K-State Division of Biology



Rollie J. Clem


Ph.D. 1994, University of Georgia.

Regulation of apoptosis in insects; arbovirus-mosquito interactions;
molecular biology of insect viruses

268 Chalmers Hall

Molecular Cellular Developmental Biology Web

Research Focus

Our work mainly focuses on the interactions between arboviruses and mosquitoes.  We are using the mosquito Aedes aegypti and arboviruses such as Sindbis, dengue, and chikungunya viruses to study these interactions.  The overall question driving our research is determining why certain mosquitoes are able to serve as vectors of arboviruses, even though most mosquitoes are not.  We are particularly interested in the role of apoptosis in antiviral defense, and in determinants of midgut escape by arboviruses.  We use molecular and biochemical techniques to investigate these processes.  We also have ongoing projects related to the molecular biology of baculoviruses and their interactions with lepidopteran hosts.

Selected Research Publications

Franz, A.W.E., Clem, R.J., and A.L. Passarelli.  2014.  Novel genetic and molecular tools for the investigation and control of dengue virus transmission by mosquitoesCurrent Tropical Medicine Reports. 1:21-31.

Clem, R.J. and A.L. Passarelli.  2013.  Baculoviruses: Sophisticated pathogens of insectsPLoS Pathogens   9(11):  e1003729.  doi: 10.1371/journal.ppat.1003729.

Huang, N., Civciristov, S., Hawkins, C.J., and R.J. Clem.  2013.  SfDronc, an initiator caspase involved innapoptosis in the fall armyworm Spodoptera frugiperdaInsect Biochemistry and Molecular Biology 43:444-454.

Liu, B., Behura, S.K., Clem R.J., Schneemann, A., Becnel, J., Severson, D.W., and L. Zhou.  2013.  P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster PLoS Pathogens 9:e1003137. doi:10.1371/journal.ppat.1003137.

Wu, W., Clem, R.J., Rohrmann, G., and A.L. Passarelli. 2013. The baculovirus sulfhydryl oxidase Ac92 (P33) interacts with the Spodoptera frugiperda P53 protein and oxidizes it in vitroVirology 447:197-207.

Brand, I.L., Civciristov, S., Taylor, N.L., Talbo, G.H., Pantaki-Eimany, D., Levina, V. Clem, R.J., Perugini, M.A., Kvansakul, M., and C.J. Hawkins. 2012. Caspase inhibitors of the p35 family are more active when purified from yeast than bacteria. PLoS One 7:e39248.  doi:10.1371/jounrnal.pone.0039248.

Wang, H., Gort, T., Boyle, D.L., and R.J. Clem. 2012. Effects of manipulating apoptosis on Sindbis virus infection of Aedes aegypti mosquitoes.  Journal of Virology 86:6546-6554.

Huang, N., Wu, W., Yang, K., Passarelli, A.L., Rohrmann, G.R., and R.J. Clem.  2011. Baculovirus infection induces a DNA damage response that is required for efficient virus replication.  Journal of Virology  85:12547-12556.

Huang, N., Clem, R.J., and G.R. Rohrmann.  2011.  Characterization of cDNAs encoding p53 of Bombyx mori and Spodoptera frugiperda.  Insect Biochemistry and Molecular Biology 41:613-619.

Wang, H. and R.J. Clem.  2011. The role of IAP antagonists in the core apoptosis pathway of the mosquito disease vector Aedes aegypti Apoptosis  16:235:248.

Liu, Q. and R.J. Clem. 2010.  Defining the core apoptosis pathway in the mosquito disease vector Aedes aegypti: the roles of iap1, ark, dronc, and effector caspasesApoptosis 16:105-113.

Bartholomay, L.C., Waterhouse, R.M., Mayhew, G.F., Campbell, C.L., Michel, K., Zou, Z., Ramirez, J.L., Das, S., Alvarez, K., Arensburger, P., Bryant, B., Chapman, S.B., Dong, Y., Erickson, S.M., Parakrama Karunaratne, S.H.P., Kokoza, V., Kodira, C.D., Pignatelli, P., Shin, S.W., Vanlandingham, D.L., Atkinson, P.W., Birren, B., Christophides, G.K., Clem, R.J., Hemingway, J., Higgs, S., Megy, K., Ranson, H., Zbodnov, E.M., Raikhel, A.S., Christensen, B.M., Dimopoulos, G., and M.A.T. Muskavitch.  2010.  Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogensScience  330:88-90.

Bryant, B., Ungerer, M.C., Waterhouse, R.W., Liu, Q., and R.J Clem. 2010.  A caspase-like decoy molecule enhances the activity of a paralogous caspase in the yellow fever mosquito, Aedes aegyptiInsect Biochem. Molec. Biol. 40:516-523.

Bryant, B. and R.J. Clem.  2009.  The caspase inhibitor P35 is required for the production of robust baculovirus virions in Trichoplusia ni TN-368 cells J. Gen. Virol. 90:654-661.

Bryant, B., Zhang, Y., Zhang, C., Santos, C.P., Clem, R.J., and L. Zhou.  2009.  A Lepidopteran ortholog of reaper reveals functional conservation and evolution of IAP antagonists Insect Molec. Biol.  18:341-351.

Bryant, B., C.D. Blair, K.E. Olson, and R.J. Clem.  2008.  Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegyptiInsect Biochem. Molec. Biol.  38:331-345.

Wang, H., C.D. Blair, K.E. Olson, and R.J. Clem. 2008.  Effect of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells. J. Gen. Virol. 89:2651-2661.

Means, J.C., T. Penabaz, and R.J. Clem. 2007.  Identification and functional characterization of AMVp33, a novel homolog of the baculovirus caspase inhibitor p35 found in Amsacta moorei entomopoxvirusVirology 358:446-457.


Complete list of publications at PubMed

HomePeopleAcademicsResearchMake a GiftContact Us

©2007 Division of Biology, Kansas State University SiteMap