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Abstract

Grading on the curve is one of the most commonly used evaluation mechanisms
in education. Under this mechanism, grades are assigned based on each student’s
percentile rank in the class. Considering classes to be samples from the population
implies that as the class size grows, the percentile ranks of the students in it draw closer
to their percentile ranks in the population, which changes the students’ incentives. I
model this environment to predict how changes in the class size reallocate incentives for
effort between students with different abilities, an effect that holds true in any relative
evaluation method. I use a field experiment in an intermediate economics course to test
the model’s predictions about effort exertion in a real-stakes environment. My results
show that the lower variance of larger classes elicits greater mean effort and greater
effort from all but the lowest-ability students. The greater variance of smaller classes
elicits more effort from only the lowest-ability students. Many low-ability students fail
to take advantage of the randomness of the smaller class size, an allocation failure
consistent with “cursed” beliefs about their classmates and other behavioral biases.
My results shed new light on the debate over the effects of class size reductions.
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1 Introduction

Relative evaluation mechanisms are often used to mitigate the effects of asymmetric infor-

mation between the mechanism designer and the agents. Under complete information about

agents’ cost functions and their valuations for prizes, a mechanism designer could set ab-

solute thresholds that extract the full surplus from all agents who receive a prize. Under

incomplete information, however, designers may prefer relative evaluation mechanisms, since

a poorly calibrated absolute mechanism offers little incentive for effort.

Consider, for example, a teacher who wishes to maximize effort from his students. Setting

an absolute threshold for each grade that is too high or too low could cause students to exert

minimal effort. This teacher may remedy his incomplete information about his students’

abilities by grading on the curve. Under a relative or “curved” grading mechanism, the

evaluation of a student’s performance is based on her percentile rank within her comparison

group independent of any absolute measure of performance. These mechanisms have become

a fixture in many university classrooms and law schools.1 Indeed, mechanism designers across

many areas of education employ relative evaluation in competitions for scholarships, college

admissions, and even teacher pay.2,3,4

Under relative evaluation, the composition of an agent’s comparison group is critical

in determining the agent’s outcome at a given level of effort. I will refer to the sample

drawn from the population into a comparison group as a “cohort.” The law of large numbers

implies that the larger this cohort becomes, the more it comes to resemble the distribution

from which it is drawn. Since the composition of a cohort determines the incentives for

effort by an agent, the size of a cohort affects those incentives by bringing its expected
1Mroch (2005) estimates that 79% of law schools standardize scores according to a grading curve.
2Missouri’s Bright Flight scholarship program awards scholarships to the top 3% of high school seniors

based on ACT or SAT scores.
3In California, the top 9% of graduating seniors are guaranteed admission to one of the University of

California campuses. In Kansas, the top 33% are guaranteed admission to the state college of their choice.
In Texas, the top 10% are offered similar incentives.

4North Carolina Senate Bill 402 section 9.6(g) grants favorable contracts to the top 25% of teachers at
each school as evaluated by the school’s administration.
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composition closer to the population distribution. Therefore, in theory, the incentives for

effort under any relative evaluation mechanism can be modeled and understood as a function

of cohort size. A mechanism designer concerned about the allocation of incentives to agents

could then equalize incentives across any two cohort sizes by manipulating the number or

value of prizes awarded. In practice, however, mechanism designers typically operate under

constraints restricting them to a given number or percentage of prizes awarded regardless

of cohort size. This paper will use the framework provided by the law of large numbers to

evaluate the theoretical and empirical effect of cohort size on incentives for effort in a relative

evaluation mechanism under such a constraint.

Consider an example, Texas HB 588 grants automatic admission to any Texas state

university—including the University of Texas at Austin—to all Texas high school seniors

who graduate in the top 10 percent of their high school class.5 Each graduating class is

therefore subject to a distinct relative evaluation mechanism with the restriction that each

mechanism must award 10 percent of the students automatic admission, regardless of the

class size. Since Texas high schools vary in size by orders of magnitude,6 the law of large

numbers implies that the incentives for effort under this policy will vary dramatically. Smaller

high schools are more likely to draw graduating classes full of outliers where the returns to

effort are more uncertain, while larger high schools are more likely to have cohorts of students

whose characteristics more closely reflect the characteristics of the population, reducing the

uncertainty around the returns to effort.

While it may seem obvious that incentives change with the size of a cohort, prior research

casts doubt on the ability of economic agents to draw accurate inference about information

that depends critically on sample size (Tversky and Kahneman, 1971; Kahneman and Tver-

sky, 1973; Rabin, 2002; Benjamin, Rabin, and Raymond, 2014). Therefore, research is

necessary to uncover to what degree agents identify and respond to these shifts in incentives
5The bill was modified in 2009 to stipulate that the University of Texas at Austin may cap the number

of students admitted under this measure to 75% of in-state freshman students.
6Plano East High School in Plano,TX has an enrollment of 6,015 students, while Valentine High School

in Valentine, TX has an enrollment of 9 students.
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for effort.

This paper uses an experimental intervention in the size of a cohort to test its causal

effect on effort by students who are graded on the curve. Specifically, I measure how student

effort changes as a result of changes in their strategic environment that originate from the

size of their cohort. In order to provide the most powerful test of this effect, I use treatments

that only vary the size of the cohort while holding constant all other classroom factors.

Additionally, I provide a measure of the importance of strategic incentives relative to other

motivations for effort from students.

I use a field experiment on relative grading in a large, upper-division economics course

at the University of California, San Diego (UCSD) to test the sensitivity of student effort

to cohort size. I present students with a pair of quizzes, each graded such that the top 70

percent of scores in a cohort receive high grades. For each student, I randomly determine

which quiz in the pair will be graded relative to a 10 student cohort and which will be graded

relative to a 100 student cohort. Since cohort size is randomly assigned to quizzes, I will

refer to these as the “10-Student Quiz” and the “100-Student Quiz.” I measure effort as

the time a student spends on a given quiz. By comparing a pair of quizzes taken in quick

succession but with different cohort sizes, I can use the difference in the amount of time

spent on the two quizzes to directly measure the causal impact of cohort size on effort. This

test cleanly identifies the influence of cohort size independent from any other motivations for

effort. Additionally, my experiment determines which of the assumptions of the model may

need to be adjusted before it can reliably predict effort allocation patterns in the classroom.

In order to generate predictions about the ways in which an expected-grade maximizing

student under curved grading would respond to changes in the cohort size, I develop a the-

oretical model of strategic effort exertion in the classroom. Strategic concerns are just one

of countless motivations a student may have to exert effort in the classroom. My results

address the relevance of these other motivations per se and allay concerns about their po-

tential to interact with the strategic incentives. I therefore abstract away from these other
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motivations and develop predictions based on expected-grade maximizing responses to the

underlying strategic incentives of the curved grading environment. In this simplified model,

I make several assumptions about students’ utility functions, their beliefs about their own

ability and the abilities of their classmates, their responses to those beliefs, and the separa-

bility of their cost functions. As such, its value is in generating qualitative predictions about

the allocation of effort by strategic students responding to the changes in the size of their

grading cohorts. Indeed, from a policy perspective, it is the empirical effect of the cohort size

on effort allocation that is paramount. Confirming or rejecting a given model of strategic

effort will always be a secondary concern.

My model predicts that mean effort will increase with the size of the cohort. This results

from decreases in the uncertainty about the returns to effort. That is, as the cohort size

grows and the characteristics of the cohort draw closer to the population characteristics, the

uncertainty surrounding the returns to any given level of effort decrease, drawing up the

mean effort.

My model also provides structure for how incentives may differ by ability level. In

particular, incentives diverge on either side of the the 30th percentile of scores, where high

and low grades are separated. I refer to the quantile that distinguishes the two outcomes as

the “cutoff.” My model predicts that students with ability levels below the cutoff will exert

more effort on the 10-Student Quiz, where the increase in uncertainty actually benefits their

expected returns to effort. Students with abilities above the cutoff are predicted to exert

more effort on the 100-Student Quiz, since decreases in uncertainty benefit their expected

returns to effort. These two predictions imply that the effort functions cross each other once,

and near the cutoff. The model makes a related prediction that the maximum and minimum

differences between effort in the 100- and 10-Student Quizzes occur above and below the

cutoff, respectively. These heterogeneous effects highlight the tradeoffs between mean effort

and the distribution of effort, a key tension for optimizing classroom design.

I first confirm the prediction that the mean effort will increase in the cohort size. The 100-
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Student Quizzes elicit 5 percent more effort than the 10-Student Quizzes, and this difference

is significant at the 1 percent level. I go on to test the model’s predictions about the

heterogeneous impact of cohort size on students with different abilities by using GPA as a

proxy for ability. My experimental results deviate from the model’s predictions in important

ways. First, while the lowest ability students exert more effort on the 10-Student Quizzes,

this effect is not found for all students below the cutoff. In fact, mean effort by students

below the cutoff is higher on 100-Student Quizzes. Second, the maximum difference in effort

in favor of the 100-Student Quiz occurs at ability levels below the cutoff, not above it. For

these students, allocating greater effort to the 100-Student Quiz fails to take advantage of

the higher variance of the smaller cohort. These deviations from the theoretical predictions

highlight the limits to the predictive ability of a purely strategic model of classroom effort.

Specifically, a strategic model under classical assumptions about beliefs and best responses

will overstate the distributional costs of increasing mean effort. That is, effort from low

ability students is less negatively affected by increasing cohort sizes than theory predicts.

I attempt to uncover the origin of the misallocation of effort by low ability students by

exploring the viability of the critical assumption that students hold accurate beliefs about

their own ability relative to the distribution of abilities among their classmates. A violation

of this assumption will cause the perceived incentives to deviate from the incentives the

model predicts. For this assumption to hold, students must forecast their distribution of

classmates taking into account the fact that higher ability students are more likely to enroll

in upper-division economics courses. “Cursed” students (Eyster and Rabin, 2005), on the

other hand, may wrongly perceive that the distribution of students in the class is simply

an “average” draw from the undergraduate population similar to the draws they faced in

previous lower-division courses. In order to examine the predictions of my model under

cursed beliefs, I construct a distribution of classmates equivalent to an average distribution

of students from lower-division courses. My results show that the observed behavior is closer

to the expected behavior for students who best respond to cursed beliefs that fail to account
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for selection into the course.

