’s random elements. Here, we expand the vector to not only include the

8As shown below, output revisions are better characterized by an autoregressive process whereas
inflation revisions are related to their initial announcements. This later structure has been noted
by Aruoba (2008).

9Notice that rYt,t+s is not observed until t+s and consistency implies that εYt,t+s is also not known
until t+ s. The white noise assumption thus implies Etε

Y
t,t+s = 0 for s ≥ 1.
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structural shocks at time t, but to also contain the (white noise) inflation revision

innovation, the forecast errors of future real-time inflation releases and all output

revision innovations up to time t+ s.10 We order the elements of ξt according to

ξt|It−1 =




ηt
ζt
νt�
εYt,s
�′


 |It−1˜N(0,Ωt), (12)

where νt is a sum of several white noise processes as defined below and

�
εYt,s
�′
=


εYt,t+s, ε

Y
t−1,t+s−1, ε

Y
t−2,t+s−2, ..., ε

Y
t−s,t

�′
.

Under this formulation, ξt has normal distribution with mean zero and a positive-

definite variance-covariance matrix Ωt. Furthermore, ξt could be conditionally het-

eroskedastic. The possibility of conditional heteroskedasticity for ξt relaxes the more

restrictive assumption of constant conditional second moments and allows temporary

changes in the volatility of the structural and revision shocks.

The policy makers objective function is a simple extension to the type used in

Ruge-Murcia (2003, 2004) and Cassou, Scott and Vázquez (2012). In particular, the

policy maker selects it in an effort to minimize a loss function that penalizes variations

between the weighted averages given in (4) and (5) and policy target values according

to

min
it

Et−1





�
1
2

� 

λ1πt + (1− λ1)π

r
t,t+1 − π∗t

�2

+
�
φ
γ2

�� exp (γ(Y ∗t−λ2Yt − (1− λ2)Y rt,t+1))

−γ
�
Y ∗t −λ2Yt − (1− λ2)Y

r
t,t+1

�
−1

�



,

where Et−1 denotes the expectation at the beginning of period t, or, equivalently, at

the end of period t − 1 and γ �= 0 and φ > 0 are preference parameters.11 As in

Ireland (1999) and Ruge-Murcia (2003), we assume π∗t is constant and denote it by

π∗. The output level targeted by the central banker is assumed to be proportional to

the expected permanent value according to

Y ∗t = kEt−1Y
p
t for k ≥ 1. (13)

10The assumption that επt,t+s is white noise is not restricitive. The mathematics below can be
easily extended to the case where επt,t+s follows an autoregressive process.

11The linex function was introduced by Varian (1974) in the context of Bayesian econometric
analysis. More recently, Nobay and Peel (2003) introduced it in the optimal monetary policy analysis.
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In this formulation, when k = 1, the authority targets permanent output, while for

k > 1 the authority targets output beyond the permanent level. The objective

function can be written in terms of exogenous variables and the choice variable it as

min
it

Et−1





�
1
2

�
(it + εt − π∗t )

2

+
�
φ
γ2

�



exp (γ(kEt−1Y
p
t −Y

p
t−α(it+εt+(1− λ1)r

π
t,t+s−π

e
t )

−ηt+(1− λ2)r
Y
t,t+s))

−γ

 
kEt−1Y

p
t −Y

p
t−α(it+εt+(1− λ1)r

π
t,t+s−π

e
t)

−ηt+(1− λ2)r
Y
t,t+s

!
−1








,

where (1), (4), (5),(6), (7), and (13) have been used.12 Taking the derivative with

respect to it and reversing some of the substitutions that were preformed on the

objective function in the previous step yields the first-order condition describing the

optimal policy:

0 = Et−1


λ1πt + (1− λ1)π

r
t,t+1

�
− π∗

−

�
φα

γ

�
Et−1

�
exp(γ(kEt−1Y

p
t − Yt + (1− λ2)r

Y
t,t+s))− 1

�
. (14)

At this point there are two different ways to proceed, each of which gives a valid

empirical equation. For now we will proceed directly from (14) to obtain a baseline

empirical equation, but later we will come back to this and pursue an alternative

calculation.

Baseline empirical equation of inflation

It can be shown that the assumption that the structural disturbances are normal

implies that, conditional on the information set, λ2Yt + (1 − λ2)Y
r
t,t+1 (= Yt −

(1 − λ2)rYt,t+s = Y rt,t+1 + λ2r
Y
t,t+s) is also normally distributed.13 This implies,

exp(γ(kEt−1Y
p
t − Yt + (1 − λ2)r

Y
t,t+s)) is distributed log normal. Using the inter-

mediate result

Et−1Yt = Et−1Y
p
t ,

12The first step for the algebra here uses the following equalities λ2Yt + (1 − λ2)Y
r
t,t+1 = λ2Yt +

(1−λ2)(Yt− r
Y
t,t+s) = Yt− (1−λ2)r

Y
t,t+s. The second step notes that λ1πt+(1−λ1)π

r
t,t+1 = λ1πt+

(1−λ1)(πt−r
π
t,t+s) = πt−(1−λ1)(r

π
t,t+s), which implies πt = λ1πt+(1−λ1)π

r
t,t+1+(1−λ1)r

π
t,t+s =

it + εt + (1− λ1)r
π
t,t+s.

13This demonstration can be obtained from the authors upon request.
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obtained by taking conditional expectations of both sides of (1) and using the as-

sumption of rational expectations, it is possible to write the conditional mean of this

log normal distribution as

Ψt ≡ exp




γ(k − 1)Et−1Y
p
t + γ(1− λ2)µ



1− (βY )

s+1
�
+ γ(1− λ2)(βY )

s+1rYt−s−1,t−1

+γ2

2

#
σ2Yt − 2(1− λ2)σYt,rYt,t+s

+ (1− λ2)
2σ2
rYt,t+s

$

 .

(15)

To obtain the last equation, first notice that

Et−1(kEt−1Y
p
t − Y rt,t+1 − λ2r

Y
t,t+s) = kEt−1Y

p
t −Et−1Y

r
t,t+1 −Et−1λ2r

Y
t,t+s

= kEt−1Y
p
t −Et−1Yt +Et−1r

Y
t,t+s − λ2Et−1r

Y
t,t+s

= (k − 1)Et−1Y
p
t

+(1− λ2)


µ


1− (βY )

s+1
�
+ (βY )

s+1rYt−s−1,t−1
�
,

where (1), (6) and (11) have been used. Second, conditional on the information

at time t − 1, Yt − (1 − λ2)rYt,t+s is the stochastic component of γ(kEt−1Y
p
t − Yt +

(1 − λ2)r
Y
t,t+s) because kEt−1Y

p
t is already known. This stochastic term yields the

second term in (15) and arises from the standard mean calculation for the log normal

distribution.

Next work on the left hand side of (14). Using (4) we see

Et−1


λ1πt + (1− λ1)π

r
t,t+1

�
= it = λ1πt + (1− λ1)π

r
t,t+1 − εt.

Plugging this and (15) into (14) one gets

λ1πt+(1−λ1)π
r
t,t+1 = Et−1



λ1πt + (1− λ1)π

r
t,t+1

�
+εt = π∗−

�
φα

γ

�
+

�
φα

γ

�
Ψt+Aξt.

(16)

where A = (0, 0, 1, 0, (0
Y
)′) where (0

Y
)′ are vectors of zeros long enough to eliminate

the real-time error processes.

