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Abstract 
 
When risk-averse parents reward good behavior with a share of the marginal utility they 
derive from good behavior, a decrease in good behavior by kid i causes kid j to increase 
the amount of good behavior he supplies in equilibrium.  This may explain why 
simultaneous good-kid behavior is rare and also why children try to get their siblings into 
trouble.        

1. Introduction  

Why is it that our younger child always seems to be cleaning up his room or performing 

some other good deed when our older child is being reprimanded for “bad behavior” and 

vice-versa?  My wife often remarks that “it would be nice if we could get both boys to be 

on their good behavior at the same time.”  And yet, the frequency with which we observe, 

both in our own children and children in other families, persistent “good-kid, bad-kid” 

behavior leads to the conjecture that there is some rational basis for this phenomenon.  

This paper provides a game-theoretic explanation for what is referred to as good-kid, bad-

kid equilibria.1   

 It is instructive to briefly discuss the economic intuition for the main ideas suggested 

by this analysis.  Parents are assumed to be risk averse in their kids’ behavior so that the 

marginal utility they derive from one additional unit of good behavior is less than the unit 

of good behavior that preceded it.  In addition, each kid’s reward for an additional unit of 

good behavior is a share of the marginal utility the parents derive from this good 

behavior.  When one kid acts badly (i.e., withdraws good behavior), the parents move 

down their utility function to a point where the slope is steeper—the marginal utility of 

good behavior is greater.  The other kid rationally responds to bad behavior on the part of 

                                                 
1 Becker (1974, 1981) pioneered the use of  microeconomics to model social behavior, including family 
interactions.  
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his sibling by increasing his supply of good behavior.2  In a sense to be made precise, the 

bad behavior on the part of one kid provides the other kid with an incentive to supply 

additional good behavior due to the risk aversion of the parents.  This may explain why 

simultaneous good-kid behavior is rare and why children try to get their siblings into 

trouble. 

 The format for the remainder of this paper is as follows.  The key assumptions and 

definitions are discussed in Section 2.  Section 3 develops the modeling framework and 

presents the main findings.  Section 4 concludes.  The proofs of all propositions are 

contained in the Appendix.  

2. Assumptions and Definitions 

The utility function for the parents is given by U = U(B), where B = Bi + Bj is the additive 

good behavior of kids i and j, respectfully.  U(B) is assumed to have the following 

properties.   

Assumption 1.  n

n

dB
Ud

30
20
10

=≈
=<
=>

n,
n,
n,

 (risk aversion) 

 The surplus for kid k, k = i and j, is denoted by ),( kkkkk BψBrS −=  where 

'U
B
B

dB
dUr k

k
kk α=

∂
∂

α= is kid k’s reward (“bribe”) for each additional unit of good 

behavior, )10( ,k ∈α  is the share of the parent’s marginal utility passed along to kid k as a 

                                                 
2 There is a voluminous literature on sibling rivalry.  See, for example, Chang and Weisman (2005) and the 
references cited therein.  
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reward for good behavior,3 and )( kk Bψ is kid k’s disutility of good behavior, where 

0>'ψk  and ."ψk 0>   That 02

2

<
∂
∂

k

k

B
S follows from Assumption 1 and ."ψk 0>    

3.  Formal Models 

A. Stackelberg Game 

We initially posit a Stackelberg game [S-G] in which kid i and kid j are the leader and 

follower, respectively, and where the asterisks indicate equilibrium values.  A formal 

statement of [S-G] follows:  

(1)     )(
}{ iiiiiB,B

BψBrSMax
ji

−=       

(2)    ),(
}{

jjjjj
B

*
j BψBrSmaxargB.t.s

'
j

−=∈  and       

(3)     .,,0and jijik,B'Ur kkk ≠=>α=        

Proposition 1.  0<
i

*
j

dB
dB

 at the equilibrium in [S-G].  

Proposition 1 indicates that kid j optimally responds to an increase in good behavior 

by kid i by reducing his good behavior.  An increase in good behavior by kid i moves the 

parents up on to the flatter portion of their utility function as illustrated in Figure 1.  This 

implies that the reward for good behavior is concomitantly reduced and kid j rationally 

decreases the amount of good behavior he supplies in equilibrium.  