My results suggest that cursed beliefs are not the only potential complication in evalu-

ating strategic effort exertion. Allowing for “fully cursed” beliefs7 shifts the predicted single

crossing point towards lower abilities and increases the number of students predicted to exert

greater effort on the 100-Student Quiz but still cannot explain the behavior of many low abil-

ity students. The misallocation of effort by these students is consistent with several possible

behavioral biases, among them, overconfidence, updating failures, and reference dependence.

My experiment cannot independently identify these possible behavioral responses, but I dis-

cuss the impacts of each and outline experiments that could identify the extent to which

each is responsible for deviations from the theoretical predictions.

The data can cleanly reject several alternative explanations for the results. A model

where high-ability students have greater intrinsic motivation provides some similar predic-

tions about how incentives for effort evolve with student ability. Intrinsic motivation may

be present as an incentive for effort, but without allowing for sensitivity to the strategic

incentives present, this model cannot generate the patterns of effort observed in my exper-

iment. In a similar way, my data can reject the notion that risk preference or demographic

characteristics can explain the results entirely. I can also reject the hypothesis that effort

allocation is driven by a correlation between GPA and the ability to intuit the strategic

incentives of the environment. Indeed, my paper provides clean evidence that students’ re-

sponses to changes in their strategic environment are largely predictable by models of purely

strategic effort, despite many other observable and unobservable motivations for effort.

To fix ideas, I refer to grading mechanisms throughout this paper, but this should not dis-

tract from the generality of the results. Relative awarding mechanisms are found throughout

the modern economy, in job promotion contests, performance bonuses, and lobbying con-

tests, among others.8 The qualitative predictions of models of strategic effort, therefore,
7Under cursedness, there are degrees to which agents infer information from other agents’ decisions. A

fully-cursed agent draws no inference from the actions–in this case, enrollment decisions–of any other agent.
8For example, in his book Straight from the Gut, former GE CEO Jack Welch recommends that managers

rank employees according to a 20-70-10 model of employee vitality where 20% of employees are labeled “A”
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provide useful intuition in these settings. Since the costs of effort, the means of exerting it,

and the ways in which heterogeneous abilities manifest themselves are all similar in academic

and professional settings, my results may be useful in predicting how certain mechanisms

will affect the allocation of effort across employees.

The outline of this paper is as follows. In Section 2, I provide a survey of the relevant

literature. In Section 3, I outline a simple model of incentives under relative grading. This

model yields qualitative predictions that I test experimentally. The experiment itself is

formally introduced in Section 4. Section 5 presents the results of the experiment and tests

the predictions of the model, addressing several alternatives to my model including cursed

beliefs. Section 6 discusses the results. Section 7 concludes the paper.

2 Literature

In addressing the strategic incentives of classroom grading mechanisms, this paper spans

three distinct literatures: experimental economics, microeconomic theory, and the economics

of education. In the realm of experimental economics, it owes a debt to many prior exper-

imental tests of contests and auctions. My model has roots in a long theoretical literature

on contests. Notably, Becker and Rosen (1992), who modify the tournament structure of

Lazear and Rosen (1981) to generate predictions for student effort under relative or absolute

grading mechanisms. By modeling and collecting data in a classroom setting, my paper con-

tributes to a literature on classroom performance that has been explored in the economics

of education.

Experiments testing effort exertion in different laboratory settings date back to Bull,

Schotter and Weigelt (1987), who test bidding in laboratory rank-order tournaments. They

find that bidders approach equilibrium after several rounds of learning. Equilibrium behavior

in laboratory all-pay auctions is more elusive with the majority of studies demonstrating

overbidding (Potters, de Vries, and van Winden, 1998; Davis and Reilly, 1998; Gneezy and
players, 70% “B” players, and 10% “C” players. “A” players are rewarded, and “C” players are eliminated.
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Smorodinsky, 2006; Barut, Kovenock, and Noussair, 2002). Müeller and Schotter (2010) and

Noussair and Silver (2006) confirm the overbidding result, but also uncover heterogeneous

effects for different types of bidders. For an exhaustive survey of the experimental literature

on contests and auctions, refer to Dechenaux, Kovenock, and Sheremeta (2012).

Andreoni and Brownback (2014) provide a framework for evaluating the effects of contest

size on bids in a laboratory all-pay auction along with the first directed test of the inde-

pendent effect of contest size on effort. Larger contests in this setting are found to generate

greater aggregate bidding, greater bidding by high types, and lower bidding by low types.

Other studies that find effects of contest size on effort restrict their focus either to small

changes in the size of contest (Harbring and Irlenbusch, 2005) or changes that also affect the

proportion of winners (Gneezy and Smorodinsky, 2006; Müeller and Schotter, 2010; Barut

et al., 2002, List et al., 2014).

This paper takes the framework of Andreoni and Brownback (2014) out of the laboratory

and into a field setting and is, to my knowledge, the only study that directly measures effort

as a function of the classroom size. Classroom experiments have been conducted to answer

other questions. The state of Tennessee experimented with classroom sizes for kindergarten

students (Mosteller, 1995), but student outcomes, not inputs, were the focus of the study

and the setting was non-strategic. Studies have also explored the responsiveness of effort

to mandatory attendance policies (Chen and Lin, 2008; Dobkin, Gil, and Marion, 2010) or

different grading policies (Czibor et al., 2014), finding mixed results. I explicitly control for

factors related to classroom instruction or procedures in order to uncover the direct effect of

changes in the strategic incentives for effort.

In the microeconomic theory literature, the study of contests was originally motivated

by the study of rent-seeking (Tullock, 1967; Krueger, 1974), but has since evolved into a

more general branch of research that considers various environments with costly effort and

uncertain payoffs. The three models most often employed are the all-pay auction (Hirshleifer

and Riley, 1978; Hillman and Samet, 1987; Hillman and Riley, 1989), the Tullock contest
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(Tullock, 1980), and the rank-order tournament (Lazear and Rosen, 1981).

Hillman and Riley (1989) and Baye, Kovenock, and de Vries (1993) use the all-pay

auction model to explore the incentives for rent-seeking in politics. Amann and Leininger

(1996) introduce incomplete information about opponents’ types to generate a pure-strategy

equilibrium bidding function. Baye, Kovenock, and de Vries (1996) fully characterize the

equilibrium of the all-pay auction and demonstrate that a continuum of equilibria exist.

Moldovanu and Sela (2001) develop a model of optimal contest architecture for designers

with different objectives. For a comprehensive theoretical characterization of all-pay contests

that incorporates many of the existing models into one framework, see Siegel (2009).

This paper is motivated by the way in which the size of a contest changes the incen-

tives for participants. Moldovanu and Sela (2006) capture this intuition more generally and

demonstrate the single-crossing property of symmetric equilibria in differently sized con-

tests. Olszewski and Siegel (2013) provide similar results about equilibria in a general class

of contests with a large but finite number of participants.

My paper considers strategic interactions between students, unlike much of the previous

work on grading mechanisms. The contest-like relative grading mechanisms as well as ab-

solute grading mechanisms are often studied in the economics of education. Costrell (1994)

explores the endogenous selection of grading standards by policy makers seeking to maxi-

mize social welfare, subject to students who best respond to those standards. Betts (1998)

expands this framework to include heterogeneous students. Betts and Grogger (2003) then

look at the impact of grading standards on the distribution of students.

Both Paredes (2012) and Dubey and Geanakoplos (2010) compare incentive across differ-

ent methods of awarding grades. The former considers a switch from an absolute to a relative

grading mechanism, while the latter finds the optimal coarseness of the grades reported when

students gain utility from their relative rank in the class.

The education literature traditionally studies class size like an input to the production

function. The aforementioned Mosteller (1995) paper operates in this vein, finding that
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the decrease in class size caused by the Tennessee class size project had lasting impacts on

the outcomes of students. Kokkelenberg, Dillon, and Christy (2008) find a negative effect

of class size on the grades awarded to individual students in a non-strategic environment.

The independent effect of class size on strategically interacting students, however, remains

unstudied. Contest size is often taken as given or assumed to be determined exogenously. In

this paper, I demonstrate that cohort size plays a significant role in a student’s selection of

effort when grading on the curve. Thus, a classroom designer optimizing student outcomes

needs to take into consideration the heterogeneous effects of cohort size on students with

different abilities.

3 A Model of Academic Effort

In this section I develop a simple framework outlining the incentives for effort present when

grades are awarded on a relative basis. This model will provide generic predictions about

the direction a strategic student should shift effort as the cohort size changes. Providing

a formalization of the way student incentives are tied to cohort size will be instructive for

building intuition and developing ways to test whether students view the classroom as a

strategic environment.

Strategic incentives will be present amidst myriad other incentives for effort. As such,

the contribution of this model is in the structure that it gives to the relative incentives for

effort, not the point estimates it provides for the amount of effort each student chooses.

Additionally, the heterogeneity this model predicts relies on several assumptions about the

beliefs and information that each student has. I test some of these assumptions alongside the

predictions model in order to evaluate the model’s predictive ability with and without the

assumptions. This model also provides a characterization for the way in which strategic in-

centives interact with alternative motivations for effort. With this structure, my experiment

can test these motivations individually.
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In solving this model, I borrow heavily from the independent private value auction (Vick-

rey, 1961) and the all-pay auction literatures (Baye, Kovenock, and de Vries, 1993).

Suppose there are N students exerting costly effort in order to increase their chances of

winning one of M ≡ P × N prizes in the form of high grades. Effort appears as scores on

quizzes, and high grades are awarded to the students with the highest M scores.

