Contact Dr. Asano

258 Chalmers Hall
(785) 532-0116

Molecular Cellular Developmental Biology Web




Katsura Asano


Ph.D. 1994, University of Tokyo, Japan

Regulation of protein biosynthesis. Yeast genetics and biochemistry.

Selected Research Publications

Asano, Katsura. 2014. Why is start codon selection so precise in eukaryotes? Review. Translation 2, e28387.

Hiraishi, H., Oatman, J., Haller, S., Blunk, L., McGivern, B., Morris, J., Papadopoulos, E., Gutierrez, W., Gordon, M., Bokhari, W., Ikeda, Y., Miles, D., Fellers, J., Asano, M., Wagner, G., Tazi, L., Rothenburg, S., Brown, S. J., and Asano, K. 2014. Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression. Nucl Acids Res, 2014 Aug 21. pii: gku670. [Epub ahead of print].

Luna, R. E., H. Arthanari, H. Hiraishi, B. Akabayov, L. Tang, C. Cox, M. A. Markus, L. Luna, Y. Ikeda, R. Watanabe, E. Bedoya, C. Yu, S. Alikhan, G. Wagner, and K. Asano. 2013. The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes. Biochemistry 52, 9510-9518.

Nemoto, N., T. Udagawa, W. Chowdhury, M. Kitabatake, B.-s. Shin, H. Hiraishi, S. Wang, C. R. Singh, S. J. Brown, M. Ohno, and K. Asano. 2013.  Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function. Translation in press

Hiraishi, H., B.-s. Shin, T. Udagawa, N. Nemoto, W. Chowdhury, J. Graham, C. Cox, M. Reid, S. J. Brown, and K. Asano. 2013. Interaction between 25S rRNA A loop and eIF5B promotes subunit joining and ensures stringent AUG selection. Mol. Cell. Biol. 33, 3540–3548.

Luna, R. E., H. Arthanari, H. Hiraishi et al. 2012.  The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep 1, 689-702.

Singh, C. R., R. Watanabe, W. Chowdhury, H. Hiraishi, M. J. Murai, Y. Yamamoto, D. Miles, Y. Ikeda, M. Asano, and K. Asano. 2012. Sequential eIF5 binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S pre-initiation complex and promotes its shift to the initiation mode. Mol. Cell. Biol. 32, 3978-3989.

Singh, C. R., R. Watanabe, D. Zhou, M. Jennings, A. Fukao, B. Lee, Y. Ikeda, J. A. Chiorini, T. Fujiwara, R. C Wek, G. D. Pavitt, and K. Asano. 2011. Mechanisms of translational regulation by a human eIF5-mimic protein. Nucl Acids Res 39, 8314–8328

Nemoto, N., T. Udagawa, T. Ohira, L. Jiang, K. Hirota, C. R. M. Wilkinson, J. Bähler, N. Jones, K. Ohta, R. C. Wek, and K. Asano. 2010. The roles of stress-activated Sty1 and Gcn2 kinases and protooncoprotein homologue Int6/eIF3e in responses to endogenous oxidative stress during histidine starvation. J. Mol. Biol. 404, 183-201

Nemoto, N., T. Udagawa, S. Wang, C. R. Singh, E. Thorson, Z. A. Winter, T. Ohira, L. Valášek, S. J. Brown, and K. Asano. 2010.  Yeast 18S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. J Biol Chem 285, 32200-32212.

Watanabe, R., C. R. Singh, M. J. Murai, M. Ii, S. Fox, Y. Yamamoto, and K. Asano (2010). The eIF4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase. J Biol Chem 285, 21922-21933.

Reibarkh, M., Y. Yamamoto, C.R. Singh, F. del Rio, B. Lee, R. Luna, M. Ii, G. Wagner, and K. Asano. 2008. Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J Biol Chem 283: 1094-1103.

Udagawa, Tsuyoshi , Naoki Nemoto, Caroline R.M. Wilkinson, Jana Narashimhan, Li Jiang, Stephan Watt, Aaron Zook, Nic Jones, Ronald C. Wek, Jürg Bähler, and Katsura Asano. 2008. Int6/eIF3e promotes general translation and Atf1 abundance to modulate Sty1 MAP kinase-dependent stress response in fission yeast. J Biol Chem 283: 22063-22075.