[Figure 1 About Here] 

                                                 
3 See, for example, Bernheim et. al. (1985).  
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Proposition 2.  0<
j

*
i

dB
dS  at the equilibrium in [S-G].  

Proposition 2 establishes that kid i benefits when kid j reduces the amount of good 

behavior he supplies in equilibrium.  Due to risk aversion, when kid j reduces the amount 

of good behavior he supplies the parents move back down along the steeper portion of 

their utility function where the marginal unit of good behavior has a relatively higher 

valuation as shown in Figure 1.  This higher valuation of the marginal unit of good 

behavior increases the reward to kid i, ceteris paribus.  This may explain why children 

devote a good deal of time and effort trying to get their siblings into trouble.  

Proposition 3.  Let ,)( 2
jjjj BθBψ =  then 0>

j

*
i

dθ
dS  in the equilibrium of [S-G]. 

Proposition 3 indicates that the surplus to kid i increases with the disutility of good 

behavior by kid j.  If we conceive of a “bad kid” type as a kid with a high disutility of 

good behavior ,,),( jikθk = this proposition suggests why kid i may be more likely to 

manifest good behavior when kid j has a propensity for bad behavior.   

Proposition 4.  In the equilibrium of [S-G], kid i would like to see a reduction in the 

reward that kid j receives for good behavior.  

Kid j decreases the amount of good behavior he supplies in equilibrium when the 

reward that he receives for good behavior is reduced.  Due to risk aversion, reduced good 

behavior by kid j means that the marginal unit of good behavior supplied by kid i is of 

higher marginal utility for the parents and kid i’s surplus increases concomitantly.  
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B. Nash Game 

In this subsection, we consider a Nash game [N-G] in which kids i and j choose their 

surplus-maximizing levels of good behavior simultaneously.  The surplus functions for 

kids i and j are given, respectively, by 

(4) 2
iiiii BθBrS −=  

(5) .2
jjjjj BθBrS −=  

The necessary first-order conditions for [N-G] are given by 

(6) 02 : =−
∂
∂

+ ii
i

i
iii Bθ

B
rBrB  

(7) .Bθ
B
r

BrB jj
j

j
jjj 02 : =−
∂
∂

+  

Proposition 5.  At the equilibrium in [N-G]: 

(i)  ,0>
j

*
i

dθ
dB  and  

(ii) .
dθ
dB

j

*
j 0<  

Proposition 5 indicates that an increase in the disutility of good behavior by kid j 

induces kid j (kid i) to decrease (increase) his good behavior in equilibrium, ceteris 

paribus. 

Proposition 6.  At the equilibrium in [N-G]: 

(i)  ,
d
dB

i

*
i 0>
α

 and  

(ii) .
d
dB

i

*
j 0<

α
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Proposition 6 reveals that increasing the reward to kid i for good behavior leads kid i 

(kid j) to increase (decrease) the amount of good behavior he supplies in equilibrium.  

4. Conclusion 

This paper develops a simple, game-theoretic model to explain the phenomenon of good-

kid, bad-kid equilibria.  We find that when risk-averse parents reward good behavior with 

a share of the marginal utility they derive from good behavior, a decrease in good 

behavior by kid i causes kid j to increase the amount of good behavior he supplies in 

equilibrium.  This may explain why simultaneous good-kid behavior is rare and also why 

children try to get their siblings into trouble.   

 An interesting question for future research concerns whether parents can induce 

simultaneous good behavior by rewarding children on the basis of team incentives ala 

Holmstrom (1982).  With this approach, neither child would be rewarded for good 

behavior unless both children manifest good behavior.4  This may enable parents to curb 

the sibling rivalry that gives rise to good-kid, bad-kid equilibria by altering the reward 

structure in a manner that transforms the game from non-cooperative to cooperative.   