Suppose each student has an ability, ai, distributed uniformly from 0 to 1. That is

ai ∼ U [0, 1], meaning F (ai) = ai. Students are evaluated at each period, t, based on their

academic output, or “score,” si,t from that period. Suppose that scores have a constant

marginal cost that is inversely related to ability,9

C (si,t; ai) = si,t

ai

. (1)

3.1 Student’s Utility

The expected utility of a student is determined by both the likelihood of receiving a high

grade at a given score and the cost of that score. Normalize the value of receiving a high

grade to one. Heterogeneity across students with different ability levels is now captured by

the cost of generating a given score. Thus, a student’s utility is given by

U (si,t; ai) = Pr
(
si,t ≥ S̄

)
− si,t

ai

, (2)

where S̄ represents the minimum score required to receive a high grade.

I restrict my attention to the set of functions, S : (ai; N, P ) 7→ si,t, that take parameters,

N and P , and map abilities to scores in such a way as to constitute a symmetric equilibrium

of the model. In the appendix, I prove that any such function must be monotonic in ability.

In addition to monotonicity, it is straightforward to show that scores must also be continuous
9The actual value of the marginal cost will not be critical as my within-subjects experimental design

controls for student-specific costs of effort.
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in ability.10 All continuous, monotonic functions are invertible, so there exists a function that

maps a given score back onto the ability implied by that score. Given that the equilibrium

scores depend on the parameters, N and P , this inverse function, too, depends on these

parameters. This defines the function A(si,t; N, P ) ≡ S−1(si,t; N, P ).

With monotonicity and invertibility established, the probability of receiving a high grade

is equivalent to the probability that the ability level implied by a student’s score is higher

than the ability levels implied by the scores of N −M other students. This probability is

represented as an order statistic involving the CDF of ai. Substituting in the experimental

parameters, N = {10, 100} and P = 0.7, yields the order statistics presented in Figure 1.

0
.2

.4
.6

.8
1

Pr
ob

ab
ilit

y 
th

at
 A

bi
lit

y 
is

 in
 th

e 
To

p 
70

%

0 .2 .4 .6 .8 1
Ability

N=10 N=100

Figure 1: Probability a Given Ability is in the Top 70% of Abilities in a Cohort of Size N

10Suppose not. With discontinuities within the support S(ai; N, P ), some students would be failing to
best respond. A student scoring just above the discontinuity would be able to increase his expected utility
by lowering his score, which would lower his costs, up until the discontinuity in scores has vanished.
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Figure 1 reveals the key intuition of this paper. For low-ability students, the uncertainty

of the 10-Student Quiz increases their likelihood of encountering cohorts in which they are

among the top 70 percent. For high-ability students, that same uncertainty decreases the

likelihood that they are among the top 70 percent of their cohort. These probabilities

represent variation in the expected returns to student effort. Importantly, this variation

heterogeneously affects students based on their ability.

Plugging the order statistics into (2) completes the student’s utility function.

U (si,t; ai, N, P ) =
N−1∑

j=N−NP

(
(N − 1)!

j!(N − 1− j)!

)
A(si,t; N, P )j

× (1− A(si,t; N, P ))N−1−j − si,t

ai

. (3)

In the appendix, I solve for the equilibrium scores as a function of ability. Figure 2 plots

the equilibrium score functions at the experimental parameter values, N = {10, 100}. It is

worth noting that the point estimates represented are not valuable per se, but only for their

representation of the relative scores in each treatment.

While the function mapping the ability of a student to his or her score at equilibrium

is clearly quite complicated, the intuition behind it is rather simple. Students with lower

abilities benefit from the introduction of randomness into the draw of their cohort, and put

forth greater effort under this randomness. Conversely, students with higher abilities benefit

from decreases in randomness brought about by larger cohorts. Therefore, high ability

students exert more effort under the less uncertain regime.

A thought experiment can reveal the intuition behind the equilibrium score functions in

more depth. Consider the symmetric best response function in an environment where the

proportion of winners remains constant at P = 0.7, but the number of students in a cohort

approaches infinity. While a cohort of this size will still have some variability in the draw

of students, the law of large numbers ensures that the distribution of students in the cohort

approaches a perfect reflection of the probability distribution from which they are drawn.
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Figure 2: Scores at Equilibrium in the 10- and 100-Student Quizzes

Thus, common knowledge of the probability distribution is sufficient for a student’s belief

about her relative position in her cohort to approach certainty.

In this infinitely large cohort, a student whose ability is greater than the 30th percentile

in the probability distribution will best respond by choosing a score that no student below

the 30th percentile can match and receive non-negative expected surplus. That score, given

the assumed cost function, is approximately si,t = 0.3.11 Students below the 30th percentile

best respond by producing a score of zero. Thus, the equilibrium score function in this

setting approaches a step function that starts at si,t = 0 until ai ≥ 0.3, at which point the

equilibrium score jumps to si,t = 0.3.12

Keeping in mind the limiting case, consider the equilibrium scores in Figure 2. For the
11This value itself means little except as an ordinal measure of academic output.
12ai = 0.3 occurs with zero probability, so it can be included in either side of the step function.
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100-Student Quiz, the scores more closely reflect the infinitely large cohort, while the 10-

Student Quiz scores are more affected by the randomness of the smaller cohort. Consider the

marginal costs and benefits of adjusting scores from their infinite-cohort equilibrium. For

students who choose si,t > 0 in the limiting case, the marginal benefit of lowering a score

is constant and identical across treatments, since scores have a constant marginal cost, so

foregone scores have a constant marginal benefit. The marginal cost of lowering a score is

paid through reductions in the probability of receiving a high grade. In the 10-Student Quiz,

that probability changes more gradually, so, at the margin, reducing a score is less costly,

and the 10-Student Quiz scores drop below the 100-Student Quiz scores.

Now consider students with si,t = 0 in the infinitely sized cohort. Increasing scores

bears a constant marginal cost for both the 10- and 100-Student Quizzes, but holds a higher

marginal benefit in the 10-Student Quiz because the randomness increases the likelihood of

states of the world in which low scores receive high grades. So, the 10-Student Quiz scores

rise above the 100-Student Quiz scores.

3.2 Predictions From the Model

My experiment pairs 10- and 100-Student Quizzes each week, and my analysis takes the

difference in effort between the two quizzes—specifically, the 100-Student Quiz duration

minus the 10-Student Quiz duration—as its dependent variable. I refer to this difference as

the “treatment effect.” I use the model’s predictions for the difference in scores as a proxy

for its predictions about the difference in effort. This allows me to remain agnostic about

the production function for scores, only assuming that higher predicted scores imply higher

predicted effort. My within-subjects analysis of this difference in effort controls for student-

specific heterogeneity, and will provide a cleaner test of the treatment effect. To see the

model’s predictions for how the treatment effect will evolve with ability consider Figure 3,

which plots the equilibrium score in the 100-Student Quiz minus the equilibrium score in

the 10-Student Quiz as a function of ability.
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Figure 3: Difference in Score between 100- and 10-Student Quizzes at Equilibrium

The model provides three primary predictions about the treatment effect displayed in

Figure 3. While the point estimates of the model are based on specific assumptions, the

following predictions represent generic qualities that provide clarity about the ways in which

an expected-grade maximizing student may react to changes in the grading environment.13

Hypothesis 1: Mean effort is increasing in cohort size.

My model predicts that the greater effort exerted by high ability students on the 100-Student

Quiz outweighs the greater effort that low ability students exert on the 10-Student Quiz,

causing average effort to increase in cohort size.
13Moldovanu and Sela (2006) prove these properties for a general class of cost functions. These predictions

derive from a single-crossing property they prove for symmetric equilibria in contests with different N but
fixed P .
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Hypothesis 2: The treatment effect crosses the axis once and from below.

My model predicts that the treatment effect begins negative and moves positive, crossing

the horizontal axis exactly once. Call this single-crossing point a∗. Based on Figure 1, it

is natural to think of a∗ as corresponding with the cutoff. This is generally true, but the

specific location of a∗ will depend on the distribution of abilities, and the cost function for

scores. My predictions focus on the cutoff of ai = 0.3 as a∗.14

Hypothesis 3: The local minimum of the treatment effect is located below the

cutoff, and the local maximum is located above the cutoff.

Figure 3 shows the extrema of the treatment effect. These extrema identify the students

for whom the relative returns to effort in one cohort size is maximally different from the

corresponding returns in the other cohort size. These returns are closely tied to Figure 1,

where it is clear that the difference between the order statistics is minimized below the

cutoff and maximized above it. Accordingly, students with abilities below the cutoff have

the greatest relative gains from the randomness of the 10-Student Quiz, while the opposite

is true for students with abilities above the cutoff.

4 Experimental Design

My experiment takes the paired-auction design used in Andreoni and Brownback (2014) and

adapts it for a classroom context. My design simultaneously presents students with a pair of

quizzes, a 10-Student Quiz and a 100-Student Quiz, and records student behavior on each.

This design is inspired by the paired auction design of Kagel and Levin (1993) and Andreoni,

Che, and Kim (2007).

I analyze the difference in behavior between the two quizzes in order to control for student-

specific and week-specific effects. Importantly, this paired design will provide a powerful test
14While the single-crossing point in Figure 3 is not precisely 0.3, the salience of the 30th percentile in my

experiment and the proximity of the single-crossing point to this value make it a natural candidate.
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of responses to cohort size that occur in an environment riddled with alternative motivations

for effort. Indeed, the design is powerful enough to independently test the interaction between

many of these motivations and the treatments.

4.1 Recruitment and Participation

The experiment was conducted in the winter quarter of 2014 in an intermediate microeco-

nomics course at UCSD. Enrollment in the course started at 592 students, and ended at 563

after some students withdrew from the course. All enrolled students agreed to participate in

the experiment. The experiment was announced both verbally and via web announcement

at the beginning of the course. The announcement can be found in the appendix.