To obtain an empirical equation, one linearizes the exponential term Ψt in (16)

by means of a first-order Taylor series expansion to get

λ1πt+(1−λ1)π
r
t,t+1 = a+ bEt−1Yt+ c1σ

2
Yt
+ c2σYt,rYt,t+s

+ c3σ
2
rYt,t+s

+ drYt−s−1,t−1+ et.
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Finally, using (7), we have λ1πt + (1− λ1)π
r
t,t+1 = πt − (1− λ1)r

π
t,t+s, which can be

substituted in to give the empirical equation

πt = a+bEt−1Yt+c1σ
2
Yt
+c2σYt,rYt,t+s+c3σ

2
rYt,t+s

+drYt−s−1,t−1+(1−λ1)r
π
t,t+s+et, (17)

where a = π∗−
�
φα
γ

�
+φα(1−λ2)µ



1− (βY )

s+1
�
, b = φα(k−1) ≥ 0, c1 =

φαγ
2 ≷ 0,

c2 = −φαγ(1 − λ2) ≷ 0, c3 =
φαγ(1−λ2)2

2 ≷ 0, d = φα(1− λ2)(βY )
s+1 ≥ 0, and et is

a reduced form disturbance. In our empirical calculations we reduce the number of

estimated parameters by imposing c2 = −2c1(1 − λ2) and c3 = c1(1 − λ2)
2. Notice

that c1 is positive, and then c2 and c3 are non-negative, in the more plausible case

where γ > 0 (i.e. whenever the preferences of the central banker are asymmetric

with stronger action taken when output is below its permanent level than when it is

above).

We will call equation (17) the baseline empirical equation of inflation because it

is the reduced-form equation of inflation derived by Ruge-Murcia (2003, 2004) and

Cassou, Scott and Vázquez (2012) augmented with a few additional terms due to the

presence of data revisions. It is useful to highlight several new sources of inflation

bias contained in equation (17) beyond the one implied by the Barro-Gordon model

of bEt−1Yt, and the asymmetric preference one implied by the Ruge-Murcia model of

c1σ
2
Yt
. One source is the term φαµ



1− (βY )

s+1
�
which is part of the intercept, a,

formula. This bias source shows up whenever the mean of output revisions is not zero.

Two other sources are associated with revisions of output and inflation (drYt−s−1,t−1

and (1−λ1)r
π
t,t+s, respectively). The output revision source is linked in part to the

extent to which real-time output data is weighted by policy makers, (1 − λ2), and

partly to the extent that there is persistence in the revision process and how long

the lag is between the real-time data release and the revised data release (βY )
s+1.

Meanwhile, the importance of the inflation revision source depends on the extent to

which real-time inflation data is weighted by policy makers, (1 − λ1). In addition,

inflation biases can arise from the conditional variance from output revisions, σ2
rYt,t+s

,

and the conditional covariance between revised output and output revisions, σYt,rYt,t+s .
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Both of these conditional terms are connected to the extent to which real-time output

data is considered by policy makers, (1− λ2), when defining its output target.

Alternative empirical equation of inflation

An alternative empirical model can be found by first noting that (6) implies Yt− (1−

λ2)rYt,t+s = Y rt,t+1 + λ2r
Y
t,t+s so

exp(γ(kEt−1Y
p
t − Yt + (1− λ2)r

Y
t,t+s)) = exp(γ(kEt−1Y

p
t − Y rt,t+1 − λ2r

Y
t,t+s)).

This means Ψt can also be written as

Ψt ≡ exp




γ(k − 1)Et−1Y
p
t + γ(1− λ2)µ



1− (βY )

s+1
�
+ γ(1− λ2)(βY )

s+1rYt−s−1,t−1

+γ
2

2

#
σ2Y rt,t+1

+ 2λ2σY rt,t+1,rYt,t+s
+ λ22σ

2
rYt,t+s

$

 .

Following the same steps as above, one can get

πt = a+bEt−1Yt+c1σ
2
Y rt,t+1

+c′2σY rt,t+1,rYt,t+s
+c′3σ

2
rYt,t+s

+drYt−s−1,t−1+(1−λ1)r
π
t,t+s+e

′
t,

(18)

where a, b, c1 and d were defined above and c′2 = φαγλ2 ≷ 0 and c′3 =
φαγλ22
2 ≷ 0.

In our empirical calculations for this formulation we again reduce the number of

estimated parameters by imposing c′2 = 2c
′
1λ2 and c′3 = c′1λ

2
2. Again notice that c′2

and c′3 are non-negative in the more plausible case where γ > 0.

Bivariate output and inflation models

Each of the two empirical inflation models when combined with the reduced form

for the output process represent a different bivariate output-inflation model. To get

the reduced form of output, first note that using (9), one gets rπt,t+s −Et−1[rπt,t+s] =

βπ(π
r
t,t+1 − Et−1[π

r
t,t+1]) + επt,t+s.

14 Next note that (4) and (7) imply πt = (1 −

λ1)rπt,t+s+ it+ εt, so πt−Et−1[πt] = (1−λ1)


βπ(π

r
t,t+1 −Et−1[πrt,t+1]) + επt,t+s

�
+ εt.

14Here we assume that επt,t+s is a white noise. In the more general case where επt,t+s follows an

AR(1) process, we have that rπt,t+s−Et−1[r
π
t,t+s] = βπ(π

r
t,t+1−Et−1[π

r
t,t+1])+

��s

j=0
(βεπL)

j
�
νπt,t+s,

where βεπ and νπt,t+s are the autoregressive coefficient and the white noise innovation, respectively,
associated with this AR(1) process.
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Because the forecast error associated with a future release of real-time data (i.e.

πrt,t+1 − Et−1[π
r
t,t+1]) is a white noise error, we can conclude that πt − Et−1[πt] is a

sum of several white noise processes, which are all together defined in a more compact

form as νt. Substituting this into (1) gives

Y
p
t = Yt − ανt − ηt, (19)

and then substituting this into (3) gives

Yt = Y
p
t−1 + ψ′ + (1− δ)2t− (1− δ)Y pt−1 + θ(Y pt−1 − Y

p
t−2) + ζt + ηt + ανt.

Again using lagged versions of (19) implies

∆Yt = ψ′ + (1− δ)2t− (1− δ)Yt−1 + θ∆Yt−1 + ζt + ηt + ανt −

δ
�
ανt−1 + ηt−1

�
− θ

�
α∆νt−1 +∆ηt−1

�
. (20)

Equation (20) was combined with either (17) or (18) to jointly estimate the parame-

ters using a maximum likelihood procedure. It is not possible to identify all structural

parameters of the model from the reduced-form estimates. While the weight parame-

ters λ1 and λ2 can be estimated directly, the policy maker preference parameter γ is

not identified. However, the sign of parameter c1 is informative about central banker

preferences. As in the Ruge-Murcia model, as γ → 0 (with k > 1) one obtains an

inflation-output version of the Barro and Gordon model. So a test of that model is,

H0 : c1 = 0. Also, when k = 1 the policy preferences are such that the monetary

authority targets expected permanent output, so a test of this is, H0 : b = 0.

2.2 The Inflation and Unemployment Planner

The inflation and unemployment planner model is similar to the previous planner

model with the only key difference being that unemployment does not have a time

trend. Following analogous calculations, one can show that the reduced form equa-

tions for this model are given by

πt = �a+�bEt−1Ut+�c1σ2Ut+�c2σUt,rUt,t+s+�c3σ
2
rUt,t+s

+ �drUt−s−1,t−1+(1−λ1)rπt,t+s+�et, (21)
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or

πt = �a+�bEt−1Ut+�c1σ2Urt,t+1+�c
′

2σUrt,t+1,r
U
t,t+s

+�c′3σ2rUt,t+s+
�drUt−s−1,t−1+(1−λ1)rπt,t+s+�e

′

t,

(22)

and

∆Ut = �ψ − (1− �δ)Ut−1 + �θ∆Ut−1 + �ζt + �ηt − �α�νt +

�δ[�α�νt−1 − �ηt−1] + �θ[�α∆�νt−1 −∆�ηt−1], (23)

where we use the tilde notation to emphasize that the parameters and error processes

are specific to the unemployment model.

3 Empirical Results

Two sets of empirical models were estimated using data for the United States. The

first focused on the output version of the model and combined either (17) or (18)

with (20) while the second focused on the unemployment version of the model and

combined either (21) or (22) with (23). Taken together, these equations need both

real-time and revised data for all three variables. The revised data included quarterly

Gross Domestic Product (GDP) and the Personal Consumption Expenditure (PCE)

price index data as well as monthly unemployment data.15 These series were obtained

from the FRED data base maintained by the St. Louis Federal Reserve Bank. Next,

the monthly unemployment data was converted into quarterly data by averaging

over the three months in each quarter and the PCE price index series was used to

compute the inflation series in the usual way. The real-time data included quarterly

GDP and PCE data as well as monthly unemployment data which were obtained

from the real-time data bank maintained by the Philadelphia Federal Reserve Bank.

