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Abstract

An analogue to the Phillips curve shows a positive relationship between in-
�ation and capacity utilization. Some recent empirical work has shown that
this relationship has broken down when using data after the mid 1980s. We
empirically investigate this issue using several threshold error correction mod-
els. We �nd, in the long run, a 1% increase in the rate of in�ation leads to
approximately a 0.004% increase in capacity utilization. The asymmetric error
correction structure shows that changes in capacity utilization show signi�cant
corrective measures only during booms while changes in in�ation correct during
both phases of the business cycle with the corrections being stronger during re-
cessions. We also �nd that, in the short run, changes in the in�ation rate do
Granger cause capacity utilization while changes in capacity utilization do not
Granger cause in�ation. The Granger causality from in�ation to capacity uti-
lization can be interpreted as supporting recent calls made in the popular press
by some economists that it may be desirable for the Fed to try to induce some in-
�ation. The lack of Granger causality from capacity utilization to in�ation casts
doubt on the older view that capacity utilization could be a leading indicator for
future in�ation.
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1 Introduction

The popular Phillips Curve in traditional as well as New Keynesian models shows a

short-run connection between in�ation and output. This connection has led the Fed-

eral Reserve Bank (Fed) policy makers, who are on the lookout for in�ation, to study

the connection between capacity utilization and in�ation with the expectation that

capacity utilization may serve as a useful leading indicator for in�ation.1 Although

some of the earlier papers seemed to �nd a connection, this connection appeared to

drop o¤ in the mid 1980s and several popular explanations for this changing rela-

tionship, including advancements in technology and globalization were put forward

as possible explanations.2 This decoupling can be understood anecdotally by noting

the stable in�ation that settled into the US economy beginning around 1983, which

has come do be known as the Great Moderation, despite the economy still traveling

through boom and recession episodes. In this paper, we use modern time series

econometric methods to show that there continues to be both long run and short run

linkages between capacity utilization and in�ation.

Despite the mature nature of cointegration econometric methods, which are per-

fectly suited to studying short and long run connections between variables, there are

few papers that have used these methods for investigating the potential long run con-

nection between capacity utilization and in�ation.34 Several factors could account

1Among the numerous Federal Reserve Bank economists�papers are McElhattan (1978, 1985),
Bauer (1990), P de Kock and Nadal-Vicens (1996), Corrado and Mattey (1997), Emery and Chang
(1997), Dotsey and Stark (2004).

2Garner(1994), Gordon (1994), Cecchetti (1995) and Stock and Watson (1999), Corrado and Mat-
tey (1997), Brayton, Roberts and Williams (1999). and Nahuis (2003) show that capacity utilization
has signi�cant positive relationship with in�ation, thus predicting in�ation better than the unem-
ployment rate while Shapiro (1989) shows that high capacity utilization has a small, insigni�cant,
and sometimes negative impact on prices. Finn (1995), Aiyagari (1994). Bansak, Morin, Starr (2007)
examined the e¤ects of technological change on capacity utilization, while Gamber and Hung (2001)
and Dexterr, Levi, and Naultl (2005), show that international trade has a signi�cant downward im-
pact on US in�ation, which might have obscured the relationship between capacity utilization and
in�ation in 1990s.

3The cointegration liturature dates back to Engle and Granger (1987) and has seen many impor-
tant contributions over the years including Johansen (1988), Johansen and Juilius (1990), Hansen
and Seo (2002) and of particular interest to this paper, Enders and Siklos (2001).

4One paper that does investigate cointegration is Mustafa and Rahman (1995) who use traditional
cointegration methods. Unlike our results, they did not �nd a cointegration relationship between
capacity utilization and in�ation.
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for this dearth of research, but perhaps one important one is how to undertake unit

root tests on bounded series such as capacity utilization. Granger (2010) argues that

although bounded time series cannot be integrated in the usual sense, in many theo-

retical and applied studies they are modeled as pure I(1) processes. He argues that if

the bounded nature of a bounded process is not taken into account, the standard unit

root test results will be biased.5 Work by Cavaliere, (2005) and Cavaliere and Xu

(2014) has shown this to be true, that conventional unit root tests tend to overreject

the null hypothesis of a unit root, even asymptotically, and they are potentially unre-

liable in the presence of bounds.6 A second important factor for the lack or research

may be the inability of the traditional cointegration methods to handle changes in

the nature of the relationship between variables.7 Balke and Fomby (1997) argue

that the tendency towards long-run equilibrium might not occur at each point of

time as adjustments toward the long-run could be asymmetric. In this paper, we not

only use the methods developed by Cavaliere and Xu (2014) to investigate unit roots,

but we also use methods developed by Enders and Siklos (2001) to allow a switching

structure in the relationship between the variables.

Using these methods, we show that both in�ation and capacity utilization have

unit roots and they are cointegrated. We show that the momentum threshold au-

toregression model (M-TAR) suggested by Enders and Siklos (2001) �ts the data

5Examples of econometric studies with bounded time series variables are numerous. For exam-
ple, in their in�uential paper Nelson and Plosser (1982) reject the unit root hypothesis of the U.S.
unemployment rate and studies which link unemployment rates and other variables are quite com-
monplace. Several empirical models of the European Monetary System exchange rates have been
speci�ed by using (co-)integrated vector autoregressive (VAR) models without taking account of the
presence unit root such as Anthony and MacDonald, (1998), Svensson (1993).

