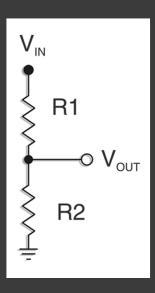
Operational Amplifiers: Part 1

The Ideal Feedback Amplifier

by


Tim J. Sobering

Analog Design Engineer & Op Amp Addict

Housekeeping (I)

Gain

- Transfer function from input to output of a circuit, amplifier, network
- In simplest form, a ratio (Volt/Volt, Volt/Amp, Watt/Watt)
- Often complex, having magnitude and phase
- Voltage Gain, Power Gain, Current Gain, etc.
- "Gain" can be less than one, positive, or negative
 - The "gain" of a resistor divider is $\frac{V_{OUT}}{V_{IN}} = \frac{R_2}{R_1 + R_2}$
 - A gain less than one is an "Attenuator"
 - Negative gain means a "phase shift" (180°)
 - It is often a complex number (magnitude and phase)
- Often linear, but can be nonlinear
 - Log or anti-log amplifier

Housekeeping (II)

- Decibel (dB)
 - Logarithmic unit for the ratio between two values
 - A factor of 10 change in power is 10 dB; 100 → 20 dB

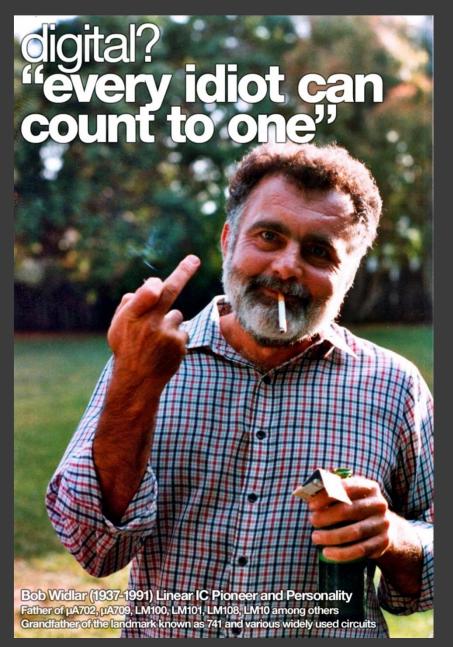
$$Power\ Gain(dB) = 10log_{10} \left(\frac{Power_1}{Power_0}\right)$$

 A factor of 10 change in power is "equivalent" to a factor of 100 change in voltage and so is 20 dB (i.e. power is proportional to V²)

$$Voltage\ Gain(dB) = 20log_{10}\left(\frac{Voltage_1}{Voltage_0}\right)$$

- dB can be a relative to a reference level
 - dBm power relative to 1 mW
 - dBV voltage relative to 1V (dBmV, dBμV)
 - dBu voltage relative to 0.775V
 - dB SPL sound pressure level relative to 20 micropascals

And one last thing...


"Analog is dead"

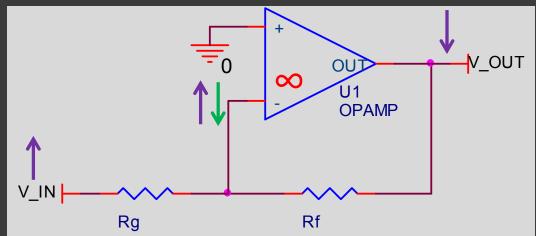
(semi) Anonymous

And one last thing...

"Analog is dead"

(semi) Anonymous

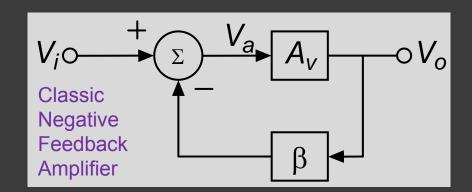
A little history...