Similar calculations were used to find quarterly real-time unemployment rates as well

as real-time inflation rates.
15As pointed out by Croushore (2011, p. 94), the Fed’s main indicators of inflation are the PCE

inflation rate and the core PCE inflation rate (excluding food and energy prices). Moreover, Section
4 shows that the empirical evidence is largely robust to the use of inflation data measured by the
GDP deflator.
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The real-time data bank proved to be the binding constraint for the first period

of the analysis, as this data is only available beginning in the fourth quarter of 1965.

On the other hand, as explained below, the revised data proved to be the binding

constraint for the end period of the analysis. Two different data intervals were

investigated for the output and inflation model. One ran from 1966:2 to 1999:4

and was chosen because it is roughly the same as the interval studied by Ireland

(1999), Ruge-Murcia (2003, 2004) and others. The second ran from 1966:2 to 2011:1.16

Although data that is called revised data was available up to 2014:1 when we started

to carry out our empirical analysis, the earlier end date for the long sample was chosen

so as to be consistent with the timing of the last revision for the data, ignoring

comprehensive or benchmark revisions that can be carried out in the future. In

particular, there is a three year lag before output data is revised for the last time.

This lag means that, only the data up to 2011:1 can be considered as truly revised

data. In addition, this revision lag also tells us that s = 12 should be used in

estimating the model.17

One further complication with the real-time data empirical analysis carried out

here, relative to an empirical analysis that uses purely revised data or purely real-

time data, is that the real-time level data for GDP has several different construction

characteristics than the revised level data for GDP, so computing GDP revisions as in

(6) is not a straightforward exercise. Two particularly problematic aspects are that

the two series have different benchmark revision characteristics and different trends.

Both of these features mean that simple differencing of (the logs of) the two raw

series to get the revision series is more likely to reflect these construction differences

than the revision process. To remedy this issue, we recompute the real-time output

series using the raw real-time data and a revised data trend base. In particular,

16These data intervals corresponds to the ones used in the final estimation step reported in various
tables below. The two quarter discrepancy between the beginning of the full data set and the final
estimation data set arises because, as explained below, the conditional variances were estimated using
a GARCH(1, 1) model that had two lags in the revision mean equation.

17Similar issues came into play in determining the data interval for the unemployment model. In
Section 4, we discuss the results for a full sample estimation of the unemployment model over the
interval 1967:4 to 2013:4 with s = 4.
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we compute �Y rt =
%
1 + ln

�
Y rt
Y rt−1

�&
∗ Y HPt−1 where Y HPt−1 is the trend component of the

revised GDP data, Y rt is the real time output data at date t and �Y rt is our notation for

the recomputed real-time GDP data.18 This recomputed real-time data now has the

same trend features as the revised data, and thus can be combined with the revised

output series to get a revision series of GDP that is not sensitive to different trends,

yet the recomputed series still maintains the same deviation from the trend inherent

in the original real-time GDP series.19 In this application, we considered the popular

Hodrick and Prescott (1997) filter to obtain the trend component of GDP, Y HPt . The

upper graph of Figure 1 shows plots of (the logs of) the revised GDP series and the

recomputed real-time GDP series and illustrates that by construction they both now

share the same trend features.

Figure 1 also contains two other plots, with the middle graph plotting the revised

inflation series and the real-time inflation series and the bottom graph plotting the

inflation revision and output revision series.20 These plots highlight a few important

features discussed more fully below. First, real-time inflation is more volatile than

revised inflation. Second, the size of the inflation revision volatility is comparable

with those of revised and real-time inflation. Finally, output revisions exhibit more

persistence than inflation revisions.

Before estimating the models, we undertook two types of preliminary tests. The

first one determines if revisions of output, inflation and unemployment are white

noise. This analysis is important because, should the revisions be unpredictable,

then, as noted in Croushore (2011) and many others, the distinction between real-

18We have left out the second subscript on the real time data variables that was used above
to simplify the notation here since the time aspect of that second subscript plays no role in this
calculation and using the extra subscript in this discussion is cumbersome.

19As an alternative to the trend component used when recomputing �Y r
t , one may consider the

lagged value of the revised data, Yt−1. We disregard this alternative because Y HP
t−1 , in contrast to

Yt−1, has the advantage of abstracting from the business cycle fluctuations present in the revised
data, Yt−1, since these revised output fluctuations are not fully reflected yet in the real-time output
data. This feature is crucial in our analysis since optimal monetary policy aims at smoothing the
business cycle, so our recomputed real-time GDP series should not be contaminated with cyclical
features only known when revised data are released in the future.

20The output revision series was multiplied by 100 to obtain a comparable unit of measurement
to those of inflation and inflation revisions, which are measured in percentage points.
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Figure 1: U.S. real-time and revised output and inflation
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time and revised data would not be an issue as long as revisions are not large. The

second type helps us to determine if the conditional variances for revised and real-

time output, and revised and real-time unemployment were time varying, which is

a necessary condition for identification of the presence of asymmetric central banker

preferences.

Table 1. Estimation of revision process

output inflation unemployment
constant 0.001 0.124∗ 0.016

(0.001) (0.034) (0.011)
AR(1) 0.347∗ 0.055 0.167∗

(0.070) (0.080) (0.071)
AR(2) 0.252∗ -0.005

(0.070) (0.073)
AR(3) -0.025

(0.072)
AR(4) 0.279∗

(0.071)
real-time variable -0.143∗

(0.037)
R2 0.268 0.130 0.135
Durbin-Watson statistic 2.016 1.749 1.898

Note: standard errors are in parenthesis. We use the convention that tests that are significant

at the 10 percent level only have a † while those that are significant at the 5 percent (and 10

percent) level have an ∗.

Table 1 shows the estimation results obtained from fitting an autoregressive

process for the revisions of output and unemployment along with a modified inflation

revision autoregression with a real-time initial announcement term as formulated in

equations (8) and (9). Preliminary diagnostic tests, not shown to save space, suggest

that an AR(2) and an AR(4) respectively, fit the revision processes of output and

unemployment reasonably well with the real-time initial announcement term being

insignificant in each case. On the other hand, Table 1 shows that inflation revisions

are negatively related to real-time inflation. This result implies that a high real-time

value of inflation anticipates a negative revision of inflation because the real-time
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release was too high. Put differently, a positive inflation revision comes from hav-

ing real-time inflation underestimating the true value. These results clearly reject

the null hypothesis that revisions of output, inflation and unemployment are white

noise, which means that data revisions for output, inflation and unemployment are

predictable and thus may matter in the analysis of central banker preference asym-

metries. These results also show that the small size of the significant intercepts

associated with output and unemployment regressions imply that the first source of

inflation bias due to data revisions described above is small.

Table 2. Standard deviation of residuals

output inflation unemployment
Real-time 0.0095 0.4857 0.3033
Revised 0.0076 0.3646 0.2526

Table 2 shows the standard deviation of estimated residuals for both real-time and

revised data. An AR(4) with a time trend is estimated for output while an AR(4)

with not time trend was estimated for unemployment and an AR(1) is estimated

for inflation. Lag lengths for the output and unemployment estimations were chosen

based on a univariate Sims (1980) test against an eight lag unrestricted model. As

one looks across the table, it can be seen that the real-time data consistently have

larger residual standard deviations than the revised data. This indicates that the

real-time data is somewhat more variable than the revised data. Moreover, as shown

in the bottom plot of Figure 1, inflation revisions also feature high volatility, which

implies a large inflation bias source induced by the presence of real-time data in the

monetary authority objective function.