6Cavaliere (2005) explains how the concept of I(1) can coexist with the constraints of a bounded
process. Further, Cavaliere and Xu. (2014) shows that the presence of bounds a¤ects the standard
unit root tests. Using the now popular, Monte Carlo methods to simulate correct critical values,
they show that when bounds are taken into account, the Augmented Dickey Fuller tests is much less
likely to reject the null of a unit root.

7For instance, asymmetric changes in the relationship between capacity utilization and in�ation
can be associated with the typical Keynesian story. According to this theory, a non-linearity in
aggregate supply implies that when the overall resources in the economy are underutilized, �rms can
increase output without rising the price level because of sticky wages. But when rising aggregate
demand pushes output beyond a certain threshold, the increasing marginal cost of resources causes
prices to rise. Such an asymmetry was often found in the data from the 1970s and early 1980s where
in�ation was tame until capacity utilization exceeded a value around 82%.
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best, thus showing that the cointegration structure requires a switching structure.

Using a switching structure to estimate error correction models, we show that again

asymmetries are present. The error correction models show both long run and short

run dynamics are in play with the long run dynamics determined by the cointegration

vector and the short run dynamics determined by the lagged di¤erences of the two

variables in the error correction structure. We can summarize some of the economic

results as follows. The results are largely the same when measuring capacity utiliza-

tion by either manufacturing capacity utilization or total capacity utilization. A 1%

increase in the rate of in�ation leads to approximately a 0.004% increase in capac-

ity utilization in the long run.8 The error correction structure shows that changes

in capacity utilization show signi�cant corrective measures only during booms while

changes in in�ation correct during both phases of the business cycle with the correc-

tions being stronger during recessions. Changes in the in�ation rate do Granger cause

short term changes in capacity utilization while changes in capacity utilization do not

Granger cause short term changes in in�ation. The short term Granger causality

from in�ation to capacity utilization can be interpreted as supporting recent calls

made in the popular press by some economists that it may be desirable for the Fed

to try to induce some in�ation in an e¤ort to stimulate the economy.9 The lack of

short term Granger causality from capacity utilization to in�ation casts doubt on the

older view that capacity utilization could be a leading indicator for future in�ation.

The rest of the paper is organized as follows. In Section 2 we describe various

econometric techniques used in this paper and how they relate to the application we

are investigating. Section 3 undertakes the econometric analysis and summarizes

results of the various econometric steps. The conclusion is presented in Section 4.

8By 1% increase in the rate of in�ation, we mean a calculation of 0.01�in�ation, not 0.01+in�a-
tion. We say approximately because we used two capacity utilization series, one of which implied
an elasticity of 0.0041 and the other 0.0046.

9For example, on NPR on October 7th, 2011, Ken Rogo¤ is quoted as saying, �They need to be
willing, in fact actively pursue, letting in�ation rise a bit more. That would encourage consumption.
It would encourage investment...,�while in The New York Times on October 29th, 2011, Christina
Romer said, �In the current situation, where nominal interest rates are constrained because they can�t
go below zero, a small increase in expected in�ation could be helpful. It would lower real borrowing
costs, and encourage spending on big-ticket items like cars, homes, and business equipment.�
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2 Empirical Methodology

Our empirical methodology follows methods used in Enders and Siklos (2001), who in-

vestigated threshold cointegration between short term and long term interest rates.10

Our application investigates whether the log of capacity utilization, which we denote

generically by ct, is cointegrated with the log of the in�ation rate which we denote

by �t.11 The potential cointegrating relationship we investigate is given by

ct = �+ ��t + �t (1)

where � and � are parameters and �t is an error term. The cointegration method-

ology suggested by Engle and Granger (1987) and embraced by Enders and Siklos

(2001) begins by using OLS to estimate (1), then recovering the residuals, which we

denote by b�t, and then estimating a regression of the form
�b�t = �b�t�1 + pX

i=1


i�b�t�k + "t (2)

where � and 
i, for i = 1; ::p, are parameters and "t is an error term. In this

regression, the lag length p is typically chosen by some type of information criterion

so that the model is well speci�ed and results in "t being white noise. Using the

estimated parameter b� one tests the null H0 : � = 0. If this is rejected, then one

concludes that �t is stationary and thus ct and �t are cointegrated. There are some

subtle aspects of testing hypotheses in this model, which are well known, and so

we do not describe them in detail here. However, one important subtlety that is

relevant for this paper is that the distribution for the test statistics, including the

t-statistic for H0 : � = 0 are not standard and need to be generated through Monte

Carlo methods.

Enders and Siklos (2001) extend the early cointegration literature to investigate

whether there is a threshold structure for the error term �t. For now we will describe

10The Threshold Autoregressive and Momentum Threshold Autoregressive models were �rst de-
scribed by Tong (1983), Enders and Granger (1998).
11 In Section 3 we investigate two types of capacity utilization including total and manufacturing,

but to keep notation simple we denote them both with a single generic notation ct.
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their simplest extension, called a threshold aggressive (TAR) model, but later we will

also discuss their so call momentum threshold autoregressive (M-TAR) model. The

TAR model modi�es (2) to include an asymmetry and is given by

�b�t = It�1b�t�1 + (1� It)�2b�t�1 + pX
i=1


i�b�t�k + "t (3)

where �1, �2 and 
i, for i = 1; ::p, are parameters and "t is an error term and It is an

indicator function de�ned by

It =

�
1 if b�t�1 � 0
0 if b�t�1 < 0 : (4)

As in the Engle and Granger (1987) the lag length p is typically chosen by some type

of information criterion so that the model is well speci�ed and results in "t being white

noise. Testing for cointegration is analogous to the earlier procedure and requires

testing H0 : �1 = �2 = 0. Enders and Siklos (2001) call this test statistic �, while

a simpler statistic that looks at the largest of the two t-statistics for H0 : �i = 0,

i = 1; 2;they call the t-max statistic. As with the Engle and Granger (1987) method,

the test statistics do not have standard distributions and Enders and Siklos (2001)

describe methods for generating proper critical values for them.