4.2 Quiz Design, Scoring, and Randomization

There were 5 Quiz Weeks in the quarter. At noon on Thursday of each Quiz Week, 2 different

quizzes covering material from the previous week were posted to the course website. Both

quizzes were due by 5pm the following day. Each quiz had a time limit of 30 minutes, and

students could take the quizzes in any order. The 30-minute limit ensures that the quiz

was given focused attention with little time spent idle, meaning that the time recorded for

students is reflective of their effort on the quizzes.

I refer to the content of the two quizzes in a Quiz Week as “Quiz A” and “Quiz B.” All

students saw these 2 quizzes in the same order, but I randomly assignment grading treatments

to the quizzes. One of the quizzes received the 10-Student Quiz treatment and one received

the 100-Student Quiz treatment. Therefore, while every student was assigned both Quizzes

A and B, approximately half of them had Quiz A graded as the 10-Student Quiz and half

had it graded as the 100-Student Quiz. The opposite treatment was assigned to Quiz B

in each case. The questions on Quizzes A and B were designed to have as little overlap as

possible to eliminate order effects in effort and scores. Before beginning the quiz, students

only observed the grading treatment, and not the quiz content. No student was informed of
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the treatments received other students. Table 1 shows the balance across treatments.

Table 1: Submitted Quizzes from Each Week and Each Treatment
Quiz Version Treatment Week 1 Week 2 Week 3 Week 4 Week 5

A 10-Student 201 282 258 253 249
100-Student 262 282 259 253 243

B 10-Student 267 280 262 251 243
100-Student 200 282 259 256 252

Note: Asymmetries across treatments may arise out of chance, failed submissions, or
withdrawals. Asymmetries will not affect the analysis, since only completed pairs will
be analyzed.

The number of questions correct determined the score for each student. The top 7 scores

received high grades in each 10-Student Quiz cohort, and the top 70 scores received high

grades in each 100-Student Quiz cohort. Students were anonymously re-randomized into

cohorts each week. All students in a cohort had taken the same quiz under the same grading

treatment. Students receiving high grades were awarded 3 points, while students receiving

low grades were awarded 1. Non-participants received 0 points. The quizzes counted for

approximately 13 percent of the total grade in the class, providing strong incentives for

students to participate seriously. Students whose scores were tied at the 70th percentile of a

cohort were all awarded 3 points unless the tied students all failed to participate, in which

case the students all received 0 points.

4.3 Effort

The time at which every quiz was started and completed was recorded to the millisecond. My

analysis will take the amount of time that a student spent taking a quiz to be the measure

of effort that the student exerted on that quiz. This measure of effort will reveal which quiz

the student believed to hold the greater returns to her effort.

Both quizzes were posted simultaneously, meaning that the amount of time a student

could spend studying prior to starting either quiz was roughly constant between the two
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quizzes. Student behavior supports this assertion. 86 percent of students waited less than

an hour between the two quizzes, with a median interval of 32 minutes between quizzes.

4.4 Ability

At the beginning of the course, students consented to the use of their grade point average

(GPA) in this study.15 I use this as the measure of academic ability in the analysis. I elected

not to use exam performance in the course because of the endogeneity between the allocation

of effort to exams and quizzes. I contend that GPA is a more valid instrument for ability

because, unlike exams, there is no sense in which quiz effort and GPA are substitutable.

While there may be a correlation between the level of effort and ability as measured by

GPA, my analysis will eliminate these level effects by only considering differences in effort

between pairs of quizzes.

Figure 4 shows the cumulative distribution function of all student GPAs in the class. I

use the value of the cumulative distribution function at a given GPA to represent the ability

level of that student in my predictions. Importantly, the GPA at the 30th percentile is 2.72.

The median and mean GPA are 3 and 2.99, respectively. Seven students have GPAs of 4.0,

while only one student has the minimum GPA of 1.0.

5 Results

I begin this section by describing my data and their basic statistics. Then, I specify the

dependent variable I will use in the analysis and test its aggregate characteristics. Next, I

demonstrate heterogeneous treatment effects across students of different ability levels and

test where the model does and does not hold predictive power. Finally, I investigate possible

explanations for the model’s failures.
15Due to administrative delays, I was not able to get a student’s GPA until after the quarter. Thus, the

response to the treatment will have some impact on ability. Since the quizzes only amounted to approximately
13 percent of the students grade in one of dozens of classes they have taken, I do not see this as a major
problem.
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Figure 4: Cumulative Distribution Function for GPAs of All Students in the Experiment

5.1 Data and Descriptive Statistics

In total, 579 students submitted 5,094 online quizzes in this experiment. Of those, 2,546 had

been assigned to a 10-Student Quiz, and 2,548 had been assigned to a 100-Student Quiz.

The duration of each quiz was recorded, and my analysis will include every recorded time

appearing in a completed pair of quizzes. Table 2 reports the means and standard deviations

of the unpaired quiz duration for both cohort sizes.16

16Since I did not receive GPA data until the end of the quarter, I was not able to observe the GPAs of
the students who dropped during the quarter. There were only 20 submitted pairs of quizzes from students
who dropped the course. The mean treatment effect for these quizzes is approximately -36.7 seconds with
a standard deviation of 432 seconds. I include these data in the analysis of the mean treatment effect, but
exclude them from the analysis of heterogeneity in treatment effects, since I have no measure of ability. Each
of these decisions biases my results away from the model’s predictions. For the means, it lowers the average
effect, diminishing my results. With respect to heterogeneity, their inclusion only strengthens my results,
because they are more likely to be low GPA students, and their average treatment effect is negative.
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Table 2: Descriptive Statistics on the Duration of the Quizzes
100-Std. Quiz 10-Std. Quiz

Mean Duration (in minutes) 14.97 14.58
Standard Deviation/Error (9.21) (9.00)
Note: In this table, the quiz means are unpaired, so will provide a
much weaker test of significant differences.

5.2 Dependent Variable

My analysis uses the difference between the time allocated to the 100- and 10-Student Quizzes

as the dependent variable. Recall that I refer to this difference as the treatment effect. This

dependent variable is appealing because it reveals a student’s beliefs about which quiz will

yield higher returns to her effort. Since random assignment leaves effort costs and quiz

difficulty independent of the cohort size, if a student shows a general trend toward spending

more time on the 10- or 100-Student Quiz, then the student must believe that her marginal

product is higher on that quiz.17 Using within-student differences also offers the best control

for individual-specific and week-specific noise in the data.

5.3 Endogenous Selection and Controls

One potential complication in these results is that the order of quiz completion could not

be controlled and thus is endogenous. This is a limitation of the online environment.18

Fortunately, even though quizzes are presented simultaneously, one quiz is positioned above

the other vertically. This presentation order is randomly assigned and provides a relevant

instrument for the order of completion that is mechanically designed to be valid. The effect

of this endogenous selection is not large–51.4 percent of 100-Student Quizzes were presented

first online, while 55.3 percent were completed first–but is statistically significant.
17Since I only include times recorded in a completed pair of quizzes, my analysis reveals the perceived

relative returns to effort conditional on participation in both quizzes. The results do not substantively change
by replacing all skipped quizzes with values of 0, but the standard errors expand, as 0 is a much shorter
duration than any observed in the data.

18In order to force students to take quizzes in a specific order the second quiz must be hidden from view
until the completion of the first quiz. I posted both quizzes simultaneously in order to ensure that students
knew they were assigned two quizzes.
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Column 1 of Table 3 demonstrates that the instrument is extremely relevant. Column 2

shows that the instrument has a problematic correlation with student GPA. Despite being

randomly assigned before each Quiz Week, the order in which the quizzes were presented

happened to correlate to the GPAs of the students. This is unfortunate but was unavoidable,

since I did not have access to student GPAs until the end of the quarter. Additionally, the

explanatory power is minimal, with an R2 value below 0.002. Column 3 demonstrates that

the residual effect of GPA on the order in which a student completes the quizzes has negligible

explanatory power and is not statistically significant after controlling for presentation order.

To demonstrate that endogenous selection does not drive any results, all tables will feature

results with and without the instrument for quiz completion order.

Table 3: Testing the Relevance and Validity of the Instrument
(1) (2) (3)

Pr{100-St. Quiz Pr{100-St. Quiz Pr{100-St. Quiz
completed first} presented first} completed first}

100-St. Quiz 0.759*** 0.757***
presented first (0.05) (0.05)

GPA 0.105** 0.060
(0.05) (0.05)

Constant -0.243*** -0.290** -0.422***
(0.04) (0.14) (0.15)

R2 0.064 0.002 0.065
N 2,486 2,486 2,486
* p<0.10, ** p<0.05, *** p<0.01
Note: The first column demonstrates that the order in which quizzes are displayed is a
highly relevant instrument for the order in which the quizzes are completed. The second
column shows the troubling correlation that the mechanically random instrument has with
the GPAs of students, though the explanatory power is negligible. The third column shows
that the relevance of the instrument is not a result of its correlation with GPA.

Hypothesis 1: Mean effort is increasing in cohort size.

Table 4 tests my model’s straightforward prediction that mean effort is increasing in the

cohort size. Column 1 shows that, on average, students spend approximately 27 more seconds

on the 100-Student Quiz than on the 10-Student Quiz, an increase of 3 percent over the

mean. With endogenous selection of ordering, however, this number is confounded by the

effect of quiz order on quiz duration. Instrumenting for the order of completion removes
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this endogeneity and provides a clearer picture of the treatment effect, showing that the

100-Student Quiz elicits 46.4 seconds more effort from students, an increase of more than 5

percent over the mean.19

Table 4: Mean Difference between 100- and 10-Student Quiz Duration
OLS IV Regression

100-St. Quiz -6.085***
Taken First (1.25)

Constant 0.450** 0.773***
(0.19) (0.20)

Instrumented No Yes
N 2,507 2,507
* p<0.10, ** p<0.05, *** p<0.01
All values are reported in minutes.
All standard errors clustered at the student level.