The reduced form equations (17) and (18) for the output-inflation model as well

as the reduced form equations (21) or (22) for the unemployment-inflation model

show that conditional variances as well as conditional covariances are important for

explaining inflation. To estimate these conditional variances and covariances we

explored numerous multivariate GARCH models for both the output series and the

unemployment series each of which uses the BEK structure suggested by Engle and
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Kroner (1995) to ensure that the conditional variances are positive. In particular, we

investigated GARCH models with different mean formulations as well as GARCH lag

lengths. The best (according to the SBC criterion) GARCH model when using the

real-time output data and output revisions was a GARCH(1, 1) with real-time out-

put mean equation that has a trend and one lag and the revision mean equation with

two lags. When investigating the models with revised output data and output revi-

sions, this formulation was marginally worse than a model that had a GARCH(1, 1)

structure with a mean equation for revised output having a trend and two lags and

the revision equation having one lag. However, to keep things consistent, we opted

to use the same model for this combination of series as we did for the real-time output

and output revision series. When using the real-time unemployment data and unem-

ployment revisions a GARCH(1, 1) with real-time level mean equation that has two

lags and revision mean equation with only a fourth lag was used. This was among

the best models according to the SBC criterion and was chosen because it was more

parsimonious than some of the others. As with the output equations, we used the

same model for the revised unemployment and unemployment revisions model.

We also undertook neglected ARCH tests using the residuals from empirical mod-

els that do not model conditional heteroskedasticity as well as residuals from the best

fitting multivariate GARCH(1, 1) models described above to investigate the extent

to which heteroskedasticity may be present in the data and thus useful in our empir-

ical models. We use the terminology “original” to refer to the residuals from models

that do not model conditional heteroskedasticity and “standardized” to refer to the

residuals from the GARCH models. The results for the output data tests are pre-

sented in Table 3a, while those from the unemployment data are presented in Table

3b. Each table is organized into three panels, with the results from the revised data

presented first, the results from the real-time data presented second and the results

for the data revisions presented third.
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Table 3a. LM tests for neglected ARCH using output data

Squared Sample period No. of lags

residuals 1 2 3 4 5 6

Revised Data

Original 1965:4-1999:4 0.20 4.61† 4.64 7.28 7.46 7.48

1965:4-2011:1 0.87 4.68† 4.82 7.24 7.41 7.44

Standardized 1965:4-1999:4 0.22 0.83 1.14 4.87 5.42 10.80†

1965:4-2011:1 1.78 2.25 3.22 5.01 6.31 9.97

Real-time Data

Original 1965:4-1999:4 0.00 0.00 6.18 6.51 6.64 6.93

1965:4-2011:1 0.88 1.20 4.30 5.13 5.44 5.42

Standardized 1965:4-1999:4 0.06 0.65 1.12 1.61 2.44 3.10

1965:4-2011:1 0.09 1.76 2.01 2.75 2.81 2.84

Output Revisions

Original 1965:4-1999:4 0.57 1.00 1.28 1.62 2.55 2.46

1965:4-2011:1 0.89 1.21 2.07 2.31 3.34 3.23

Standardized 1965:4-1999:4 0.17 0.30 1.10 1.07 2.01 2.87

1965:4-2011:1 0.08 0.38 2.56 2.67 3.09 4.54

Note to Tables 3a and 3b: We have used the convention that tests that are significant at

the 10 percent level only have a † while those that are significant at the 5 percent (and 10

percent) level have an ∗.

Focusing on the results in Table 3a, the first two rows of the top panel show the

test statistics using the residuals from the revised output series model over the two

time periods. Here the residuals from a four-lag VAR with a time trend were col-

lected. Since this VAR did not model heteroskedasticity the residuals are an original

type of residual. These residuals were then squared and an OLS regression was run

on a constant and one to six lags From each of these regressions an LM test statistic

was computed and entered across the rows of the table corresponding to the num-

ber of lags in the squared residual regression. The next two rows show the results

using the residuals from the best fitting multivariate GARCH(1, 1) model described

above. Since these residuals come from a model that takes into account conditional

heteroskedasticity the residuals are a standardized type. The same procedure of

squaring the residuals, running OLS regressions of the squared residual on a constant
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and one to six lags and then computing the LM test statistic was applied. The

test statistics from this exercise were then entered across the rows of the table corre-

sponding to the number of lags in the squared residual regression. All test statistics

have χ2q distribution where q is the number of lags. In the table we have used the

convention that tests that are significant at the 10 percent level only have a † while

those that are significant at the 5 percent (and 10 percent) level have an ∗. The

second and third panels are similarly organized with the same test calculations as in

the top panel, only here the real-time data and the output revisions were used for

the analysis. Table 3b has a similar layout as Table 3a, only here the tests were run

using the unemployment data.

Tables 3a and 3b show several facts. First, both the revised and real-time unem-

ployment series show a greater degree of conditional heteroskedasticity than both the

revised and the real-time data output series. Second, the GARCH model generat-

ing the standardized residuals correct the conditional heteroskedasticity to a greater

extent in the unemployment series. In particular, for the unemployment series, the

original LM tests often show the presence of heteroskedasticity while the standard-

ized residual tests do not. On the other hand, for the output series, both the original

and standardized LM tests do not show heteroskedasticity. Even though the original

output test do not show heteroskedasticity at standard confidence levels, the tests

do show that the GARCH model does improve the test statistics, so we believe the

constructed conditional variances, which we use in the empirical estimates described

below, do have some conditional heteroskedasticity content and should be useful for

estimation purposes. Moreover, the rather robust empirical finding of asymmetric

central preferences across models shown below in Section 4 suggests that the empir-

ical evidence of conditional heteroskedasticity is present in both output and unem-

ployment series. Third, these results are largely the same whether revised data or

real-time data were used. Finally, both the output and unemployment revisions do

not show conditional heteroskedasticity in either the original or standardized residu-

als, however the standardized test statistics are generally smaller, so we believe the
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constructed conditional variances should be useful for estimation purposes.

Table 3b. LM tests for neglected ARCH using unemployment data

Squared Sample period No. of lags

residuals 1 2 3 4 5 6

Revised Data

Original 1965:4-1999:4 6.81∗ 13.49∗ 13.39∗ 14.35∗ 14.38∗ 15.22∗

1965:4-2013:1 8.82∗ 17.11∗ 17.36∗ 17.99∗ 18.05∗ 18.62∗

Standardized 1965:4-1999:4 1.14 1.32 1.63 5.12 5.91 6.62

1965:4-2013:1 0.80 0.87 0.99 2.60 4.97 5.22

Real-time Data

Original 1965:4-1999:4 2.02 7.37∗ 7.31† 7.79† 7.91 18.51∗

1965:4-2013:1 4.64∗ 10.84∗ 10.88∗ 11.51∗ 11.74∗ 23.80∗

Standardized 1965:4-1999:4 0.02 2.98 3.41 4.50 4.55 4.40

1965:4-2013:1 0.86 4.89† 4.71 4.98 5.00 4.84

Unemployment Revisions

Original 1965:4-1999:4 1.39 1.45 1.46 1.80 1.87 1.93

1965:4-2013:1 2.06 2.11 2.14 2.71 2.89 2.95

Standardized 1965:4-1999:4 0.00 0.11 0.45 0.74 0.89 0.90

1965:4-2013:1 0.02 0.07 0.37 0.90 1.20 1.19

We next undertook estimation of the various models. For the output model we

jointly estimated either (17) or (18) with (20) while for the unemployment model

we jointly estimated either (21) or (22) with (23). One subtle detail to note is that

the indices for the conditional variances actually differ by two periods from the other

variables in (17), (18), (21) and (22). This two period difference arises because policy

makers make decisions about time t policy at time t − 1, yet the real-time target

variable is not observed until one period after time t, which is date t + 1. What

this timing feature implies is that the conditional variances are actually the two step

ahead conditional variances and required a modestly more complicated computational

approach to get data for the estimates.21

21For the revised output model, we obtained these variances by running the multivariate
GARCH(1, 1) model described above with mean equations which we will denote by yt = ay +
ay1t +