Once the presence of an asymmetric cointegration relationship is con�rmed, one

can investigate threshold vector error correction models (VECM) using b�t�1 by esti-
mating

�ct = �c + �c;1Itb�t�1 + �c;0(1� It)b�t�1 + pX
i=1

�c;c;i�ct�i +

pX
i=1

�c;�;i��t�i + "ct (5)

and

��t = ��+��;1Itb�t�1+��;0(1� It)b�t�1+ pX
i=1

��;c;i�ct�i+

pX
i=1

��;�;i��t�i+"�t (6)

where �j , �j;1, �j;0, �j;c;i, and �j;�;i for j = c; � and i = 1; :::p are parameters

to be estimated and "jt; for j = c; �; are error terms. In this speci�cation, the
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subscripts make use of the following mnemonics. The �rst subscript indicates which

equation the parameter or error term is from, the second subscript in the �j;1and

�j;0 parameters indicates the value for It (e.g. 1 or 0), while the second and third

subscripts attached to the lagged di¤erenced variables correspond to the type of

variable that is di¤erenced (i.e. c or �) and the lag value for that di¤erenced variable.

In typical applications, the lag length p is chosen based on some sort of information

criterion so that the model is well speci�ed and results in the error terms being white

noise.12

The various �j;1, �j;0 for j = c; � are known as the speed of adjustment para-

meters. Like the speed of adjustment parameters in the basic Engle and Granger

interpretations, they show how fast and in what direction the variables adjust to er-

rors in the equilibrium relationship (1). However, here, the speed of adjustments not

only depend on the equation of interest, but they also depend on whether the switch-

ing variable, b�t�1, is above or below the threshold 0. Also of note, is that Granger

causality tests which examine the lead-lag relationship between changes in capacity

utilization and changes in in�ation rate can be investigated. The null hypothesis

that changes in in�ation do not Granger cause changes in capacity utilization can be

formalized mathematically using a null given by

H0 : �c;�;i = 0 for i = 1; ::::p; (7)

whereas the null hypothesis that changes in capacity utilization does not Granger

cause changes in in�ation can be formalized mathematically using

H0 : ��;c;i = 0 for i = 1; ::::p: (8)

There are also various ways to extend the TAR model described above. One is

an endogenous TAR model which rede�nes the switching indicator by

It =

�
1 if b�t�1 � �
0 if b�t�1 < � (9)

12These empirical models make use of some standard notations such as �, �, � and " in the di¤erent
equations. However, these parameters and error terms do di¤er in the di¤erent equations and the
subscripts should make things easy to see where each came from.
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where � is a threshold parameter to be estimated. A popular algorithm, due to Chan

(1993), estimates � jointly with the other parameters of the model by considering the

middle 70% of the ordered observed values of b�t (i.e. all the candidate b�t values are
ranked from highest to lowest and the top 15% and the bottom 15% are excluded from

consideration) and then estimating the model for each of these possibilities. Among

the many estimated models, the one with the lowest sum of squared residuals is then

chosen as the best �tting model and its parameter estimates become the estimates

used for the endogenous TAR model.

A second extension is known as a momentum threshold autoregressive (M-TAR)

model. Here we also focus on an endogenous threshold version of this model, but

in our analysis below we also consider one with an exogenous threshold with � = 0.

This model has very similar properties to the TAR model, but shows more momentum

during some portions of the correction process. The M-TAR model has only one

small formal di¤erence relative to the endogenous TAR model in that it de�nes the

switching dummy by

It =

�
1 if �b�t�1 � �
0 if �b�t�1 < � (10)

instead of by (9). For both of these alternative models, the mechanical details are

the same as the TAR model as well as the error correction formulation.

3 Empirical results

Our empirical analysis uses monthly data for capacity utilization which is tabulated

by the Federal Reserve Bank. We used two di¤erent measures for capacity utiliza-

tion in order to investigate di¤erent cointegration possibilities. These include Total

Capacity Utilization (TCU), which can be found at the Board of Governors of the

Federal Reserve System website and is given by the series CAPUTL.B50001.S and

Manufacturing units Capacity Utilization (MCU), which can be found at the same

website and is given by the series CAPUTL.B00004.S. We used the full set of avail-

able data for each series, but they did have slightly initial dates. For TCU we used
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the data interval 1967:1 to 2013:12, while for MCU we used 1972:1. to 2013:12. We

computed the annual in�ation rate using the usual formula from what is often re-

ferred to as the core CPI series, or more speci�cally, the Consumer Price Index for

All Urban Consumers: All Items Less Food and Energy In�ation Series (CPILFESL)

which was downloaded from the Federal Reserve Bank of St. Louis Economic Data

(FRED) base. We use the core in�ation rate in part because of it is a prefered mea-

sure of in�ation by the Fed, and in part because studies, such as Finn (1996), have

shown that fuel prices have a negative impact on capacity utilization. The CPI data

was available for all the dates that the two capacity utilization data were available,

so in the results presented below the intervals of time correspond to the two capacity

utilization intervals.