- Modern Op Amps owe their existence to Edison's light bulb
 - "Fleming diode" J.A. Fleming added a plate electrode to Edison's filament lamp to create a simple rectifier
 - "Audion" Lee De Forest added a control grid between the filament and the plate and obtained "gain" – the first amplifier
- This formed the foundation for electronic (tube) amplifiers,
 but we needed a few inventions before we had an Op Amp
- Early amplifiers has a lot of problems
 - Amplifiers were <u>highly customized</u> for each application
 - Amplifier characteristics drifted and depended on source and load
 - The characteristics of the source and load changed with time and temperature

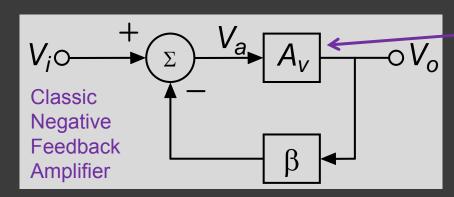
This was called the "telephone amplifier problem"

- Amplifiers in telephone repeater amplifiers were problematic
 - Difficult to stabilize
 - Stage gain variations
 - Lots of distortion
- Simply put, the sound quality was terrible
 - Echoes
 - Variations in volume
 - Pops, whistles, and other fun noises
 - Long distance transmission was a challenge
- Imagine only being able to design a car to operate with specific road conditions and at a specific speed
 - Yet it still shook and shimmied
 - It didn't work at all on a different road
 - Big problem!

The solution came to Harold S. Black while riding the ferry to work at Bell Labs


- Black conceived the "<u>negative</u> feedback" amplifier (1934)
 - All Op Amp circuits (that amplify) are based on the principal of negative feedback

- With negative feedback, the amplifier output will (try to) force the input voltage difference to zero
 - This results in some very unique and beneficial properties
- Experienced engineers <u>resisted</u> Black's discovery
 - "Throwing away" gain seemed counterintuitive


Some more definitions are needed...

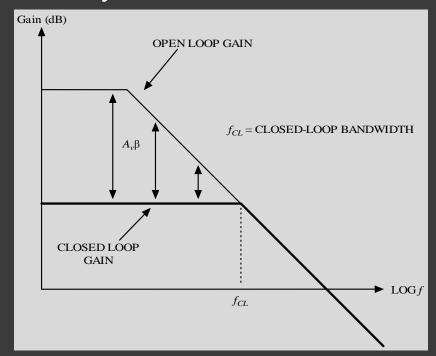
- A_v Open Loop Gain
 - Gain without feedback
 - Ideally $A_{\nu} \to \infty$
 - Some use A, A_o , A_{oh} , etc.

- $A_{cl} = V_o / V_i$ Closed Loop Gain
 - Gain with Negative Feedback loop closed
- β Feedback Factor
 - The portion of output that is "fed back" to the input (usually ≤1)
- $A_{\nu}\beta$ Loop Gain
 - Gain around the feedback loop (spoiler alert...this is the important one)

Analysis is easy...

$$V_o = A_v(V_i - \beta V_o)$$

$$V_o (1 + A_v \beta) = A_v V_i$$


$$\frac{V_o}{V_i} = \left| \frac{A_v}{1 + A_v \beta} \right| = \frac{1}{\frac{1}{A_v} + \beta}$$

Let $A_v \rightarrow \infty$ (ideal assumption)

$$\frac{V_o}{V_i} = A_{cl} = \frac{1}{\beta}$$

That's the Op Amp...
A high gain, differential input, amplifier

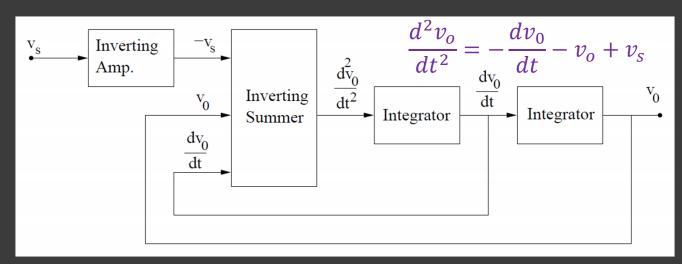
- A_{cl} depends (primarily) on β the feedback network design
- Changes in A_{ν} have little effect on A_{cl} (and bandwidth)
- $A_{\nu}\beta$ is the gain Black "threw away"