Result 1: Mean effort is increasing in the cohort size.

5.4 Heterogeneity in the Treatment Effect

My model predicts heterogeneity in the treatment effect across ability levels. In this section,

I impose continuity on the treatment effect in order to understand how it evolves across

different abilities. This continuous evolution of the treatment effect across abilities provides

an empirical counterpart to Figure 3 and tests if the observed heterogeneity of the treatment

effect coincides with the predictions of the model.20 Figure 5 plots a locally linear polynomial

smoothing function along with 95 percent confidence intervals for the treatment effect.

It is important to note that the complicating influence of other incentives for effort will be

most apparent when considering the heterogeneity of the treatment effect. After testing the

specific predictions of the model, I test for several of these effects. Deviations from the theory

may manifest themselves through biased beliefs, correlations between intrinsic motivation
19Inserting direct controls for the order of completion is not a valid measure, since the endogenous order

of completion is collinear with the treatment effect.
20I include a less parametric test of heterogeneity in the appendix, showing that the results are not driven

by the continuity restriction.
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Figure 5: Local Polynomial Fit of the Difference in Effort between 100- and 10-Student
Quizzes (Times Reported in Seconds)

and GPA, heterogeneous comprehension of the strategic incentives, or correlations between

demographic characteristics and GPA. I address each of these in turn.

Hypothesis 2: The treatment effect crosses the axis once and from below.

To consider the single-crossing nature of the treatment effect, I examine its evolution begin-

ning with the lowest-ability students. For the left tail of the distribution of GPAs, there is

a strong negative treatment effect that shows statistical significance. This tail represents a

small percentage of the population, approximately 2 percent, but an economically significant

one, as policy makers regularly design policies around the interests of the weakest students.

The treatment effect then crosses the axis and becomes significant and positive for low- and
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middle-ability students. There is a much larger population that shows significant and pos-

itive treatment effects, approximately 45 percent of students, than significant and negative

treatment effects. Finally, the treatment effect returns to near-zero for high-ability students.

Qualitatively, this pattern is exactly what my model predicted—that the treatment effect

would cross the axis once and from below.

While these tests support the existence of a single point where the treatment effect crosses

the axis from below, they also suggest that the model misses the mark with respect to its

location. Specifically, my model makes a focused prediction that this single-crossing point

occurs near the cutoff at the 30th percentile, or a GPA of approximately 2.72. A simple

comparison of means easily rejects this location for the single-crossing point. Testing the

mean treatment effects for GPA ≤ 2.72 and GPA > 2.72 fails to reject the null hypothesis

that the treatment effect is identical in the two regions (t = −1.03 P = 0.304).21 In fact, the

mean difference between the 100- and 10-Student Quizzes below the cutoff is 44.4 seconds,

a greater value than the mean difference above the cutoff, 20.0 seconds.

Figure 5 provides a more specific test of the single-crossing point. The point at which the

smoothing estimate crosses the horizontal axis is approximately a GPA of 1.74, or the second

percentile of student GPAs. For a more non-parametric estimate of the single-crossing point,

I first note that all differences in effort above the single-crossing point should be positive,

while all differences in effort below it should be negative. I then use two measures to assess

the fit of different possible single-crossing points. First, I find the point that maximizes the

absolute number of positive differences in effort above it and negative differences in effort

below it. My second measure finds the point that maximizes the sum of the differences with

the predicted sign minus the sum of the differences without the predicted sign. Using both

of these measures, the single-crossing point that best fits the data occurs at a GPA of 1.81

or approximately the 3rd percentile.22

21I test this with a regression of the treatment effect on indicators for the two regions with standard errors
clustered at the student level. The full regression results are found in the appendix.

22In both cases, there is a flat maximum. The former case is maximized at GPAs of 1.81, 1.57, 1.54, 1.51,
and 1.45. The latter is maximized at GPAs of 1.81 and 1.78.
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Result 2: The treatment effect does cross the axis once and from below, but the location

of the single crossing point deviates substantially from the model’s prediction.

Hypothesis 3: The local minimum of the treatment effect is located below the

cutoff, and the local maximum is located above the cutoff.

Using Figure 5 to identify the extrema of the treatment effect rejects the claim that the

treatment effect is maximized above the cutoff. In fact, the treatment effect is maximized

for GPAs between 2.0 and the cutoff of 2.72. Figure 5 predicts that the maximum treatment

effect is 56.7 seconds and occurs at a GPA of 2.39.23 This is a direct rejection of the

prediction that students below the cutoff understand and take advantage of the benefits

from the randomness of the 10-Student Quiz.

Figure 5 also identifies the minimum of the treatment effect. The model predicts that the

lowest ability students understand the futility of their efforts and show no sensitivity to the

treatment effects. This assertion is rejected by the data, where the lowest-ability students

demonstrate the strongest tendency to exert effort under the randomness of the 10-Student

Quiz. This minimum occurs at the boundary, with the lowest-ability student, one with a

GPA of 1.0, showing the smallest predicted treatment effect, -175.7 seconds.24 This pattern

is not consistent with the specific predictions of the model but is consistent with the general

intuition that weaker students benefit more from the randomness of the 10-Student Quiz.

Result 3: The maximum of the treatment effect does not occur above the cutoff, but

below it. The minimum of the treatment effect also occurs below the cutoff, but is only

statistically distinguishable from zero for the lowest-ability students.
23In the appendix, I use a semi-parametric test regressing the treatment effect on bins of different abilities

to reject the null hypothesis that the mean treatment effect is equal across all bins. The bin containing the
maximum is below the cutoff and has a treatment effect 68 seconds higher than its complement (t = 2.34
P = 0.019). Standard errors were clustered at the student level.

24In the appendix, I also use a semi-parametric test showing that the bin containing the minimum of the
treatment effect does cover the region occupied by the weakest students, but does not display significant
differences from its complement. This is when it is broadly defined as the lowest 15 percent of abilities
(t = −1.42 P = 0.156). A finer specification of bins would capture the significant negative effect seen in
Figure 5.
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5.5 Alternatives to the Neo-Classical Assumptions of the Model

Using my model as the backbone for understanding the patterns of effort allocation when

students are graded on the curve provides several qualitatively accurate predictions, but

understandably fails with regards to more focused predictions. Interactions between the

treatment effect and alternative motivations for effort could cause any number of shifts in the

locations of specific phenomena but will nonetheless preserve the shape and single-crossing

nature of the treatment effect that the data show.

To the extent that my experiment can identify the effects of these alternative motiva-

tions for effort, I address them below. Additional behavioral phenomena are likely to be

present, but may not by identified by my data, I explore the implications of several of these

possibilities in the following section.

5.5.1 “Cursed” Beliefs

My model depends critically on the specification of students’ beliefs. Characterizing how

the predictions of the model change when students are no longer required to make accurate

inferences about their relative ability will allow me to test if deviations from the model can

be explained by beliefs alone. Classical assumptions require that students make accurate

inferences based on their past academic experiences and the selection of students expected

to enroll in each class. Prior research suggests, however, that students may be “cursed”

to believe that enrollment decisions are independent of ability.25 Without accounting for

the selection of classmates, students will best respond as if they are facing a distribution of

classmates similar to the ones they have previously faced.

Since my experiment takes place in what is typically the first upper-division course for

economics students, the distribution of classmates differs largely from the distribution of

classmates students have faced in lower-division courses. Data on the distribution of grades
25Eyster and Rabin (2005) provide an extensive review of empirical and experimental phenomena that

can be attributed to cursedness.
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from all lower-division UCSD courses over the last 5 years can provide suggestive evidence

that student behavior is consistent with cursedness. To construct the distribution of class-

mates that a cursed student would perceive based on experiences in lower-division courses,

I aggregate the grade distributions from all lower-division courses in all departments. From

this composite grade distribution, I find the likely GPAs associated with students at each

percentile rank in lower-division courses at UCSD.26 Figure 6 plots the cumulative distribu-

tion function of GPAs in this perceived grade distribution alongside the GPAs from Figure 4.
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Figure 6: Perceived and Actual Percentile Ranks of Students
26Specifically I suppose there are students at the 1st percentile, 2nd percentile, . . . , 99th percentile. The

99th percentile students receive the grades associated with the top 1 percent of grades awarded in each class,
the 98th percentile students receive the grades associated with the top 2 percent, and so on. This generates
a function mapping a student’s percentile to their lower-division GPA. The measure is imperfect, but does
capture the selection effects of upper-division economics courses.
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Figure 6 shows how low-ability students appear to select out of this upper-division eco-

nomics course. Ignoring this selection effect moves the perception of the 30th percentile

cutoff from a GPA of approximately 2.72 to a GPA of approximately 2.24. Cursed students

fail to account for the fact the low GPA students select out of intermediate economics courses

and believe their percentile rank is based on this relatively weaker distribution. Selection

effects draw the realized percentile ranks of each GPA in the experiment downward for low

GPAs and upward for high GPAs. Thus, a cursed student with a GPA of 2.24 perceives his

percentile rank to be 30, while his actual percentile rank is approximately 10.

Figure 7 imposes a fully-cursed belief structure on the equilibrium predictions displayed

in Figure 3.27 Referring back to Figure 5, it is clear that the model can now more accurately

predict the locations of the single-crossing point and the extrema of the treatment effect.

Under cursed beliefs, my model predicts that the single-crossing point occurs at a GPA

near 2.14, a shift that places it much closer to the estimated single-crossing point of 1.81

from the previous section. Less than 10 percent of students in my experiment possess GPAs

below this adjusted single-crossing point, so the vast majority are now predicted to have

positive treatment effects, a phenomenon confirmed by the data. The adjusted maximum

of the treatment effect now occurs for abilities below the cutoff. This coincides much closer

with the data, as does the adjusted location of the minimum of the treatment effect, which

now is predicted to occur for the lowest 5 percent of student abilities.