�qy
i=1 byiyt−i + ε1t for revised output and xt = ax +

�qx
i=1

bxixt−i + εt for output re-
visions. The errors were modelled using standard multivariate GARCH assumptions such as
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Since unemployment revisions are not as important as output revisions, we focus

our discussion on the empirical results of the output and inflation versions of the

model first. The results for the unemployment and inflation model are discussed

later in Section 4 where several other alternative specifications are investigated in

order to see how robust the conclusions drawn here are. Table 4 shows the results

of the maximum likelihood estimation of the output and inflation models using the

sample period of 1966:2 to 2011:1 for the four versions of the model that result from

combining the nonstationary and trend-stationary versions of the reduced form of

output process together with the two versions of the empirical equation of inflation

(i.e. the baseline version based on revised output and the alternative version based

on real-time output). The nonstationary models correspond to δ values of 1, which

means first differences of output in (20) were taken. For these nonstationary models,

the equation (20) follows an ARIMA(1, 1, 2) processes, and we use this notation to

refer to this model in the various tables below. The stationary version of the model

correspond to values of δ < 1. For the output model, this meant that there was a

deterministic time trend. The time trend was estimated from a simple regression of

output on a constant and a time trend in a preliminary regression. This regression

found δ = 1−0.000125487 and was the value used for maximum likelihood estimation

procedure. In the various tables, we use the notation ARIMA(2, 0, 2) to refer to this

model. The tables are organized so that the results from the ARIMA(1, 1, 2) models

are displayed in the left columns while the ARIMA(2, 0, 2) models are displayed in

the right columns. These tabular notations and constructions were also used for

the unemployment models, however, one difference for those models was that for the

δ < 1 cases, we used δ = 0 since a linear trend is not useful for the unemployment

data.

those found in Enders (2010). Some not too complicated algebra shows that the two step
ahead conditional variances for output are related to the one step ahead conditional variances by
c10 +

�
b2y1 + α11 + β11

�
h11t + (α12 + β12)h12t + (α13 + β13)h22t where the unspecified notation is

consistent with that in Enders (2010). The two step ahead conditional variances for output revisions
as well as the two step ahead conditional covariances have similar formulas. Details of these calcu-
lations are available from the authors upon request. The two step ahead conditional variances and
covariances for the other models were computed in an analogous way.
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Table 4. PCE inflation. Sample 1966:2-2011:1

ARIMA(1,1,2) model ARIMA(2,0,2) model

Coefficient Revised output Real-time output Revised output Real-time output

a 2.496∗ 2.884∗ 2.516∗ 2.749∗

(0.631) (0.570) (0.650) (0.550)

b 0.0 0.0 0.0 0.0

· · · ·
c1 10.316∗ 5.650† 9.628∗ 7.279†

(5.134) (3.274) (4.718) (3.727)

d 0.0 0.0 0.0 0.0

· · · ·
λ1 0.862∗ 0.853∗ 0.840∗ 0.865∗

(0.208) (0.217) (0.203) (0.205)

λ2 0.580 0.895† 0.5 0.5

(0.470) (0.471) · ·

log likelihood 0.952 0.946 0.938 0.933

t-statistics

H0: λ1= 0.5 1.740† 1.627 1.675† 1.780†

H
′

0: λ2= 0.5 0.170 1.051 · ·

Note to Tables 4-7: standard errors are in parenthesis. We use the convention that tests that

are significant at the 10 percent level only have a † while those that are significant at the 5

percent (and 10 percent) level have an ∗.

Table 4 shows five noteworthy conclusions can be drawn from this analysis. The

first two conclusions have been explored in earlier papers by Ruge-Murcia (2003),

Cassou, Scott and Vázquez (2012) and others which work with models that are special

cases of the one considered here, while the last three conclusions are unique to this

paper with its revised and real-time data distinctions. First, the estimates for b shed

light on the inflation bias modeled in Barro and Gordon (1983). In our estimations we

allow k to vary freely above its lower bound of 1, which implies that b is constrained to

be greater than zero. Table 4 shows that we are unable to reject the null hypothesis

H0 : b = 0, so we conclude that the inflation bias, à la Barro-Gordon is not present.

Second, the null hypothesis H0 : c1 = 0 is rejected for most versions of the model,

which is consistent with the hypothesis that the monetary authority has asymmetric

preferences. Both of these findings are in line with the results in Ruge-Murcia (2003)
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and Cassou, Scott and Vázquez (2012). Third, the estimate of the revised inflation

weight in the central banker inflation target, λ1, is roughly 0.85 across models, which

suggests that the Fed mainly targets revised inflation, but it also assigns some weight

to real-time inflation. Although one may argue that λ1 is not significantly different

from 1, and thus conclude that real-time inflation plays no significant role when

characterizing the Fed inflation target, this conclusion is not entirely right because

in most cases we cannot reject the hypothesis that the Fed equally weighs both

revised and real-time inflation when targeting inflation (i.e. H0 : λ1 = 0.5) either

as shown by the t-statistic of this hypothesis in the second row from the bottom

of the table. These estimation results suggest that the lack of precision associated

with the parameter estimates of λ1 make it hard to obtain a precise conclusion about

the relative importance of revised and real-time inflation to the monetary planner’s

decisions. However, the robustness of the point estimate of λ1 across alternative

specifications suggests that real-time inflation seems to also be important for the

Fed inflation targeting beyond statistical significance. Fourth, the estimate of the

revised output weight in the central bank’s output target, λ2, is in many cases much

closer to 0.5 than the estimate of λ1, which suggests that the Fed equally weighs both

revised and real-time output when monitoring output (i.e. H
′

0 : λ2 = 0.5). Indeed,

the best fit for the ARIMA(2, 0, 2) model is obtained by imposing λ2 = 0.5.
22 The

results of the t-statistic test of H
′

0 displayed in the last row of Table 4 show that

the null hypothesis H
′

0 : λ2 = 0.5 is never rejected. However, we cannot reject

either that λ2 = 0 or λ2 = 1, which suggests that λ2 is not well identified in any

model, but particularly so for the ARIMA(2, 0, 2) model. We also find that fixing

λ2 = 0.5 not only gives the highest value of the likelihood in the ARIMA(2, 0, 2)

model but also results in the asymmetry preference parameter, c1, being always

significant. Finally, the parameter d provides insights into another source of inflation

22The reason for finding a superior maximum when restricting one of the parameters, for instance
λ2, is due to the choice of the initial values in the maximum-likelihood algorithm. Thus, a particular
choice of initial values may lead the numerical algorithm to find an inferior maximum where a
parameter is stuck at one of its boundaries.
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Figure 2: Estimated inflation

bias. For this estimate, we imposed the constraint that d ≥ 0. Doing so resulted

in d being either zero or positive, but insignificant, across models. Failing to reject

H0 : d = 0, implies one of the new potential sources of inflation bias discussed above

is not important. One explanation for the absence of this source is that by definition

of d = φα(1 − λ2)(βY )
s+1. So this source will only be important if the central

banker weighs real-time output heavily (i.e. λ2 is not too close to one) and output

is extremely persistent (i.e. βY close to one) and the results in Tables 1 and 4 show

this is not the case.

Next, we assess the importance of the inflation bias induced by data revisions. In

order to do that, we computed the estimated inflation time series, which we labeled as

Inflation 1, obtained using the point estimates of the ARIMA(1, 1, 2)model displayed
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in Table 4.23 In addition, we also computed two alternative synthetic inflation time

series. The first one, labeled Inflation 2, is obtained when the restriction λ2 = 1 is

imposed (i.e. when the Fed does not target real-time output). The other, labeled

Inflation 3, is obtained by imposing the restrictions λ1 = λ2 = 1 (i.e. the Fed

only targets revised inflation and output data). In this latter case, the Ruge-Murcia

type asymmetric preferences of the Fed is the only source of inflation bias. Figure 2

shows the three simulated inflation time series. By computing the difference between

Inflation 1 and Inflation 3 and then averaging this difference over the whole sample

period, we obtained a measure of the importance of inflation bias induced by the Fed

when weighting real-time inflation and output data in addition to revised inflation

and output data. It was found that inflation bias induced by real-time data increases

by 12.6 basis points on average. Moreover, this source of inflation bias is roughly

two times larger, at 22.9 basis points, when we focused only on the first quarter of

each recession period.24 Similarly, the difference between Inflation 1 and Inflation 2

gives us a measure of the importance of inflation bias when the Fed weighs real-time

inflation data, but not real-time output data. It turns out, that the two differences

measuring the size of inflation bias due to data revisions gave rather similar results.