Negative Feedback "fixes" amplifier problems

- Stabilizes the amplifier voltage gain to $\approx 1/\beta$
 - Circuit gain A_{cl} is nearly independent of amplifier gain A_{vl}
- Improves input impedance by $(1+A_{\nu}\beta)$
 - Decreases loading on upstream amplifiers
- Improves output impedance by $(1+A_{\nu}\beta)^{-1}$
 - Decreases effect of downstream loads
- Increases amplifier bandwidth by decoupling bandwidth from open loop amplifier gain
- Improves distortion by $(1+A_{\nu}\beta)^{-1}$
 - Improved the quality of transmitted "sound"
- \odot Keep in mind that "ideally" $A_{\nu} \rightarrow \infty$, so the benefits are huge

...But it also caused problems

- High open loop gain amplifiers had a tendency to <u>oscillate</u> when the loop was closed
 - Harry Nyquist (Bell Labs) established the Nyquist Stability Criterion in 1932...before Black conceived negative feedback...and it applied to open- and closed-loop systems
- Analysis of the feedback loop was tedious
 - Lots of multiplication and division and algebra
 - Engineers didn't have calculators or computers until the 70's
- H.W Bode (Bell Labs) developed a graphical analysis system for feedback stability analysis in 1945 – Bode Plots!
 - Simple analysis because you could "see" the problem
 - Opened the field to more engineers by reducing the specialization required

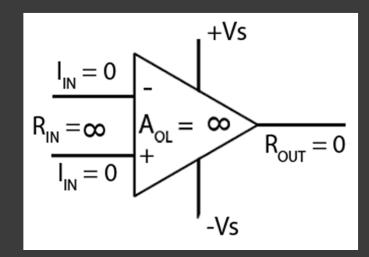

Gain stabilization example

$$\frac{V_o}{V_i} = \frac{A_v}{1 + A_v \beta}$$

- \bullet Let $A_{\nu} = 20,000$ and $\beta = 0.01$ for an ideal gain of 100
 - $A_{cl}(actual) = 99.502 \text{ or } 39.957 dB$
- Conditions change and A_{ν} drops to 5,000
 - $A_{cl}(actual) = 98.039 \text{ or } 39.828 \text{ dB}$
- A 4.9dB (4x) change in open loop gain and virtually no change in closed loop gain (or bandwidth)
 - 0.129 dB change in gain you won't notice this
- Modern Op Amps have gains of 10⁵ to 10⁷
 - This reduces the gain error even further

And so the Operational Amplifier was born...but there was still a long way to go

- Still a lot of room for progress
 - Open loop gain has improved from ~60 dB to as much as 140 dB
 - Differential inputs came later
 - Tubes → transistors → integrated circuits
 - The cost went from \$1000's to < \$0.50
- But could solve cool problems
 - "Operational" could be used to implement mathematical operations
 - Advanced analog computing from mechanical to electronic devices


Current state-of-the-art

- It is hard to beat the performance of a modern Op Amp
 - Audiophiles will disagree
 - Op Amps can be combined with discrete components to make an improved "composite amplifier", but this is becoming less common
 - Exceptions are RF, high-power/drive, and some low noise applications
- Drivers and Trends
 - Portable electronics Low-power, low-voltage, small footprint, single supply, rail-to-rail
 - Higher integration on chip (auto-zero DAC's, feedback networks)
 - Low-noise, high-bandwidth, high precision
 - \circ Currently the lowest noise Op Amp has less noise than a 50arOmega resistor,
- Analog has seen a resurgence over the past 20 years

Ideal Op Amps

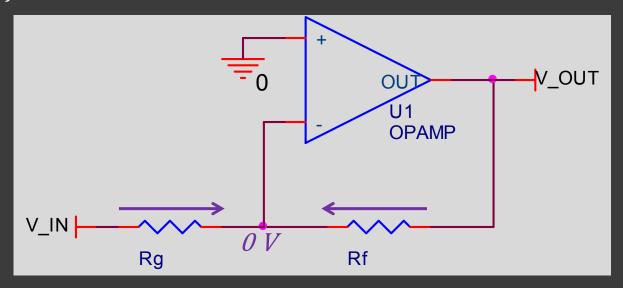
Ideal Op Amp Assumptions

- Infinite open-loop gain (A_{ν})
 - Voltage between inputs must be zero
- ullet Zero offset voltage (V_{os})
 - $V_{OUT} = 0$ when $V_{IN} = 0$
- Zero input bias current (I_{bias}^+, I_{bias}^-)