Figure 1 shows a plot of MCU and in�ation over the period from 1972:1. to

2013:12, with the shaded areas representing the NBER recessionary periods.13 The

�gure shows the moderating in�ation rate after 1983 which has confounded some of

the work trying to link capacity utilization and in�ation. The �gure also shows that

MCU tends to decline sharply during recessions and slowly increase during recoveries

and boom periods.

Figure 1: Inflation and MCU in the U.S.
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13A plot of TCU would almost precisely sit on top of the plot of MCU and to avoid confusion, we
have left it o¤.
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The �rst step in a cointegration investigation is to investigate whether the series

are individually integrated. We ran a battery of di¤erent unit root tests to investi-

gate this issue and Table 1 summarizes some of these results. The table is organized

into three vertical panels, with the leftmost panel showing results using in�ation

data, the middle panel showing results for manufacturing capacity utilization and

the rightmost panel showing the results for total capacity utilization as indicated in

the �rst row of the table.14 Each vertical panel has three horizontal subpanels which

report results for the Augmented Dickey-Fuller tests (ADF), Phillips-Perron (PP)

tests and Kwiatkowski�Phillips�Schmidt�Shin (KPSS) tests. These are among the

most popular unit root tests, with the ADF and PP tests using a null of nonstation-

arity and the KPSS using a null of stationarity. For each series, models with di¤erent

deterministic variables were run, with one including both a deterministic trend and a

constant term, one with only a constant term and one without either a deterministic

trend or a constant. These three alternatives are marked in the second row of the

table and summarized with mnemonic column notations of Trend, for models with

a deterministic time trend and a constant, Cons, for models with just a constant

and None for models with neither a deterministic trend or a constant. For the ADF

tests, a preliminary analysis to determine the number of lags on the di¤erenced terms

using the Schwartz Bayesian Criterion (BIC) was undertaken and as indicated in the

table, the in�ation series best �t with 13 lagged di¤erenced terms while both the

manufacturing capacity utilization and total capacity utilization series best �t with

4 lagged di¤erence terms.

The �rst row with numbers shows the value of the t-statistic for the ADF test.

In particular, the ADF test statistic for the in�ation series in a model with a deter-

ministic time trend and a constant was -3.16, for a model with just a constant term

was -1.89 and for a model with no deterministic trend or constant term was -1.24.

As noted at the bottom of the table, we use a convention of including asterisks to

indicate signi�cance levels, with one asterisk indicating signi�cance at the 10% level,

14The data interval in this table for in�ation was 1967:1 to 2013:12.
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two asterisk indicating signi�cance at the 5% level and three asterisks indicating sig-

ni�cance at the 1% level. This convention is also used in Tables 3 and 4 below. For

the ADF tests, we used the conventional critical values in applying the signi�cance

notations. As can be seen in the table, all of the in�ation models could not reject the

null of nonstationarity using the ADF tests. Table 1 also provides the 5% critical

values directly below the coe¢ cients in parenthesis terms, which may be a useful ref-

erence for reinforcing ones thinking about these tests. So as indicated in the table,

the conventional 5% critical values for the ADF test on in�ation for the model with

deterministic trend and a constant is -3.41, for the model with only a constant is

-2.86, and for the model without a deterministic trend or constant is -1.95.

For the two capacity utilization series, we report the conventional ADF critical

values in the second line and the Cavaliere and Xu (2014) bounded series adjusted

critical values in the third line for the model in which there is a constant term. Based

on arguments in Cavaliere (2005), Granger (2010) and Cavaliere and Xu (2014), con-

ventional unit root critical values are inappropriate for bounded series. Furthermore,

Cavaliere (2005) and Cavaliere and Xu (2014) argue that conventional unit root criti-

cal values are inappropriate for series which are in�uenced by policy control exercise.

Both of these rationals play a role with capacity utilization. In particular, capacity

utilization indices are by construction bounded between 0 and 100. In addition,

policy makers indirectly target capacity utilization since capacity utilization is the

analogue of labor unemployment which they directly target. In other words, by

targeting labor unemployment directly, policy makers are also targeting capacity uti-

lization indirectly and this binds capacity utilization even more than the simple 0

and 100 values. Based on these arguments, in the presence of construction bounds

as well as policy bounds, the conventional unit root test statistics are biased in favor

of rejecting the null hypothesis of stationarity. This issue is perfectly illustrated

here, where we see that using the conventional ADF critical values we reject the null

hypothesis of nonstationarity, but when using bounded series adjusted critical values
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we fail to reject nonstationarity for the models with constant terms.15

The next horizontal panel shows the results for the PP test, which is a popular

alternative to the ADF test. Unlike the ADF test, there are only two variations

of the PP. In particular, there is no version that does not have a deterministic

trend and a constant. This panel is organized in a similar fashion to the ADF test

panel, with the t-statistics reported in the �rst row of the panel, the conventional 5%

critical values in the second row of the panel and the bounded series adjusted critical

values reported in the third row. This panel also shows that we can never reject the

null hypothesis of nonstationarity for any of the series using either the conventional

critical values or the bounded series adjusted critical values.