                                                 
4 This is closely related to the idea of enforcing group discipline by using agents to monitor other agents.  
See, for example, Varian (1990).  
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Appendix 

Proof of Proposition 1.   
*
jB  is defined implicitly by  

.'ψ
B
B

dB
dUB

dB
Ud'ψrB

B
r

dB
dS

j
j

jjjjj
j

j

j

j 02

2

=−
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
+α=−+

∂
∂

=     (A1) 

Totally differentiating (A1) with respect to iB  yields 

,0
)()( 2

2

2

2

3

3

2

2

2

2

3

3

<
−α

α−
≈

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂
∂

α

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

α
−=

jjj

j

jj
jj

j

i
j

i
j

i

*
j

B"ψ
dB

Ud
dB

Ud

B"ψ
B
B

dB
Ud

B
B

dB
Ud

B
B

dB
UdB

B
B

dB
Ud

dB
dB

    

 (A2) 

since the numerator is positive by Assumption 1 and the denominator is negative since 

.
B
S

j

j 02

2

<
∂
∂

  

Proof of Proposition 2.  

The Lagrangian for [S-G] is given by  

  [ ]*
jiii

i
i

j

j
iiii BBψB

B
B

dB
dU

B
S

BψBrL λ+−
∂
∂

α=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

λ+−= )()( ,     (A3) 

where λ  is the Lagrange multiplier on the incentive compatibility constraint in [S-G] and 

the first-order approach is used to model this constraint.5  To prove the result, it is 

sufficient to show that 0<λ  in equilibrium.  

Differentiating (A3) with respect to jB  yields 

 .
B
S

dB
dBB'ψ

B
B

dB
dUB

B
B

dB
Ud

j

j

j

i
ii

i
ji

j
j 0)( 2

2

2

2

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

λ+⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

α+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

α      (A4) 

 0=
j

i

dB
dB  since the leader cannot react to the follower, so (A4) reduces to 

                                                 
5 See Holmstrom (1979) and Rogerson (1981). 
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.
B
S

B
dB

Ud

j

j
ij 02

2

2

2

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

λ+⎥
⎦

⎤
⎢
⎣

⎡
α             (A5) 

The first term in (A5) is negative by Assumption 1, which implies the second term must 

be positive to satisfy the first-order condition.  That 0<λ  follows directly from 

.
B
S

j

j 02

2

<
∂
∂

   

Proof of Proposition 3.    

Since (A3) is an optimized value function, the Envelope Theorem applies and  

[ ] 02 >−λ=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

λ= j
j

*
j

j

i B
θ
B

dθ
dS            (A6) 

upon appeal to (A3) and Proposition 2 since .0<λ   

Proof of Proposition 4.    

It suffices to show that 0<
α j

i

d
dS at an optimum.  Since (A3) is an optimized value 

function, the Envelope Theorem applies and  

 ,02

2

<⎥
⎦

⎤
⎢
⎣

⎡
+λ=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

α∂
∂

λ=
α dB

dUB
dB

UdB
d
dS

j
j

*
j

j

i           (A7) 

since the term in brackets on the rightmost side of (A7) is positive at an optimum upon 

appeal to (A1) and 0<λ  by Proposition 2.   

Proof of Proposition 5.   

Totally differentiating the system in (6) and (7) with respect to jθ , while recognizing that 

,1=
∂
∂

kB
B  k = i, j, yields 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
∂

∂
+

∂

∂

∂∂

∂
+

∂

∂

∂∂
∂

+
∂
∂

−
∂
∂

+
∂
∂

j

j

j

j

i

j
j

j
j

j

j

ij

j
j

i

j

ji

i
i

j

i
i

i

i
i

i

i

B
dθ
dB

dθ
dB

θ
B
r

B
B
r

BB
r

B
B
r

BB
rB

B
r

θ
B
rB

B
r

2

0

22

22

2

22

2

2

2

.   (A8) 
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Note that each of the entries in the coefficient matrix in (A8) has a negative sign since 

,02

2

<
∂
∂

k

k

B
S k = i, j, and Assumption 1.  The determinant of the Hessian for this system is 

given by  

0
22

2

2
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2
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⎜
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i
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j
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B
SH         (A9) 

at a maximum.  Using Cramer’s rule and appealing to Assumption 1 and the definition of 

ir  yields  
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⎥
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∂
+
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∂

+
∂
∂

=     (A11) 

Proof of Proposition 6.  

Totally differentiating the system in (6) and (7) with respect to iα  yields 
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Using Cramer’s rule and appealing to Assumption 1 and the definition of ir  yields 
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since 02

2
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⎦

⎤
⎢
⎣

⎡
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