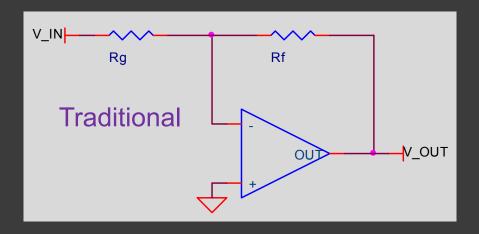
- Allows us to easily apply Kirchhoff's Current Law to feedback network
- Zero output impedance and infinite input impedance
 - Keeps the analysis simple
- Infinite small-signal and large signal bandwidth
 - Infinite slew rate
- Infinite output drive and no voltage rails
 - No limits

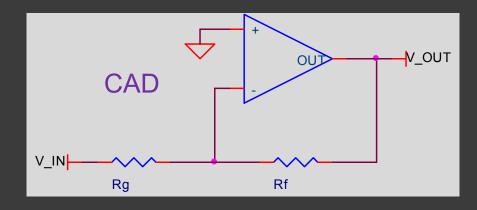
The cake is a lie...

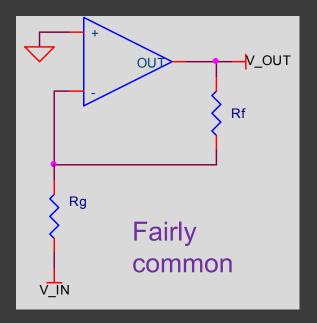
- Every single ideal Op Amp assumption is a lie
 - You will eventually get burned by these the assumptions
 - Assuming you do any "real" design
- The assumptions make analysis easy
 - Ohm's Law, KCL, and Superposition are your friends
 - If your circuit doesn't work with ideal assumptions, it won't work with a real Op Amp
- A given Op Amp can approach one or more of these idealities
 - Design is always a series of trade-offs
 - Pick the right amplifier for the application ('741's and '324's suck)
- The trick to being a good designer is...
 - ...to know <u>when</u> non-ideal behavior matters
 - ...to know which non-ideal behavior matters in your application
 - ...not to over-specify a component

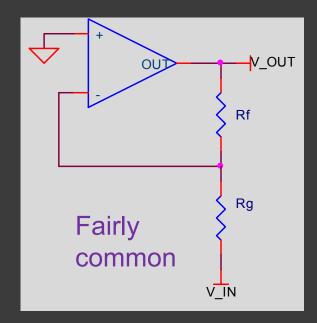

Inverting Amplifier

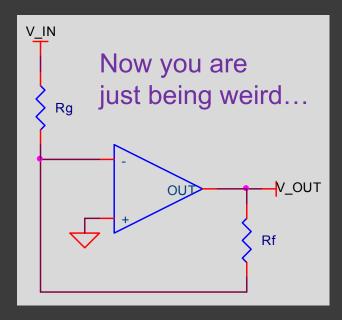
- Use KCL and ideal assumptions to compute amplifier gain
 - No voltage across input terminals (infinite gain → virtual ground)
 - No current flowing into input terminals


$$\frac{V_{IN} - 0}{R_g} + \frac{V_{OUT} - 0}{R_f} = 0$$

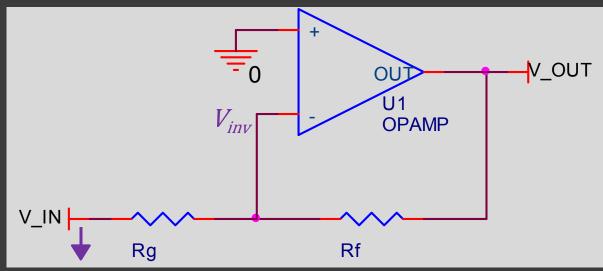

$$\frac{V_{OUT}}{R_f} = -\frac{V_{IN}}{R_g}$$


$$\frac{V_{OUT}}{V_{IN}} = -\frac{R_f}{R_g}$$




These are all the same amplifier!