Cursedness adjusts the locations of the relevant phenomena closer to their respective

locations in the data, but even the adjustment of full cursedness was not sufficient for them

to coincide exactly with the data. This implies that, while cursed beliefs may have a dramatic

impact on the fit of the model, there are still residual deviations that need to be accounted

for. It is also important to note that this should not be taken as proof of cursedness among

students in my experiment, rather, it is suggestive that with a better understanding of the
27These predictions assume that students are aware of neither their own cursed beliefs, nor the potential

for cursed beliefs in others. This allows for a simple mapping from the actual GPA to the equilibrium action
at the perceived GPA percentile.
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Figure 7: Predicted Difference in Effort Based on Perceived Rank

belief structures of students, models of strategic interaction in the classroom can generate

useful predictions for the allocation of effort by students. Further experimentation will be

required to understand the complete process of belief formation and updating that students

undergo in a classroom setting. In particular, careful experimentation will be needed to

distinguish the effects of cursedness from the effects of general overconfidence.

5.5.2 Comprehension of Strategic Incentives

The complexity of the equilibrium effort prediction raises the concern that lower ability

students will be less able to intuit the benefits to randomness, while higher ability students

will be more able to understand the benefits to decreases in randomness. In fact, the weakest

students appear to be the most sensitive to the treatments and respond as predicted to the
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increases in randomness by exerting more effort. Additionally, students below the cutoff are

significantly more likely to state a preference for the 10-Student Quiz on post-experiment

questionnaires (z = 2.41, P < 0.02).28 This shows that comprehension of incentives cannot

be globally increasing in GPA and cannot drive the result.

5.5.3 Intrinsic Motivation

Using GPA as a proxy for ability may raise the concern that the students labeled high

ability may be more intrinsically motivated to exert effort on quizzes than the students

labeled low ability. Figure 8 uses a locally linear polynomial smoothing function to plot the

amount of time allocated to each quiz on the left-hand scale and the aggregate amount of

time allocated to quizzes on the right-hand scale and allows me to address the question of

intrinsic motivation directly.
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Figure 8: Seconds spent on each quiz and aggregate seconds spent on quizzes by GPA

Figure 8 clearly shows that aggregate quiz duration is generally higher for students with
28The post-experiment questionnaires as well as the full specification of this regression can be found in

the appendix.
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higher GPAs, but reaches a maximum at a fairly low GPA of 2.81, approximately the 37th

percentile. Level effects of effort will be removed by differencing the time on the 100- and

10-Student Quizzes, so this phenomenon would only pose a threat to the experimental results

if the level effect interacted with the differences between the two quizzes. The data reject

this interaction effect. While differences are very large for students with the lowest aggregate

duration, they are also very large for students with the highest aggregate duration. Indeed,

the two points where the differences are the smallest have very different levels of aggregate

duration. This shows that, while level effects in effort that trend with GPA are a reality in

my experiment, they cannot drive the observed pattern of differences in effort.

5.5.4 Risk Aversion

Risk aversion could provide an alternative explanation to the observed behavior, since the two

quizzes inherently bear different levels of uncertainty. In general, as risk aversion increases,

low-ability students will decrease their effort, and high-ability students will increase their

effort. To control for risk preferences, at the end of the course students answered a survey

question about their likelihood of taking risks. Dohmen et al. (2011) show that this survey

question is a strong predictor of revealed risk preferences.29

In general, the patterns of effort predicted under different risk preferences will simply

increase the standard errors of the estimates of the treatment effect unless risk aversion is

correlated with GPA. The data refute this correlation (t = −0.71, P = 0.478) and show

that positive treatment effects are common across different risk preferences.30 Figure 9 splits

students into risk averse and risk loving based on their responses to the survey question and

plots the absolute duration of each quiz treatment to test if the impact of risk aversion is

different across quizzes. The locally linear polynomial fit of the data show that the level

effect of risk aversion is much more pronounced than any differential effect across the two

quizzes. In general, low-ability, risk-loving students exert more effort on all quizzes than their
29The question specifically asks, “How likely are you to take risks, in general.”
30The full specification of this regression can be found in the appendix.
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risk-averse counterparts, but this level effect attenuates as ability increases. Importantly, the

qualitative features of the treatment effect—that is, the difference between the two curves—

and, indeed, the point estimates for the values of the treatment effect are similar across

students with different risk preferences but equal abilities.
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Figure 9: Duration of each quiz separated by risk preference (in seconds)

Figure 9 confirms the prediction that low-ability, risk-averse students diminish their effort,

but this impulse does not differentially affect the 10- and 100-Student Quizzes, even though

one is inherently riskier than the other. Additionally, as the ability increases, there are no

meaningful differences between students of equal ability but different risk preference. Thus,

the general patterns of the treatment effect cannot be driven by risk preferences alone.

5.5.5 Gender and Competitiveness

The role of gender in determining risk and competitive preferences has been widely studied,

and deserves attention in this paper, as my model supposes tournament-style competition

between students.31 The effect of gender does not present a likely confound in the identifica-
31See Niederle and Vesterlund (2011) for a review of the literature on gender and competitive preferences.
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tion of the heterogeneity of the treatment effect across abilities, as GPA does not correlate

with gender (t = −1.44, P = 0.150).32 Nonetheless, understanding the ways that students

of different genders react to the treatments will be instructive in designing optimal grading

mechanisms. Figure 10 plots the treatment effects by gender and shows that the qualitative

features of the treatment effect are similar across genders, making it an unlikely driver of

the observed patterns of effort allocation between quizzes.
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Figure 10: Local Polynomial Fit of Difference in Effort between 100- and 10-Student Quizzes
by Gender (Times Reported in Seconds)

6 Discussion

A discussion of the policy implications of my experiment must first address the social benefit

of inducing greater effort on classroom quizzes. One approach this is to consider the effect

of the treatments on the scores of the students. This analysis shows no significant effect

of the treatments (t = −0.37, P = 0.710).33 There are two primary explanations for why
32This regression can be found in the appendix.
33The full specification of this regression is found in the appendix.
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time spent on the quizzes is a superior measure to scores on quizzes for my purposes. First,

quiz scores are much coarser, with all quizzes being graded based on 4 questions. More

variation allows me to observe changes in effort at a smaller margin than changes in scores,

overcoming the problem of low-powered tests. Second, the differences in the difficulty of

the quizzes assigned to each treatment are amplified in the analysis of quiz scores, driving

relatively much more variation in scores than in durations. A sufficiently large sample of

quizzes could overcome this problem, but each subject saw only 5 pairs of quizzes, so the

variation in effort is lost amidst the variation in quiz difficulty.

It seems, therefore, that in this setting, it is not certain that additional time spent on

quizzes has a positive return in the form of scores, but it is certain that additional time

spent on quizzes is a measure of costly effort exertion. If students do not perceive that

additional time increases performance, then any positive amount of time spent on quizzes

would be strictly dominated for any student with a non-zero value of time. Accordingly,

it serves as an appropriate proxy for the relative amount of effort a student would assign

to each type of quiz absent the paired quiz design. That is, if a students are willing to

spend significantly more time on the 100-Student Quiz than the 10-Student Quiz when they

are posted simultaneously, then students would likely study longer or attend more class in

preparation for a 100-Student Quiz in the absence of this experiment.34

The connection between greater effort in studying or attendance and greater academic

performance is well-documented (Romer, 1993; Stinebrickner and Stinebrickner, 2008; De

Fraja, Oliveira, and Zanchi, 2010; Arulampalam, Naylor, and Smith, 2012), implying that

classroom motivation generates positive returns. Understanding the effect of subtle changes

in the grading environment on the strategic allocation of effort by students therefore serves

to further the social goal of increasing academic output and deserves attention.

Towards that end, my experiment uncovers systematic trends among students of different
34Ultimately, this experiment was not designed to test the connection between the motivation to spend

more time taking a given quiz and the motivation to study harder before quizzes, so I must leave that
connection as well-founded speculation.
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abilities to react to changes in the randomness of their grading environment that arise from

changes in the number of students in their cohort. My experiment isolates the strategic

uncertainty of small classes by manipulating a grading cohort size while holding constant

all other characteristics of the classroom, such as teaching quality, student observability, or

access to resources. With these clean controls, I can contribute to the discussion of optimal

classroom size by demonstrating that even small changes in a students strategic setting

causally affect student effort exertion.

6.1 Patterns of Effort Allocation

Three prominent stylized facts manifest themselves in my data. First, my model is correct in

predicting that effort is increasing in the cohort size. That is, on average, students increase

their effort as the uncertainty of their grading environment decreases.

Second, the students most motivated by increasing the cohort size have abilities near but

below the cutoff. This contradicts the model’s prediction that these students understand

that their returns to effort are higher on the 10-Student Quiz than on the 100-Student Quiz.

This misallocation of effort may reflect biased beliefs about relative ability.

Third, there is a negative effect of increasing cohort size for the lowest-ability students,

indicating that these students identify the higher returns to their effort in the higher variance

environment. Stated preference confirms that students below the cutoff are more likely to

prefer the higher variance environment than students above it, though both groups state a

general preference for the lower variance environment.

6.2 Misallocation of Effort

Despite the number of competing explanations for the results addressed in the previous sec-

tion, none were able to independently generate the patterns of the treatment effect demon-

strated in Figure 5. Indeed, the effects of several alternative motivations for effort are clear

but never consistent with the observed behavior and thus not a viable alternative to a strate-
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gic effort model. The data indicate that the strategic incentives present in the environment

do cause shifts in effort that trend systematically with student ability in ways qualitatively

similar to the predictions of the model. Nonetheless, the accuracy of the predictions of the

model can still be improved by incorporating some of these effects, most importantly, biased

beliefs. The data provide suggestive evidence that beliefs are partially responsible for effort

allocations that are ex-ante suboptimal.