The last horizontal panel shows the results for the KPSS test, which is a popular

alternative to conventional unit root tests because it has a null that the series is

stationary. Like the PP test, there is no version of the test for a model without a

constant. Like the other two panels, the �rst row of the panel shows the test statistic

results while the second row shows the 5% critical values for the test. Unlike the

other two panels, there are no Cavaliere and Xu (2014) bounded series adjusted

critical values. For all three series, the KPSS tests are always rejected at the 5%

level which shows consistency with the other tests in that this test also concludes

that all three series are nonstationary.

Taken as a whole, these results show strong evidence that the series are nonsta-

tionary. Although the ADF critical values for the two capacity utilization variables

indicated these series were stationary, when using what we consider to be the more

reliable Cavaliere and Xu (2014) critical values, the ADF tests show these series to

be nonstationary. This nonstationary result is further con�rmed using the PP and

KPSS tests. Since the series are nonstationary, this means there is a chance they

can be cointegrated. We now turn to that analysis.

15Cavaliere and Xu�s (2014) simulation based tests are applicable when bounds are known. Based
on their arguments a reasonable range for the bounds can often be inferred from historical obser-
vations. We choose the lower and upper bounds of the capacity utilization rate, respectively, at
60 percent and 90 percent as the historical data shows that the capacity utilization rate never lies
beyond this range. See also Herwatz and Xu (2008) for further details.
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Table 1: Unit root tests
In�ation MCU TCU

Trend Cons None Trend Cons None Trend Cons None
Augmented Dickey-Fuller - H0: Nonstationarity

Lags = 13 Lags = 4 Lags =4
-3.16 -1.89 -1.24 -3.87** -3.53** -0.22 -4.39** -3.78** -0.23
(-3.41 ) (-2.86) ( -1.95) ( -3.41 ) (-2.86 ) (-1.95 ) (-3.41 ) (-2.86) (-1.95)

(-3.71) (-3.83)

Phillips-Perron Test - H0: Nonstationarity
-3.25 -2.02 -2.62 -2.40 -3.03 -2.85
(-3.42) (-2.87) (-3.42) (-2.87) (-3.42 ) (-2.87)

(-3.46) (-3.71)

KPSS Test -H0: Stationarity
0.21** 2.35*** 0.43*** 2.19*** 0.36*** 3.07***
(0.15) (0.46) (0.15) (0.46) (0.15) (0.46)

Notes: Values in parenthesis are 5% critical values. For Tables 2-4, ***, ** and *
denote the signi�cance at the 1%, 5% and 10% level respectively. ADF tests signi�cance
are based on conventional (nonbounded series adjusted) critical values.

To investigate cointegration we now estimate (1) for each of the capacity utiliza-

tion series and recover the residuals for unit root analysis and later error correction

estimation. The estimated long-run relationships are given by

cM;t = 4:35
(0:0049)

+ 0:0041
(0:0009)

�t + b�M;t (11)

and

cT;t = 4:37
(0:0049)

+ 0:0046
(0:0009)

�t + b�T;t (12)

where cM;t and cT;t indicate the manufacturing and total capacity utilization variables

respectively, b�M;t and b�T;t are the residuals from each equation and a mnemonic

convention of denoting the manufacturing capacity utilization variables with initial

subscripts ofM and total capacity utilization variables with initial subscripts of T has
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been used. The standard errors for the estimated coe¢ cients are presented directly

below the parameter estimates in parenthesis. These regression results show highly

signi�cant parameter estimates in both equations as well as very comparable values

between the two equations. The estimated slope coe¢ cients show the elasticity of

capacity utilization with respect to in�ation and indicate that if the in�ation rate

goes up by 1% then MCU will go up by 0.0041%, and TCU will go up by 0.0046%.

Also of interest are the Regression Error Speci�cation Tests (RESET) which test

the null hypothesis of linearity against the alternative hypothesis of nonlinearity. In

particular, if the residuals of the linear cointegrated variables are independent, they

should not be correlated with the regressors used in the estimating equation or with

the �tted values. Thus a regression of the residuals on these values should not be

statistically signi�cant. For the MCU data, the RESET test has a value of 9.90

which is highly signi�cant, while for the TCU data, the RESET test has a value

of 8.26 which is also highly signi�cant. Because the RESET test has a general

alternative hypothesis, the test is helpful in determining whether a nonlinear model

is appropriate but not in determining the nature of the nonlinearity. Even so, these

results can be interpreted as providing evidence of a nonlinearity in the cointegration

relationship between capacity utilization and in�ation as well as evidence that the

error correction term has a nonlinear relationship for the adjustment towards long-run

equilibrium.

We now turn to investigating the structure for the cointegration relationship. Ta-

ble 2 summarizes the estimation results for several di¤erent models described earlier.

The table is organized into two vertical panels, with the left panel summarizing the

results when using the residuals from (11), which is the model using the MCU data,

and the right panel summarizing the results when using the residuals from (12), which

is the model using the TCU data. Within each panel, four models are investigated.

The �rst is the standard structure given by (2), which we denote by E-G since this is

the form used in the original Engle and Granger approach. The next three are vari-

ous forms of the TAR models, with the second column in each panel corresponding to
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the model given by (3) and (4), the third column corresponding to the model given

by (3) and (10) with � = 0, and the fourth column corresponding to the model given

by (3) and (10) with � estimated based on an algorithm suggested by Chan (1993).