Don't let how the circuit is drawn confuse you!

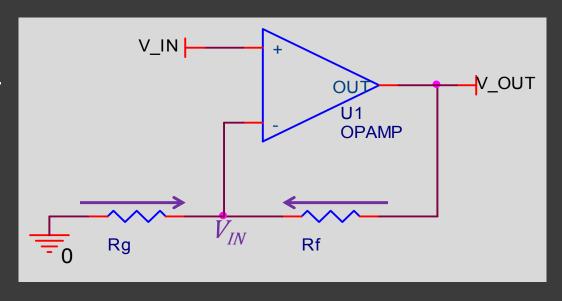

Computing β

- ullet Compute portion V_{OUT} "fed back" to the inverting input, V_{INV}
 - Ground V_{IN}
 - Use superposition
 - Resistive feedback is just a voltage divider
 - You should have this equation memorized

$$V_{INV} = \frac{R_g}{R_g + R_f} V_{OUT}$$

$$\frac{V_{INV}}{V_{OUT}} = \frac{R_g}{R_g + R_f}$$

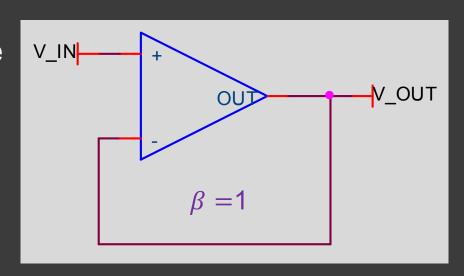
$$\beta = \frac{R_g}{R_g + R_f}$$


Non-Inverting Amplifier

- Use KCL and ideal assumptions to compute amplifier gain
 - No voltage across input terminals (infinite gain → virtual ground)
 - No current flowing into input terminals

$$\frac{0 - V_{IN}}{R_g} + \frac{V_{OUT} - V_{in}}{R_f} = 0$$

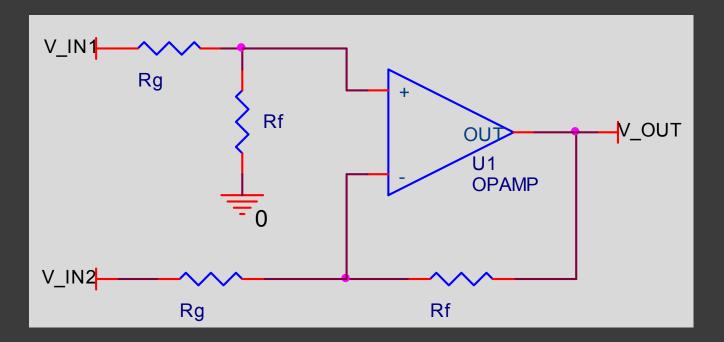
$$\frac{V_{OUT}}{R_f} = \frac{V_{IN}}{R_g} + \frac{V_{IN}}{R_f}$$


$$\frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_f}{R_g}$$

Non-Inverting Amplifier (Special Case)

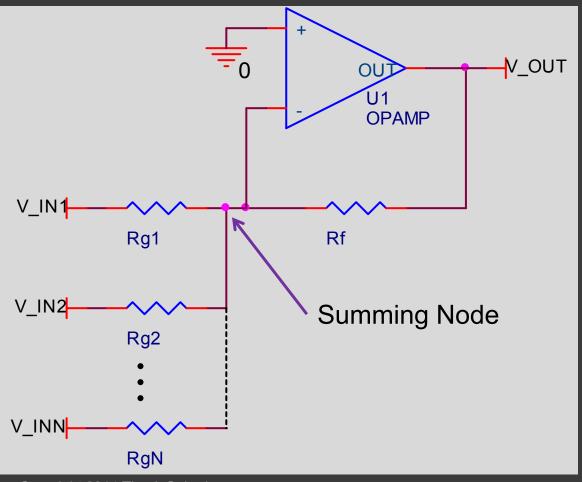
- Take the non-inverting amplifier and let
 - $R_f \rightarrow 0$ and $R_g \rightarrow \infty$
- Kind of hard to apply KCL since all currents are zero!
- Recall: no voltage between the input terminals