The positive treatment effect for students with abilities below the cutoff represents the

most robust misallocation of effort by students. While the mechanisms for this misallocation

of effort are not clear from the data, there is suggestive evidence that students may be

“cursed” to believe that their classmates’ enrollment decisions for upper-division economics

courses were unrelated to their abilities. The fit of the model is greatly improved by supposing

that students believe that their classmates represent an average draw from the population

of students. Adjusting for cursed beliefs, however, cannot fully explain the deviations from

the model’s predictions. The following three behavioral biases are potential causes of this

residual misallocation of effort.

First, students may possess a general overconfidence about their abilities. If students

respond to their strategic grading environment according to an inflated estimate of their

relative ability, then many students below the cutoff may favor the 100-Student Quiz, but

students far enough below the cutoff will still favor the 10-Student Quiz. Second, students

may fail to properly update their beliefs about their relative abilities. Upon receiving their

results from the quizzes, students should reallocate effort based on their posterior beliefs

about their relative ability, but updating failures allow students to ignore the informational

content of quiz results and cling to their potentially biased prior beliefs. Both of these biases

are consistent with existing results showing biased updating about self-perceived intelligence

(Eil and Rao, 2011; Mobius et al., 2011).

Third, students may possess reference dependent utility, specifically myopic loss aver-
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sion (Benartzi and Thaler, 1995).35 If students consider each quiz independently, they will

overexert on quizzes with lower returns to their effort. Recall that increasing effort only in-

creases the probability of high grades and does not alter the grades themselves, since grades

are fixed at 0, 1, or 3 points. As Sprenger (2010) points out, loss aversion over probabilities

can only arise under expected value based reference points as in disappointment aversion

(Bell, 1985; Loomes and Sugden, 1986; Gul, 1991), because under stochastic reference points

(Köszegi and Rabin, 2006, 2007), students are risk neutral over changes in probability within

the support of the original gamble. A student who is risk neutral over changes in probability

would exert more effort on the quiz that led to the greatest increases in her probability of

high grades. Under loss aversion, a student would exert additional effort on the quiz that

was considered to be “losing” relative to her reference probability, and in the case of students

below the cutoff, this would be the 100-Student Quiz.

6.3 Policy Prescriptions

My results show that, in general, mechanism designers with preferences over aggregate effort

should implement a grading environment with the lowest possible variance in order to maxi-

mize the total effort exerted. This result could be accomplished through combining multiple

classes into one grading unit and compensating for classroom-level differences.

While decreasing the variance increases aggregate effort, it incurs certain costs. For

the lowest ability students, higher variance environments induce more effort. The intuition

for this result relates back to Figure 1, which shows how increases in the size of a cohort

make it increasingly unlikely that a low-ability student receives a high grade. From a policy-

perspective, this result suggests that low-ability students can become discouraged by relative

grading when the cohort size becomes large enough. If motivating low-ability students is part

of an educator’s objective, then smaller cohorts can accomplish this. This could be achieved

by splitting large classes up into smaller sections and grading each individually.
35Here, “myopic” does not refer to time horizons, rather it refers to students evaluating outcomes of each

quiz individually instead of evaluating the impact of each quiz on the total course grade.
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My results counterintuitively show that lower variance environments induce greater effort

from many students with abilities below the cutoff. While the data do not explain the

origin of this allocation failure, it still generates several policy prescriptions. Under this

allocation pattern, decreasing the variance of the grading environment bears lower costs—as

measured by lost effort from low-ability students—than theory would predict. This result

allows mechanism designers to re-optimize with respect to the positive and negative changes

in effort that result from changes in the variance of the grading environment.

While my model captured many qualitative features of the data, it failed to capture the

locations of the relevant phenomena. This failure may be attributable to students holding

systematically inaccurate beliefs about their ability relative to their classmates. These beliefs

could create long-term damage by causing students to misallocate effort to tasks or choose

courses sub-optimally. In these cases, feedback about relative ability could increase student

utility, but may reduce aggregate effort, since this misallocation generated increases in the

aggregate effort on the 100-Student Quiz. The incentives of students and classroom designers

in this setting are clearly misaligned with respect to feedback, possibly causing the designer

to withhold information in order to enable the biases of the students.

7 Conclusion

In this paper, I theoretically and empirically uncover heterogeneity in the way changes in class

size affect students of different abilities when the class is graded on the curve. Understanding

that students identify the classroom as a strategic environment will greatly benefit educators

and administrators as they seek to design classroom environments and grading mechanisms

to achieve their objectives with respect to student effort.

In order to ground the intuition for why class size may affect student effort choices, I first

develop a theoretical model of the situation. My experiment tests the qualitative predictions

of this model and measures the causal impact of cohort size on effort.
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My results highlight an important tension between mean effort and the distribution of

effort. This tension presents itself in the theory, and to a lesser degree, in the data, implying

that designers should use caution when attempting to maximize aggregate effort. The mean

effort exerted increased significantly with the cohort size, and effort among the lowest-ability

students decreased with the cohort size. This confirms that using manipulations of the class

size to encourage greater mean effort comes at the cost of effort by some low-ability students.

Several students who would benefit from a more random environment misallocated effort

to the less random environment. This misallocation may not be completely atheoretical, as

it is consistent with well-documented behavioral biases, such as cursedness, overconfidence,

non-Bayesian updating, and reference dependence. Further experimentation is needed to

confirm or reject these theories, however.

My results make it clear that the relative grading mechanisms currently in place generate

many unintended consequences as class size changes. This information can serve to identify

the different demographics who are put at risk by different grading mechanisms. It addition-

ally provides the basis for exploration of grading mechanisms that find the desired balance

between increasing mean effort and promoting a more desirable distribution of effort among

students.
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Appendix A: Experimental Procedures

Syllabus Instructions for Quizzes

Economics 100A Quizzes 
 

This quarter, we are studying how students respond to different grading formats by implementing 
two different grading methods on quizzes. Here are some reminders about the methods. 

 
Overview: 

• There will be 5 Quiz Weeks this quarter.  
• Each Quiz Week, you will have to complete 2 quizzes for a total of 10 quizzes. 
• All quizzes will appear on TED at Noon on Thursday of a Quiz Week and will be due no 

later than 5pm on Friday. That is, you will have 29 hours in which to complete the quiz. 
• Each quiz will have its own 30-minute time limit. 

 
Quiz Grading (Grading schemes are listed in the title of the quiz): 

• Points: 
o All quizzes are out of 3 points for a total of 30 possible points this quarter. 
o 1 point will be awarded to any student who participates in a quiz*. 
o The remaining 2 points will be awarded in one of two different possible ways 

based on your student ID. We do this randomly so that all students can see both 
quizzes and types of grading without one being tied to the other. 

! 100-Student Quizzes: We will select groups of 100 students randomly. 
The top 70 of 100 student scores will receive 2 additional points (giving 
them 3 of 3 points). The bottom 30 of 100 scores will receive 0 additional 
points (giving them 1 of 3 if they participated and 0 of 3 if they did not). 

! 10-Student Quizzes: We will select groups of 10 students randomly. The 
top 7 of 10 student scores will receive 2 additional points (giving them 3 
of 3 points). The bottom 3 of 10 scores will receive 0 additional points 
(giving them 1 of 3 if they participated and 0 of 3 if they did not). 

• Ties: 
o All students who do not participate will get 0 points regardless of ties. 
o Any student who participates will be given 2 points if they are a part of a tie that 

crosses the 70% cutoff. 
! Example: Suppose we are in a 10-Student Quiz and we have the scores: 

4,4,4,4,3,3,3,3,1,1. The 70% cutoff will be 3, and all students with a score 
of 3 or more will receive full credit. 

! Example: Suppose we are in a 10-Student Quiz and we have the scores: 
4,4,4,3,3,1,NP,NP,NP,NP. Where “NP” means “No Participation*” The 
70% cutoff will be at “NP”, but all students with a score of NP will 
receive 0, because they failed to participate. 

! Example: Suppose we are in a 10-Student Quiz and we have the scores: 
4,4,4,3,3,1,0,0,NP,NP. Where “NP” means “No Participation.” The 70% 
cutoff will be at 0, so students with a 0 who participated will receive full 
credit, but all students with a 0 who did not participate will receive no 
credit, because they failed to participate. 

 
*Note: Participation will be judged based on accessing the quiz and attempting at least one 
question. 
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Online Instructions for Quizzes

“On this quiz, there are 4 questions. Each question will be graded for every
student who takes the test, giving all students a "Score". This Score is not your
Grade, but it will help determine your Grade. Your Score will be compared to
the Scores of 9 of your classmates. If your Score is among the top 7, you will
receive a Grade of 3/3 for this quiz. If your score is among the bottom 3, you
will receive a Grade of 1/3 simply for participating.

Your Grade on this quiz will appear in the gradebook after we have calculated
it. Your Score will not appear in the gradebook.

You will have 30 minutes to complete this quiz. You are only allowed to take the
quiz ONE TIME. If your application crashes, please email Andy at abrownba@ucsd.edu
to work out a solution.

All answers will be in WHOLE NUMBERS.”

Online Environment
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Post-Experiment Survey

Survey on TED Quizzes for Econ 100A 
 

PID:     

 

1. If we were to offer quizzes in your next econ class, but graded all quizzes in 

one way, which would you prefer? 

□  100-Student Quiz  □  10-Student Quiz 

 
2. Which Quiz did you work harder on? 

               1                2                3                 4                5                  6                7 
Worked Harder on                                   The Same                                    Worked Harder on  
10-student Quiz                                        on both                                       100-student Quiz 

 
3. How hard did you work on the Quizzes, in general? 

        1                2                3                 4                5                  6                7 
        (Not Hard)                                        (Very Hard)  
 

4. Which Quiz made you learn more? 

   □  10-Student Quiz              □  100-Student Quiz  □ They were the same 
  

5. Would you prefer less challenging or more challenging Quizzes? 

        1                2                3                 4                5                  6                7 
 (Less Challenging)           (More Challenging) 
 

6. Would you prefer Quizzes with less or more predictable “Cutoffs”? 

        1                2                3                 4                5                  6                7 
 (Less Predictable)           (More Predictable) 
 

7. How likely are you to take risks, in general? 

             1                2                3                 4                5                  6                7 
(Not Likely)            (Very Likely) 

 

Thank you so much for your feedback and for your patience 

this quarter! 
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Appendix B: Theory

Score is Monotonic in Ability

Proof: Suppose not. Then ai and aj exist such that: ai < aj but si,t > sj,t.
Incentive compatibility dictates that for i and j, respectively,

U(si,t, ai, N, P ) ≥ U(sj,t, ai, N, P )

U(sj,t, aj, N, P ) ≥ U(si,t, aj, N, P ) .