So we do not discuss these results any further, but we simply conclude that inflation

revisions seem to be the main source of inflation bias induced by data revisions. The

next section carries out a robustness analysis along three important dimensions.

4 Robustness Analysis

In this section we describe several alternative exercises which assess the robustness

of the results discussed above. The first exercise considers an alternative measure
23Similar results regarding the size of inflation bias due to data revisions are found when using the

point estimates from the other three model formulations since the estimates of λ1and λ2 are very
robust across specifications.

24While it is true that the latter inflation bias was computed taking into account only seven
observations (i.e. the number of recessions dated by the NBER since 1969), we must emphasize that
the inflation bias due to data revisions associated with all quarters featuring the start of a recession
were not only positive but also larger than the average value computed for the whole sample period.
Beyond its statistical significance, these results suggest that the start of a recession coincides with
large data revisions inducing an associated inflation biases that are larger than usual.
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for inflation based on the GDP deflator. In the second, we analyze a shorter sample

period that runs from 1966:2 to 1999:4 and more closely corresponds to the sample

period studied by Ireland (1999) and Ruge-Murcia (2003, 2004). Finally, we analyze

the unemployment-inflation model. Our analysis shows that the main conclusions

obtained in the baseline model go through in most of the cases studied.

GDP deflator inflation

Table 5 shows the estimation results when using the GDP deflator to determine the

inflation rate. Comparing Tables 4 and 5, we see that the estimates for the Barro and

Gordon inflation bias, b, and the Ruge-Murcia inflation bias, c1 are largely the same,

with b stuck at the lower bound for its range and c1 values around 10 for the revised

data estimates and somewhat smaller for the real-time data estimates. Perhaps, the

most noteworthy difference is that the estimate of the revised inflation weight in the

central banker inflation target, λ1, is slightly lower for the GDP deflator estimates.

However, these estimates tell largely the same story was found for the PCE index

calculation for inflation which is that the planner weights revised data more heavily

in their decision process, but that real-time data is also important. Overall, Tables

4 and 5 show that both the PCE index and GDP deflator computations for inflation

yield largely the same results.
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Table 5. GDP deflator inflation. Sample 1966:2-2011:1

ARIMA(1,1,2) model ARIMA(2,0,2) model

Coefficient Revised output Real-time output Revised output Real-time output

a 2.361∗ 2.708∗ 2.412∗ 2.706∗

(0.651) (0.570) (0.698) (0.575)

b 0.0 0.0 0.0 0.0

· · · ·
c1 10.934† 6.203† 10.005† 5.999†

(6.098) (3.180) (5.421) (3.207)

d 0.0 0.0 0.038 0.0

· · (0.044) ·
λ1 0.814∗ 0.779∗ 0.806∗ 0.784∗

(0.182) (0.210) (0.172) (0.209)

λ2 0.569 0.951∗ 0.5 0.985∗

(0.432) (0.436) · (0.451)

log likelihood 1.051 1.044 1.030 1.026

t-statistics

H0: λ1= 0.5 1.725† 1.329 1.779† 1.359

H
′

0: λ2= 0.5 0.160 1.034 · 1.075

Short sample evidence

Table 6 shows the estimation results for a shorter sample period of 1966:2-1999:4

using the PCE index to compute inflation.25 Comparing them to the results in Table

4 shows that the estimates are mostly the same. The most noteworthy difference is

that the estimate for the Ruge-Murcia type inflation bias, c1, is larger and significantly

stronger for the short sample across all models.

25As in the full sample results, the short sample estimates using the GDP deflator to compute
inflation are virtually identical. Those results can be obtained from the authors upon request.
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Table 6. PCE inflation. Sample 1966:2-1999:4

ARIMA(1,1,2) model ARIMA(2,0,2) model

Coefficient Revised output Real-time output Revised output Real-time output

a 2.145∗ 2.816∗ 2.525∗ 2.721∗

(0.814) (0.726) (0.793) (0.736)

b 0.0 0.0 0.0 0.0

· · · ·
c1 16.508∗ 9.215∗ 14.341∗ 9.695∗

(6.220) (4.062) (5.632) (4.158)

d 0.0 0.0 0.628 0.0

· · (0.544) ·
λ1 0.890∗ 0.856∗ 0.889∗ 0.850∗

(0.217) (0.232) (0.210) (0.233)

λ2 0.435 1.0 0.5 1.0

(0.361) · · ·

log likelihood 0.919 0.903 0.899 0.890

t-statistics

H0: λ1= 0.5 1.797† 1.534 1.852† 1.502

H
′

0: λ2= 0.5 0.180 · · ·

The unemployment-inflation model

Table 7 shows the estimation results for the unemployment-inflation model for the

full sample period using the PCE index to compute the inflation rate.26 The most

remarkable difference here is that the asymmetric preference parameter, c1, is only

significant in the ARIMA(1, 1, 2) version of the model that considers revised unem-

ployment data. This finding is largely consistent with the findings of Ruge-Murcia

(2003), who found a positive and significant estimated value of c1 using revised data.

This likely arises because, as noted in several places above, the unemployment data

revisions are small and mostly related to statistical adjustments made during the

first year after their initial announcement. These real-time unemployment results

suggest that the data may include extra noise, reducing the ability to identify c1.

Also of note is that the estimates for λ1 and λ2 are higher than those found in the

output model, indicating that real-time data is less important to the planner under

26The full sample period for the unemployment model includes two years more than the output
model because revisions for unemployment have only a one year lag. The results using the GDP
deflator to compute the inflation rate were similar and are available upon request.
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the unemployment modeling structure. This likely also arises because of the nature

of the unemployment revision process where the revisions are small. The only interior

point estimates of λ1 are in the ARIMA(1, 1, 2) model, which are at the high end

of the parameter range, indicating that revised data is more highly weighted and the

real-time data is lightly weighted in the planners decision process. However, as in

the output model results, we are unable to reject the null that real-time data and

revised data are equally weighted.

Table 7. Unemployment model. PCE inflation (1967:4-2013:1)

ARIMA(1,1,2) model ARIMA(2,0,2) model

Coefficient Revised unemp. Real-time unemp. Revised unemp. Real-time unemp.

a 3.157∗ 3.621∗ 3.502∗ 3.765∗

(0.263) (0.221) (0.290) (0.246)

b 0.0 0.0 0.0 0.0

· · · ·
c1 1.855∗ 0.061 0.828 -0.094

(0.738) (0.108) (0.555) (0.090)

d 1.076 1.471 0.0 0.743

(1.886) (1.904) · (1.915)

λ1 0.912∗ 0.857∗ 1.0 1.0

(0.210) (0.222) · ·
λ2 1.0 1.0 1.0 1.0

· · · ·

log likelihood -2.307 -2.321 -2.395 -2.397

t-statistics

H0: λ1= 0.5 1.962† 2.059∗ · ·

5 Conclusion

This paper adds to the growing body of literature regarding monetary policy and

real-time data analysis. Here, we have shown how to extend the Ruge-Murcia (2003)

type of asymmetric monetary planning models to study real-time issues faced by

a central banker. By assuming that the central banker targets a weighted average

of both revised and real-time data, our model identifies a few additional potential
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sources of inflation bias due to data revisions in addition to those featured by surprise

inflation à la Barro-Gordon (1983) and by asymmetric central bank preferences as

suggested by Ruge-Murcia (2003). The model construction is rather flexible and

we have shown how to calculate both an unemployment and inflation version which

extends Ruge-Murcia (2003, 2004) as well as an output and inflation version which

extends Cassou, Scott and Vázquez (2012). Furthermore, we have shown that both

the unemployment and inflation model and the output and inflation model yield two

possible reduced forms for the inflation equation which differ in terms of whether

conditional variances are found from revised or real-time data.