$$V_{OUT} = V_{IN}$$
 $\frac{V_{OUT}}{V_{IN}} = 1$



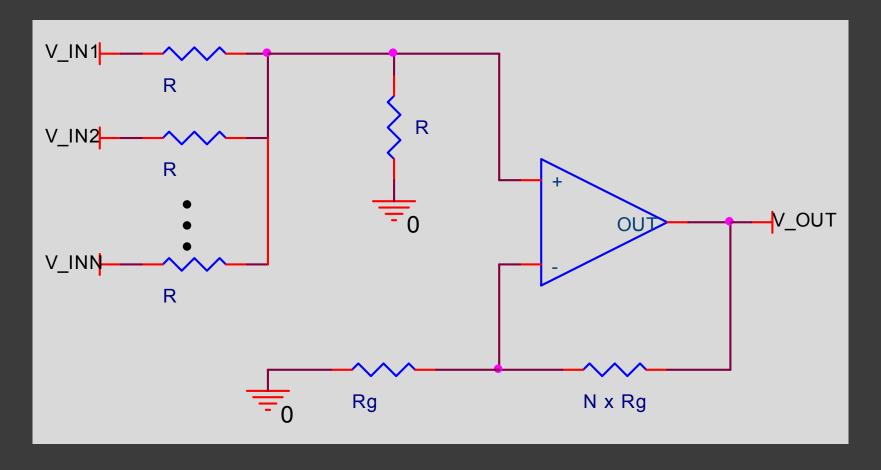
- Called a <u>unity-gain follower</u> or "buffer"
- What purpose does it serve since nothing changes?
 - $Z_{IN} \sim \infty$ and $Z_{OUT} \sim 0$
 - "Buffers" a source from a load by providing current gain

Difference Amplifier


 Combine KCL, voltage divider equation, and superposition to computer amplifier gain

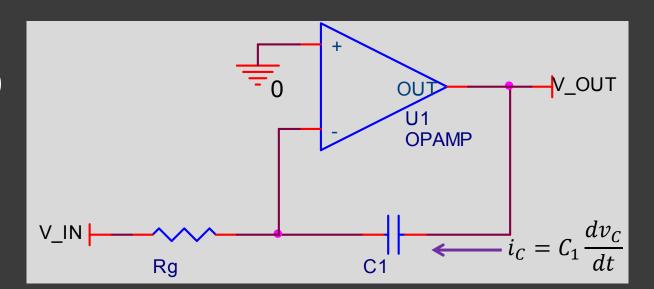
$$V_{OUT} = \frac{R_f}{R_g} (V_{IN1} - V_{IN2})$$