Expanding these equations yields

PN,P (si,t)−
C(si,t)

ai

≥ PN,P (sj,t)−
C(sj,t)

ai

(4)

PN,P (sj,t)−
C(sj,t)

aj

≥ PN,P (si,t)−
C(si,t)

aj

, (5)

where PN,P (si,t) represents the probability of receiving a high grade with score, si,t, param-
eters, N and P , and ability, ai.

Solve for common terms and combine (4) and (5) to get

PN,P (si,t)−
C(si,t)

ai

+ C(sj,t)
ai

≥PN,P (sj,t)

≥ PN,P (si,t)−
C(si,t)

aj

+ C(sj,t)
aj

.

Eliminate the middle term, and cancel the remaining terms to arrive at

C(sj,t)− C(si,t)
ai

≥ C(sj,t)− C(si,t)
aj

.

Dividing both sides by C(sj,t)− C(si,t) reverses the inequality and yields

1
ai

≤ 1
aj

⇐⇒ ai ≥ aj ,

which is a contradiction. QED.
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7.1 Equilibrium Effort Functions

Maximizing (3) with respect to score yields the first-order condition,

∂U (si,t; ai, N, P )
∂si,t

=
N−1∑

j=N−NP

(
(N − 1)!

j!(N − 1− j)!

){[
j × A(si,t; N, P )j−1 × A′(si,t)

]
(1− A(si,t; N, P ))N−1−j − (N − 1− j)

×
[
A(si,t; N, P )j (1− A(si,t; N, P ))N−2−j × A′(si,t)

]}
≡ 1

ai

. (6)

At equilibrium, the ability implied by a student’s score must equal that student’s ability.
That is, A(si,t) = ai. Substituting this into (6) and solving for 1

A′(si,t) results in

N−1∑
j=N−NP

(
(N − 1)!

j!(N − 1− j)!

){
j × aj

i (1− ai)N−1−j − (N − 1− j)
[
aj+1

i (1− ai)N−2−j
]}

≡ 1
A′(si,t; N, P ) . (7)

By the definition of A(si,t),

S (A(si,t)) = S
(
S−1(si,t)

)
= si,t

⇔ S ′ (A(si,t)) A′(si,t) = 1

⇒ S ′(ai) = 1
A′(si,t)

.

Substituting this into (7) yields the differential equation that defines the relationship between
ability and equilibrium score and is given by,

S ′(ai; N, P ) ≡
N−1∑

j=N−NP

(
(N − 1)!

j!(N − 1− j)!

){
j × aj

i (1− ai)N−1−j − (N − 1− j)
[
aj+1

i (1− ai)N−2−j
]}

. (8)

Solving this under the initial condition that S(0; N, P ) = 0 yields the equilibrium score
as a function of ability.36

36This initial condition states that, at equilibrium, the weakest student understands the futility of effort
regardless of cohort size, and chooses a score of zero.
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Appendix C: Empirical Results

Semi-Parametric Tests

For robustness, I use semi-parametric tests to confirm the heterogeneity shown in Figure 5.
For this analysis, I first divide the data by the cutoff at the 30th percentile, corresponding
to a GPA of 2.72, into a top and bottom portion. I then split each of the two portions in
such a way that half of the students in each portion land in each bin. The specification of
the bins are given by,

LowestBini = 1{GP Ai∈[1,2.433]}

LowBini = 1{GP Ai∈(2.433,2.72]}

HighBini = 1{GP Ai∈(2.72,3.246]}

HighestBini = 1{GP Ai∈(3.246,4]} .

Regressing the treatment effect on these 4 bins provides a semi-parametric characteriza-
tion of the general patterns of student effort allocation that I will use to test Hypotheses 2
and 3. This regression is displayed in column 1 of Table 5. Column 2 repeats the regression,
instrumenting for the completion order using the presentation order.

Table 5: Duration of the 100-Student Quiz minus the 10-Student Quiz (in minutes)
OLS IV Regression

LowestBin -0.031 0.190
GPAi ∈ [1, 2.433] (0.43) (0.43)

LowBin 1.454*** 1.737***
GPAi ∈ (2.433, 2.72] (0.44) (0.44)

HighBin 0.515 0.878***
GPAi ∈ (2.72, 3.246] (0.33) (0.34)

HighestBin 0.151 0.496
GPAi ∈ (3.246, 4] (0.33) (0.34)

100-Std. Quiz -6.125***
Taken First (1.26)

Instrumented No Yes
N 2,506 2,506
* p<0.10, ** p<0.05, *** p<0.01
All standard errors clustered at the student level.
All times in minutes.
The maximum of the treatment effect is identified as occurring over
LowBin. The minimum of the treatment effect appears to be less
robust, but is consistently located over LowestBin.

Hypothesis 2: The treatment effect crosses the axis once and from below.

To consider the single-crossing nature of the treatment effect, I examine its evolution begin-
ning with the students in LowestBin. In both the OLS regression and the IV regression, the
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coefficient on the treatment effect is lowest in this first bin. The coefficient on the treatment
effect in LowBin moves into the positive domain for the OLS coefficients, and remains pos-
itive for HighBin and HighestBin. This implies that the treatment effect does cross the
axis once, from below, and that the crossing occurs between LowestBin and LowBin.

Result 2: Under a less parametric specification, the treatment effect still crosses the
axis a single time and from below, but the location of the single crossing point deviates
substantially from the prediction.

Hypothesis 3: The local minimum of the treatment effect is located below the
cutoff, and the local maximum is located above the cutoff.

The coefficients from Table 5 identify the regions over which the treatment effect is maxi-
mized and minimized. While this coarse measure is imperfect, it is sufficient to reject the
claim that the treatment effect is maximized above the cutoff. In fact, the treatment ef-
fect is clearly maximized in LowBin, where the coefficient is nearly double the value of the
other coefficients. While a pairwise comparison fails to reject the equality of coefficients
between LowBin and HighBin (F = 2.49 P = 0.115), the difference between the mean
treatment effect found in LowBin and the mean treatment effect found in its complement
is approximately 68 seconds and is statistically significant (t = 2.34 P = 0.019).37

Table 5 is less successful in identifying the minimum of the treatment effect. The co-
efficient for LowestBin is the smallest, but not significantly different from the coefficients
in HighBin or HighestBin. Additionally, the difference between the mean treatment ef-
fect in LowestBin and its complement is approximately 41 seconds, but is not statistically
significant (t = −1.42 P = 0.156).38

Means on either side of the cutoff

.

Pairwise tests

.
37To test the difference in means, I regressed the treatment effect onto an indicator variable for the

relevant bin. Standard errors were clustered at the student level. The full specification of the regression is
in the appendix.

38To test the difference in means, I regressed the treatment effect onto an indicator variable for the
relevant bin. Standard errors were clustered at the student level. The full specification of the regression is
in the appendix.
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Table 6: 100-Student Quiz Duration Minus 10-Student Quiz Duration
OLS IV

GPA ≤ 2.72 0.358 0.185
(0.39) (0.39)

100-St. Quiz -6.043***
Taken First (1.26)
Constant 0.348 0.397*

(0.23) (0.21)
N 2,507 2,507
* p<0.10, ** p<0.05, *** p<0.01

Table 7: 100-Student Quiz Duration Minus 10-Student Quiz Duration
OLS IV OLS IV

LowestBin -0.558 -0.680
(0.47) (0.48)

LowBin 1.180** 1.130**
(0.49) (0.48)

100-St. Quiz -6.160*** -6.029***
Taken First (1.26) (1.25)
Constant 0.527** 0.871*** 0.275 0.602***

(0.21) (0.22) (0.21) (0.22)
N 2,507 2,507 2,507 2,507
* p<0.10, ** p<0.05, *** p<0.01
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Stated Preference

After the course, students were asked to take a survey on their experience in the experiment.
One of the questions asked:

“If we were to offer quizzes in your next econ class, but graded all quizzes in one way,
which would you prefer?”

Table 8: Stated Preference for the 10-Student Quiz
Pr(Prefer to be graded based on 10-St. Quiz)

GPA ≤ 2.72 0.360**
(0.15)

Constant -1.196***
(0.09)

N 493
* p<0.10, ** p<0.05, *** p<0.01

Risk Preference

After the course, students were asked to take a survey on their experience in the experiment.
One of the questions asked:

“How likely are you to take risks, in general?”

Table 9: Stated Risk Preference

Risk Measure (From 1-7)
GPA -0.094

(0.13)
Constant 4.202***

(0.41)
N 504
* p<0.10, ** p<0.05, *** p<0.01

Gender and GPA

The gender and GPA of the subjects were recorded. GPA is does not significantly correlate
with gender.
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Table 10: Probit regression of likelihood of being male on GPA

Pr(Male)
GPA -0.151

(0.11)
Constant 0.723**

(0.32)
N 512
* p<0.10, ** p<0.05, *** p<0.01

Treatment Effect on Scores

All quizzes were scored 0-4. Column 2 makes it clear that there is no endogeneity concern
with respect to scores, as the order of completion has no effect on the relative scores.

Table 11: Scores on 100-St Quiz minus Scores on 10-St Quiz
OLS

100 St Quiz -0.033
Taken First (0.05)
Constant -0.010 0.011

(0.03) (0.04)
N 2,491 2,419
* p<0.10, ** p<0.05, *** p<0.01
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