The models are estimated using maximum likelihood methods from US data. Our

empirical results provide evidence for additional sources of inflation bias due to data

revisions. In particular, our empirical results suggest that the Fed mainly focuses

on targeting revised data, but it also weighs real-time data. This weighting of the

real-time and revised data generates two additional sources for inflation bias beyond

those found in previous studies. This conclusion is robust to alternative methods for

measuring inflation as well as different data periods. Moreover, the empirical results

show that the inflation bias induced by asymmetric central banker preferences in

our augmented model with data revisions remains significant. These results reinforce

those found by Ruge-Murcia (2003, 2004) using revised unemployment and inflation

data and Cassou, Scott and Vázquez (2012) using output and inflation data.

The conclusion that the Fed mainly focus on targeting revised inflation cannot

be generalized without further scrutiny to other countries because data revision fea-

tures are likely to be different across countries due to, among other things, differ-

ences in the size and quality of resources allocated to country statistical agencies and

the degree of central bank independence. As pointed by Fernandez, Koening and

Nikolsko-Rzhevskyy (2011) statistical agencies from OECD countries tend on aver-

age to underestimate both real output growth and inflation. This empirical evidence

suggests, on the one hand, that the optimal monetary policy based also on real-time

data tends to be less anti-inflationary than the one implied by revised data in many
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OECD countries. On the other hand, a cross country analysis of monetary policy

using revised and real-time data along the lines followed in this paper is warranted.
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Appendix 1: (Not Intended for Publication)

In this appendix we show that the real-time data series have a normal distribution.

This was noted in the text of the paper, but because the justification is rather lengthy,

we thought it would be best to keep in out of the paper. The appendix is included

in the submission to show the referees these calculations in case they find it helpful.

To show that, conditional on information at time t − 1, λ2Yt + (1 − λ2)Y
r
t,t+1

is normally distributed we proceed in two steps. First we show that conditional

on information at time t − 1, Yt is normal and second we show that conditional on

information at time t− 1, Y rt,t+1 is also normal. Together, these two facts imply that

the linear combination is also normal.

Begin by noting that (1) implies

[Yt −Et−1Yt] = [Y
p
t −Et−1Y

p
t ] + [α(πt − πet )−Et−1(α(πt − πet ))] + [ηt −Et−1ηt] .

(24)

Using (4) and (7) gives

πt = it + εt + (1− λ1)r
π
t,t+s.

Substituting in (9) gives

πt = it + εt + (1− λ1)
�
απ + βππ

r
t,t+1 + επt,t+s

�
,

which implies

πet = Et−1 [it] +Et−1 [εt]

+(1− λ1)


απ + βπEt−1

�
πrt,t+1

�
+Et−1

�
επt,t+s

��

= it + 0+ (1− λ1)


απ + βπEt−1

�
πrt,t+1

�
+ 0
�
.

Using this in (24), along with (3) we get
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[Yt −Et−1Yt] = [ζt] + [α(πt −Et−1[πt])− (α(Et−1[πt]−Et−1[πt]))] + [ηt] .

= ζt + ηt + αεt + α(1− λ1)


βππ

r
t,t+1 + επt,t+s − βπEt−1

�
πrt,t+1

��
− 0

= ζt + ηt + αεt + α(1− λ1)ε
π
t,t+s + α(1− λ1)βπ



πrt,t+1 −Et−1

�
πrt,t+1

��

= ζt + ηt + ανt ≡ Λt.

where νt = εt + (1 − λ1)ε
π
t,t+s + (1 − λ1)βπ



πrt,t+1 −Et−1

�
πrt,t+1

��
. The last term

in the definition of νt is proportional to the forecast error associated with a future

release of real-time data, πrt,t+1−Et−1
�
πrt,t+1

�
. Since the right hand side is a sum of

independent white noise normally distributed processes, Yt can be written as

Yt = Et−1Yt +Λt, (25)

where Λt is distributed normal with mean zero. This concludes the first step and

shows that conditional on information at time t− 1, Yt is normal.

Now focus on the second step. Taking expectations of (1) conditional on infor-

mation at time t− 1, and using (25) gives

Yt = Et−1Y
p
t +Λt.

Substituting in (6) and (10) gives

Y rt,t+1 = (Et−1Y
p
t − µ) + Λt − (r

Y
t,t+s − µ)

= (Et−1Y
p
t − µ) + Λt −




∞�

j=0

(βY L)
j


 εYt,t+s

= (Et−1Y
p
t − µ) + Λt −




∞�

j=s+1

(βYL)
j


 εYt,t+s −




s�

j=0

(βY L)
j


 εYt,t+s

= (Et−1Y
p
t − µ) + Λt −




∞�

j=s+1

(βYL)
j


 εYt,t+s −

�
βY
�′
εYt

= (Et−1Y
p
t − µ)−




∞�

j=s+1

(βY )
j


 εYt−j,t−j+s +Υt = Y

r
t,t+1 +Υt,
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where
�
βY
�′
=
%
1, βY , (βY )

2 , ..., (βY )
s
&
,
�
εYt,s
�′
=


εYt,t+s, ε

Y
t−1,t+s−1, ε

Y
t−2,t+s−2, ..., ε

Y
t−s,t

�′
,

Y
r

t,t+1 = (Et−1Y
p
t − µ) −

�'∞
j=s+1(βY )

j
�
εYt−j,t−j+s and Υt = Λt −

�
βY
�′
εYt . Note

that since Y
r
t,t+1 is included in the public’s information set at time t−1 and the linear

combination Υt is normally distributed, real-time output is distributed according to

Y rt,t+1|It−1˜N(Y
r
t,t+1, σ

2
Y rt,t+1

), where V ar
�
Y rt,t+1|It−1

�
≡ σ2Y rt,t+1

= BΩtB
′

where B′ =

#
1, 1, α,−

�
β
Y
�′$

as claimed. This concludes the second step.

Together these results show that conditional on information at time t− 1, λ2Yt+

(1− λ2)Y
r
t,t+1 is normally distributed.

Appendix 2 (Not Intended for Publication)

In this appendix we derive a formula for a multivariate GARCH(1, 1) two step

ahead forecast variance that was noted in a footnote in the empirical section of

the paper. The appendix is included in the submission to show the referees that

calculations in case they find it helpful.

Let’s begin with a simple AR(q) model with a multivariate GARCH(1, 1) error

structure. The following is largely based on calculations in Enders (2010, 3rd Edition,

Chapter 3) textbook.

Let me work with our output model which had a trend term. This model could

be written as
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yt = ay + ay1t+

q�

i=1

byiyt−i + ε1t,

xt = ax + ax1t+

q�

i=1

bxixt−i + ε2t,

ε1t = ν1t
(
h11t or Et−1ε

2
1t = Et−1h11t,

Et−1ε1tε2t = Et−1h12t, or Et−1v1tv2t = 1,

ε2t = ν2t
(
h22t or Et−1ε

2
2t = Et−1h22t,

h11t = c10 + α11ε
2
1t−1 + α12ε1t−1ε2t−1 + α13ε

2
2t−1 + β11h11t−1 + β12h12t−1 + β13h22t−1,

h12t = c20 + α21ε
2
1t−1 + α22ε1t−1ε2t−1 + α23ε

2
2t−1 + β21h11t−1 + β22h12t−1 + β23h22t−1,

h22t = c30 + α31ε
2
1t−1 + α32ε1t−1ε2t−1 + α33ε

2
2t−1 + β31h11t−1 + β32h12t−1 + β33h22t−1.