One clari�cation about the structure of the table is useful to note. In particular, for

the basic model given by (2), which we denote E-G, there is only one � term with

no subscript. To save space, for this model, we listed this estimated parameter in

the same row as the �1 terms in the various TAR models. Another important detail

in interpreting the table is to note that the number of lagged di¤erences used in the

models di¤ers for MCU and TCU. For MCU, we used 4 lags, which is the number of

lags suggested when using either the Akike Information Criterion (AIC) or the BIC

to chose the lag length for the standard E-G model while for TCU, we used 5 lags

because this was the number suggested from the AIC and BIC in the standard E-G

model. We went ahead and used the same lag lengths for the various TAR models in

part to maintain comparability across models.

In addition to the parameter coe¢ cient estimates, Table 2 reports AIC values,

and various cointegration test statistics. For the standard E-G model, the relevant

statistic is the ADF hypothesis H0 : � = 0 while for the TAR and M-TAR models the

relevant statistics are the � and t �Max statistics suggested by Enders and Siklos

(2001). The � statistic tests the null H0 : �1 = �2 = 0 while the t �Max statistic

is the largest t-statistic among the two nulls of H0 : �1 = 0 and H0 : �2 = 0. As

pointed out by Enders and Siklos (2001), one advantage of the t �Max statistic is

that it never rejects the null of nonstationarity of the residual (and thus concludes

there is cointegration of the variables) when either �1 or �2 are positive, while the �

statistic could reject the null even when one of the �i values are positive.
16 However

they argue the � statistic does have improved power and thus they place more faith

in its value.17

16The desirability of having both �i values negative is motivated by Petrucelli and Woolford
(1984), who showed that necessary and su¢ cient conditions for stationarity are �1 < 0, �2 < 0
and (1 + �1) (1 + �2) < 1.
17This can be seen on page 169 of Enders and Siklos (2001) where they say, "However, as will be

shown, the phi statistic is quite useful because it can have substantially more power than the t-Max
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Table 2: Testing for threshold cointegration between in�ation and capacity utilization
MCU TCU

E-G TAR M-TAR M-TAR E-G TAR M-TAR M-TAR
Threshold � = 0 � = 0 � = �0:0029 � = 0 � = 0 � = �0:0053

�1 -0.021��� -0.016 -0.023��� -0.030��� -0.024��� -0.020��� -0.024��� -0.031���

(0.006) (0.0086) (0.008) (0.007) (0.006) (0.009) (0.008) (0.007)
�2 -0.024��� -0.019��� -0.001 -0.027��� -0.025��� -0.001

(0.007) (0.008) (0.001) (0.008) (0.008) (0.012)

1 0.256��� 0.255��� 0.255��� 0.246��� 0.256��� 0.255��� 0.256��� 0.238���

(0.044) (0.044) (0.045) (0.04) (0.042) (0.042) (0.042) (0.043)

2 0.242��� 0.242��� 0.239��� 0.224��� 0.149��� 0.149��� 0.149��� 0.141���

(0.046) (0.046) (0.046) (0.046) (0.044) (0.044) (0.044) (0.045)

3 0.136��� 0.137��� 0.133��� 0.127 0.153��� 0.153��� 0.153��� 0.142���

(0.045) (0.046) (0.046) (0.046) (0.044) (0.044) (0.044) (0.044)

4 0.027 0.029 0.026 0.019 0.113�� 0.115�� 0.114�� 0.110��

(0.045) (0.045) (0.045) (0.045) (0.044) (0.044) (0.044) (0.044)

5 -0.025 -0.023 -0.025 -0.034

(0.043) (0.043) (0.043) (0.043)

AIC -1810.49 -1808.92 -1808.61 -1814.25 -2030.20 -2028.62 -2028.21 -2033.32
H0 : � = 0 -3.79�� -4.16��

� 7.39�� 7.23�� 10.11�� 8.86�� 8.64�� 11.26���

t�Max -1.95�� -2.28�� -0.16 -2.27�� -2.92�� -0.06
H0 : �1 = �2 0.43 0.13 5.73�� 0.41 0.01 5.08��

Focusing on the panel with the MCU results we can see the following. The E-G

model has an estimate � = �0:20 which implies a t-statistic of -3.79. This statistic

exceeds the 5% critical value of 1.96 and implies that we reject the null of nonstation-

arity of the residual series, which is typically interpreted to mean the residuals are

stationary and thus the variables in the �rst step regression are cointegrated.18 Next

focusing on the TAR model we see that both of the �i values are negative, as required

for stationarity, and the preferred � statistic also rejects the null of nonstationarity

statistic." It can also be seen in Table 7 of their paper, where they do not even report the t�Max
statistic values.
18Here we use the conventionally Engle and Granger cointegration adjusted ADF statistics rather

than a bounded series ADF statistic. We do this because, even though it is reasonable that ct is
bounded, because �t is not, any linear combination of the two may not be bounded, so the Cavaliere
and Xu (2014) adjustment is not needed.
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of the residuals and thus implies the �rst step regression variables are cointegrated.19

This model also has t �Max statistic of -1.95 which is signi�cant at 5% level and

implies the variables are cointegrated. Recognizing this pattern, we see that two

M-TAR models have �i values with the appropriate signs and � statistics that point

to cointegration of the variables in the �rst step regression, however, one di¤erence

is that the t � Max is signi�cant only for the M-TAR model with the threshold

exogenously speci�ed with � = 0. While the t �Max result for the endogenous

M-TAR does not point to cointegration, we take some comfort in the guidance from

Enders and Siklos (2001) who note that the � statistics have better power and are

the preferred statistic.20 Overall, these results all show that the variables in the �rst

step regression are cointegrated. Next shifting attention to the TCU side of the ta-

ble we again see that all the models are consistent in that they show that there is

cointegration for the �rst step regression variables.