Inverting Summing Amplifier


$$V_{OUT} = -\frac{R_f}{R_g} (V_{IN1} + V_{IN2} + \dots + V_{INN})$$

Copyright 2014 Tim J. Sobering

Non-Inverting Summing Amplifier

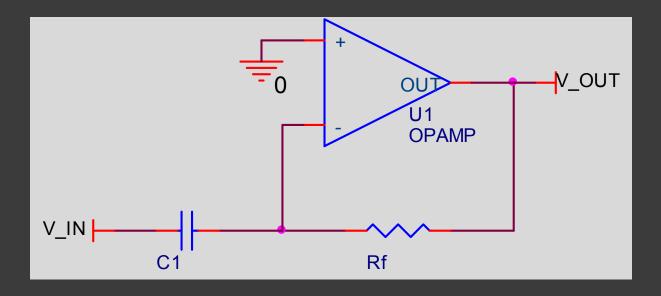

$$V_{OUT} = (V_{IN1} + V_{IN2} + \dots + V_{INN})$$

Integrating Amplifier

$$\frac{v_{in} - 0}{R_g} + i_c = 0$$

$$\frac{v_{in}}{R_g} = -C_1 \frac{dv_C}{dt}$$

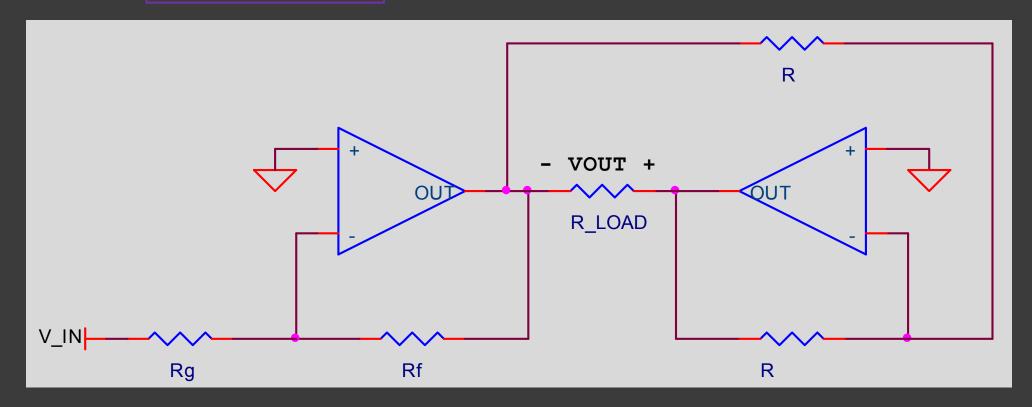
$$\int_0^t \frac{v_{in}}{R_g} dt = -\int_0^t C_1 \frac{dv_C}{dt} dt$$

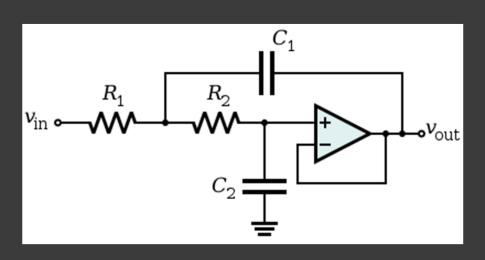

(note that $v_{out} = v_c$)

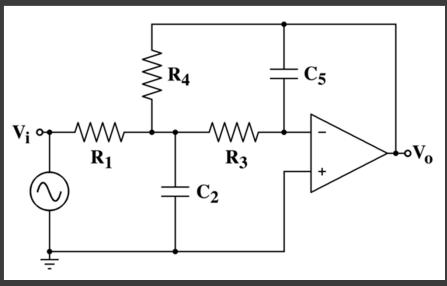
$$v_{out} = -\frac{1}{R_g C_1} \int_0^t v_{in} dt$$

Note: watch out for the initial conditions on the capacitor

Differentiating Amplifier


$$v_o = -R_f C_1 \frac{dv_{in}}{dt}$$


Caution: This circuit is inherently unstable


Bridge Driver

$$v_{OUT} = 2\frac{R_f}{R_g}v_{IN}$$

Second-Order Lowpass Active Filters

Sallen-Key Topology (non-inverting) (some problems) (very common) MFB Topology (inverting) (better imho) (less common)

Resources

- "Understanding Basic Analog Ideal Op Amps", Ron Mancini, Application Report SLAA068A, Texas Instruments, April 2000
 - http://www.ti.com/lit/an/slaa068a/slaa068a.pdf
- "Op Amps for Everyone" Ron Mancini, SLOD006B, Texas Instruments, August 2002,
 - Good introduction in Chapters 1-3
 - http://www.ti.com/lit/an/slod006b/slod006b.pdf
- "EEVblog #600 OpAmps Explained"
 - EEV Blog has some very good videos if you can handle the Aussie accent
 - http://www.youtube.com/watch?v=7FYHt5XviKc
- "Technote 6 Opamp Definitions" and "Technote 7 Using Op Amps Successfully"
 - http://www.k-state.edu/ksuedl/publications.htm
 - Courtesy of yours truly

Questions?