The one step ahead forecast of yt conditional on information at time t−1 is given by

Et−1[yt] = ay + ay1t+
'q
i=1 byiyt−i which implies that the conditional variance of yt

based on information known at time t− 1 is

Et−1{(yt − ay + ay1t+

q�

i=1

byiyt−i)
2} = Et−1{ε

2
1t}

= Et−1{ν
2
1th1t}

= 1×Et−1{h11t}

= Et−1{c10 + α11ε
2
1t−1 + α12ε1t−1ε2t−1 + α13ε

2
2t−1 + β11h11t−1 + β12h12t−1 + β13h22t−1}

= c10 + α11ε
2
1t−1 + α12ε1t−1ε2t−1 + α13ε

2
2t−1 + β11h11t−1 + β12h12t−1 + β13h22t−1.

Similar calculations imply

Et−1{(yt − ay + ay1t+

q�

i=1

byiyt−i)(xt − ax + ax1t+

q�

i=1

bxixt−i)} = Et−1 {ε1tε2t}

= Et−1 {h12t}

= Et−1{c20 + α21ε
2
1t−1 + α22ε1t−1ε2t−1 + α23ε

2
2t−1 + β21h11t−1 + β22h12t−1 + β23h22t−1}

= c20 + α21ε
2
1t−1 + α22ε1t−1ε2t−1 + α23ε

2
2t−1 + β21h11t−1 + β22h12t−1 + β23h22t−1,
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and

Et−1{(xt − ax + ax1t+

q�

i=1

bxixt−i)
2} = 1×Et−1{h22t}

= c30 + α31ε
2
1t−1 + α32ε1t−1ε2t−1 + α33ε

2
2t−1 + β31h11t−1 + β32h12t−1 + β33h22t−1

We now need to compute the conditional variances of the two step ahead forecast

errors. These are found using analogous calculations. Before doing that, first note

the following alternative way to write yt+1.

yt+1 = ay + ay1(t+ 1) +

q�

i=1

byiyt+1−i + ε1t+1

= ay + ay1(t+ 1) + by1yt +

q�

i=2

byiyt+1−i + ε1t+1

= ay + ay1(t+ 1) +

q�

i=2

byiyt+1−i + ε1t+1 + by1(ay + ay1t+

q�

i=1

byiyt−i + ε1t)

= ay + ay1(t+ 1) +

q�

i=2

byiyt+1−i + by1(ay + ay1t+

q�

i=1

byiyt−i) + by1ε1t + ε1t+1.

This implies that the conditional variance of yt+1 based on information known at

time t− 1 is

Et−1{(by1ε1t + ε1t+1)
2} = Et−1{b

2
y1ε

2
1t}+ 2Et−1{by1ε1tε1t+1}+Et−1{ε

2
1t+1}

= b2y1h11t + 0 +Et−1{h11t+1}

= b2y1h11t +Et−1{c10 + α11ε
2
1t + α12ε1tε2t + α13ε

2
2t + β11h11t + β12h12t + β13h22t}

= b2y1h11t + c10 + (α11 + β11)h11t + (α12 + β12)h12t + (α13 + β13)h22t

= c10 +
�
b2y1 + α11 + β11

�
h11t + (α12 + β12)h12t + (α13 + β13)h22t

Note, one of the calculations from the first line to the second line uses the result

Et−1{by1ε1tε1t+1} = by1Et−1{ν1t
(
h11tν1t+1

(
h11t+1}

= by1Et−1{ν1t}Et−1{ν1t+1}Et−1{
(
h11t

(
h11t+1}

= by1 × 0× 0×Et−1{
(
h11t

(
h11t+1}.
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Also, this implies that the conditional variance of xt+1 based on information known

at time t− 1 is

Et−1{(bx1ε2t + ε2t+1)
2} = Et−1{b

2
x1ε

2
2t}+ 2Et−1{bx1ε2tε2t+1}+Et−1{ε

2
2t+1}

= b2x1h22t + 0+Et−1{h22t+1}

= b2x1h22t +Et−1{c30 + α31ε
2
1t + α32ε1tε2t + α33ε

2
2t + β31h11t + β32h12t + β33h22t}

= b2x1h22t + c30 + (α31 + β31)h11t + (α32 + β32)h12t + (α33 + β33)h22t

= c30 + (α31 + β31)h11t + (α32 + β32)h12t +
�
b2x1 + α33 + β33

�
h22t

Note, one of the calculations from the first line to the second line uses the result

Et−1{bx1ε2tε2t+1} = bx1Et−1{ν2t
(
h22tν2t+1

(
h22t+1}

= bx1Et−1{ν2t}Et−1{ν2t+1}Et−1{
(
h22t

(
h22t+1}

= bx1 × 0× 0×Et−1{
(
h22t

(
h22t+1}.

Finally, the conditional covariance of yt+1 and xt+1 based on information known at

time t− 1 is

Et−1{(by1ε1t + ε1t+1)(bx1ε2t + ε2t+1)} =

= Et−1{by1bx1ε1tε2t}+Et−1{by1ε1tε2t+1}+Et−1{ε1t+1bx1ε2t}+Et−1{ε1t+1ε2t+1}

= by1bx1h12t + 0 + 0 +Et−1{h12t+1}

= by1bx1h12t +Et−1{c20 + α21ε
2
1t + α22ε1tε2t + α23ε

2
2t + β21h11t + β22h12t + β23h22t}

= by1bx1h12t + c20 + (α21 + β21)h11t + (α22 + β22)h12t + (α23 + β23)h22t

= c20 + (α21 + β21)h11t + (by1bx1 + α22 + β22)h12t + (α23 + β23)h22t

Note, one of the calculations from the first line to the second line uses the next two

results

Et−1{by1ε1tε2t+1} = by1Et−1{ν1t
(
h11tν2t+1

(
h22t+1}

= by1Et−1{ν1t}Et−1{ν2t+1}Et−1{
(
h11t

(
h22t+1}

= by1 × 0× 0×Et−1{
(
h11t

(
h22t+1}.
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and

Et−1{bx1ε1t+1ε2t} = bx1Et−1{ν1t+1
(
h11t+1ν2t

(
h22t}

= bx1Et−1{ν1t+1}Et−1{ν2t}Et−1{
(
h11t+1

(
h22t}

= bx1 × 0× 0×Et−1{
(
h11t+1

(
h22t}.

Appendix 3: Some alternative versions of the Tables in the main

text (Not Intended for Publication)
Table 6b. GDP deflator inflation. Sample 1966:2-1999:4

ARIMA(1,1,2) model ARIMA(2,0,2) model

Coefficient Revised output Real-time output Revised output Real-time output

a 1.627∗ 2.545∗ 3.644 2.493

(0.789) (0.716) (0.409) (1.640)

b 0.0 0.0 0.0 0.0

· · · ·
c1 20.583∗ 10.311∗ 6.099† 10.399∗

(6.146) (4.032) (3.087) (4.427)

d 0.0 0.0 0.526 0.0

· · (5.837) ·
λ1 0.853∗ 0.745∗ 0.770 0.744

(0.176) (0.226) (0.180) (0.235)

λ2 0.526† 1.0 1.0 0.990

(0.291) · · (0.771)

log likelihood 0.999 0.972 0.945 0.953

t-statistic of

H0: λ1= 0.5 2.006∗ 1.084 1.500 1.038
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Table 7b. Unemployment model. GDP deflator inflation (1967:4-2013:1)

ARIMA(1,1,2) model ARIMA(2,0,2) model

Coefficient Revised unemp. Real-time unemp. Revised unemp. Real-time unemp.

a 3.085∗ 3.613∗ 3.450∗ 3.719∗

(0.245) (0.199) (0.277) (0.224)

b 0.0 0.0 0.0 0.0

· · · ·
c1 1.897∗ -0.041 0.735 -0.173

(0.761) (0.125) (0.680) (0.123)

d 0.510 1.230 1.141 1.484

(1.782) (1.805) (2.021) (2.024)

λ1 0.791∗ 0.743∗ 1.0 1.0

(0.181) (0.208) · ·
λ2 0.0 0.444 1.0 0.0

· (1.108) · ·

log likelihood -2.200 -2.218 -2.314 -2.314

t-statistic of

H0: λ1= 0.5 1.608 1.168 · ·
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