The next task is to decide which of these candidate models �t the best. One

criterion is to use the AIC values which are reported toward the bottom of the

table. This statistic picks the M-TAR with endogenous threshold for both capacity

utilization measures. Another result that also provides insight into making this choice

is to investigate the null that the two �i coe¢ cients are equal in the various TAR

and M-TAR models. This test is reported in the last line of the table and shows the

M-TAR model with endogenous threshold rejects the null of symmetric adjustment

for both types of capacity utilization variables, while the TAR and the constrained

threshold M-TAR model do not. This indicates that an endogenous threshold does

a better job of �tting the data.

To interpret this asymmetric result, several background details must be recognized

�rst. First note that (1) implies

19The critical values for the � statisitics and the t�Max statistics can be found in Enders-Siklo
(2001).
20This preference for the � statistics can also be seen in the literature. For instance, Shen, Chen

and Chen (2007) only mention the � statistic results and do not mention the t�Max results.
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�t = ct � �� ��t;

which implies that the state ��t is above the threshold when either �ct is su¢ ciently

positive or ��t is su¢ ciently negative or some some combination of the two and

conversely ��t is below the threshold when either �ct is su¢ ciently negative or ��t

is su¢ ciently positive or some combination. Because the relative sizes of �ct and

��t impact whether ��t is above or below the threshold, it is useful to start by

looking at Figure 1. There it can be seen that the most rapid changes in either

direction for ct and �t occur in ct when the economy is in recession. Figure 1 shows

that ct falls at a very high rate in recessions which will produce a large negative �ct

which overwhelms any values for ��t. Figures 2a and 2b plots both �t and ��t for

the two capacity utilization series and it shows this to be true. In particular, it shows

that negative values for ��t tend to occur in recessions and positive values in booms.

Next note that �1 corresponds to above threshold ��t and �2 corresponds to below

threshold ��t. Also note that because �1 is more negative than �2, it implies that

when the economy is in the �1 state, there is less persistence than when the economy

is in the �2 state. Taken together, the larger value of �1 indicates that there is less

persistence in booms than in recessions. Although this may seem counterintuitive

to general business cycle facts, that intuition would be wrong, because that intuition

is not appropriate for M-TAR models. What is important in the M-TAR is the

momentum, so here, the momentum of the recession is so violent that it sustains

itself, i.e. it is highly persistent, until the economic bottom is reached and the

economy then switches out of the negative state and recovers. But the recovery

is more uneven in terms of momentum, with some minor switches out of the positive
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momentum state during the recovery, which can be interpreted as lower persistence.21

Figure 2a: Cointegration residuals: MCU
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Figure 2b: Cointegration residuals: TCU
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Because we found that the variables are cointegrated with asymmetric adjust-

ments of the error correction terms, investigating the VECM models given by (5)

and (6) using the endogenous threshold M-TAR model is justi�ed. We used two

21A useful alternative exercise is to look at the TAR model which does not have the momentum
interpretation. So in the TAR models, positive values of �t tend to occur when ct is large and �t
is small which tend to be booms. Looking at the coe¢ cients we see the more negative coe¢ cient is
associated with �2 or the recession periods and this more negative coe¢ cient indicates less persistence
during the recession.
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lags in the error correction term, which is justi�ed by the AIC. Table 3 shows the

results of this threshold VECM estimation. As in the Table 2, this table is organized

into two vertical panels. The �rst column shows a list of the variables in the VECM

equations (5) and (6), while the second and third columns show the estimated coe¢ -

cients for the variables in (5) and (6) respectively using the MCU data, and the fourth

and �fth columns showing the estimated coe¢ cients for the variables in (5) and (6)

respectively using the TCU data. Coe¢ cients on �ct�k and ��t�k represent the

short run adjustments, while the coe¢ cients on Itb�t�1 and (1� It)b�t�1 represent the
speed of adjustment for the error in the cointegrating vector under the two states of

the word. In addition, the t-statistics for each estimated parameter are listed below

the estimates.

Interpreting the error correction coe¢ cients in Table 3 is a bit more complicated

than a TAR model, because each variable in each row consists of an error term b�t�1
and an indicator variable which is de�ned from �b�t�1. As we noted above, negative
values of �b�t�1 are associated with recessions, so we next need to consider the error
term b�t�1: As can be seen in Figures 2a and 2b, negative values are generally

associated with recessions too, but not to the extent that �b�t�1 is, with b�t�1also
covering part of the initial phase of the recovery when ct is still relatively low. For

simplicity, it is may be easier to think of negative b�t�1 as associated with low ct

rather than simply associated with recessions even though the exact details are a bit

more nuanced. Looking at the coe¢ cients on Itb�t�1, we see that for �ct they are
signi�cantly negative and for ��t they are signi�cantly positive. So economically we

could say that during booms (It = 1), positive values of b�t�1, which are associated
with high ct, result in �ct correcting downward (or ct decreasing). Similarly, we

would say that during booms (It = 1), positive values of b�t�1, which are associated
with high values of ct, result in ��t correcting upward (or �t as increasing). Looking

at the coe¢ cients on (1�It)b�t�1, we see that for �ct they are insigni�cantly positive
and for ��t they are signi�cantly positive. So economically we could say that during

recessions ( It = 0), there is no signi�cant impact on the rate at which �ct corrects,
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but positive values of b�t�1, which are associated with high ct, result in ��t correcting
upward (or �t is increasing). This last sentence may seem counterintuitive, but that

is simply because we were looking at positive values of b�t�1. Alternatively, we

can make the same statements with a negative value of b�t�1 and say that during
recessions ( It = 0), there is no signi�cant impact on the rate at which �ct corrects,

but negative values of b�t�1, which are associated with low ct, result in ��t correcting
downward (or �t decreasing). Furthermore, it is possible to put some asymmetric

interpretations on the error corrections. So for instance, one could say that during

booms, �rms are more willing to slow capacity utilization toward its long run than to

increase capacity utilization toward its long run during recessions. Their reluctance

to increase capacity utilization during recessions could be due to the violent nature

of recessions and the unease about where the bottom might be. On the other hand,

the relative sizes of the error correction coe¢ cients for ��t show that the speed of

the correction in ��t is larger in recessions ( It = 0), than the speed of the correction

during booms ( It = 1). Put di¤erently, in�ation slows much more quickly during

recessions than it speeds up during booms.

Table 3: Estimated results of the threshold VECM
MCU TCU

Dependent Variables �ct ��t �ct ��t
Itb�t�1 -0.015�� 0.541�� -0.015�� 0.651���

(0.007) (0.213) (0.007) (0.234)
(1� It)b�t�1 0.003 1.033��� 0.004 1.518���

(0.010) (0.290) (0.012) (0.384)
�ct�1 0.026��� -1.922 0.272��� -1.608

(0.044) (1.313) (0.043) (1.415)
�ct�2 0.276��� 2.17� 0.194��� 1.279

(0.044) (1.298) (0.043) (1.421)
��t�1 -0.001 0.250��� -0.001 0.244���

(0.001) (0.044) (0.001) (0.042)
��t�2 -0.004��� 0.215��� -0.003�� 0.193���

(0.001) (0.044) (0.001) (0.042)

R
2

0.25 0.24 0.19 0.22
F -statistic 5.28�� 1.86 3.77�� 0.83

Notes: Constant terms are not reported.
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The error correction models given by (5) and (6) can also shed light on some recent

economic commentary. In particular, following the �nancial crisis and the recession it

precipitated, some economists have suggest that raising in�ation expectations might

help speed up the recovery. To investigate this hypothesis, we conducted Granger

causality tests to see if changes in in�ation can Granger cause changes in capacity

utilization. In addition we also investigated whether changes in capacity utilization

can Granger cause changes in in�ation. These hypothesis were described formally in

(7) and (8) where p = 2 for this application. The last row of Table 3 shows the value

of the F -statistics for these tests in the di¤erent models. These tests show that

we are able to reject the null given by (7) at the 5% level for either of the capacity

utilization models with F -statistics of 5.28 in the manufacturing capacity utilization

model and 3.77 in the total capacity utilization model. These results show that

changes in in�ation do Granger cause changes in capacity utilization and con�rm

the economic speculations that inducing changes in in�ation will result in changes in

capacity utilization. On the other hand, these tests also show that we are unable to

reject the null given by (8) at even the 10% level that changes in capacity utilization

cause changes in in�ation with F -statistics of 1.86 and 0.83. Intuitively this means

that changes in capacity utilization do not Granger cause changes in in�ation.

4 Conclusion

In this paper, we investigate the short term and long term connections between ca-

pacity utilization and in�ation. Contrary to much of the recent literature, which

has shown that the relationship between capacity utilization and in�ation has broken

down since mid 1980s, we show that both series continue to have short term and long

term connections. We argue that part of the reason for these di¤erent results is the

theoretical nature of capacity utilization which entails a switching structure and by

using the M-TAR model developed by Enders and Siklos (2001) we are better able
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to econometrically model the data and capture the nature of the short run and long

run connections. We �nd, in the long run, a 1% increase in the rate of in�ation leads

to approximately a 0.004% increase in capacity utilization. The error correction

structure shows that changes in capacity utilization show signi�cant corrective mea-

sures only during booms while changes in in�ation correct during both phases of the

business cycle with the corrections being stronger during recessions. Asymmetric in-

terpretations on these error corrections are as follows. During booms, �rms are more

willing to slow capacity utilization toward its long run than to increase capacity uti-

lization toward its long run during recessions. Their reluctance to increase capacity

utilization during recessions could be due to the violent nature of recessions and the

unease about where the bottom might be. On the other hand, the relative sizes of

the error correction coe¢ cients for in�ation show that the speed of the correction is

larger in recessions, than the speed of the correction during booms. Put di¤erently,

in�ation slows much more quickly during recessions than it speeds up during booms.

We also �nd that in the short run, changes in the in�ation rate do Granger cause

short term changes in capacity utilization while changes in capacity utilization do not

Granger cause short term changes in in�ation. The short term Granger causality

from in�ation to capacity utilization can be interpreted as supporting recent calls

made in the popular press by some economists that it may be desirable for the Fed to

try to induce some in�ation in an e¤ort to stimulate the economy. The lack of short

term Granger causality from capacity utilization to in�ation casts doubt on the older

view that capacity utilization could be a leading indicator for future in�ation.
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