Asano, K. and M.S. Sachs.  2007.  Translation factor control of ribosome conformation during start codon selection. Genes Dev. 21: 1280-1287.

Singh, C.R., T. Udagawa, B. Lee, S. Wassink, H. He, Y. Yamamoto, J.T. Anderson, G.D. Pavitt, and K. Asano.  2007.  Change in nutritional status modulates the abundance of critical pre-initiation intermediate complexes during translation initiation in vivo. J Mol Biol 370: 315-330.

Singh, C.R. , B. Lee, T. Udagawa, S.S. Mohammad-Qureshi, Y. Yamamoto, G.D. Pavitt, and K. Asano. 2006.  An eIF5/eIF2 complex antagonizes guanine nucleotide exchange by eIF2B during translation initiation. EMBO J. 25: 4537-4546.

Singh, C.R., C. Curtis, Y. Yamamoto, N.S. Hall, D.S. Kruse, H. He, E.M. Hannig, and K. Asano.  2005. eIF5 is critical for the integrity of scanning ribosomal preinitiation complex and accurate control of GCN4 translation. Mol. Cell. Biol. 25: 5480-5491.

Yamamoto, Y., C.R. Singh, A. Marintchev, N.S. Hall, E.M. Hannig, G. Wagner, and K. Asano.  2005.  The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3 and eIF4G. Proc. Acad. Natl. Sci. USA 102: 16164-16169.

Singh, C.R., Y. Yamamoto, and K. Asano.  2004.  Physical association of eukaryotic initiation factor 5 (eIF5) carboxyl terminal domain with the lysine-rich eIF2β segment strongly enhances its binding to eIF3. J. Biol. Chem. 279: 49644-49655

Singh, C.R., H. He, M. Ii, Y. Yamamoto, and K. Asano.  2004.   Efficient Incorporation of Eukaryotic Initiation Factor 1 into the Multifactor Complex Is Critical for Formation of Functional Ribosomal Preinitiation Complexes in VivoJ. Biol. Chem. 279: 31910-31920. 

Hui He, T. Von Der Haar, C.R. Singh, M. Ii, B. Li, A.G. Hinnebusch, J. E.G. McCarthy, and K. Asano.  2003.  The yeast eIF4G HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol. Cell. Biol. 23: 5431-5445.

Asano, K., A. Shalev, L. Phan, K. Nielsen, J. Clayton, L. Valsek, T.F. Donahue, and A. G. Hinnebusch. 2001. Multiple roles for the carboxyl ternimal domain of eIF5 in translation initiation complex assembly and GTPase activiation. EMBO J. 20: 2326-2337

Akiyoshi, Y., J. Clayton, L. Phan, M. Yamamoto, A.G. Hinnebusch, Y. Watanabe, and K. Asano. 2001. Fission yeast homolog of murine Int-6 protein, encoded by mouse mammary tumor virus integration site, is associated with the conserved core subunits of eukaryotic translation initiation factor 3. J. Biol. Chem. 276: 10056-10062.

Asano, Katsura, J. Clayton, A. Shalev, and A.G. Hinnebusch. 2000. A multifactor complex of eukaryotic initiation factors eIF1, eIF2, eIF3, eIF5, and initiator tRNAMet is an important translation initiation intermediate in vivo. Genes Dev. 14: 2534-2546.

Asano, Katsura, T. Krishnamoorthy, L. Phan, G.D. Pavitt, and A.G. Hinnebusch.1999. Conserved bipartite motifs in yeast eIF5 and eIF2B epsilon, GTPase-activating and guanine-nucleotide exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J. 18: 1673-1688.

Asano, K. and K. Mizobuchi. 1998. Copy number control of IncIa plasmid ColIb-P9 by competition between pseudoknot formation and antisense RNA binding at a specific RNA site. EMBO J. 17: 5201-5213.

Asano, K., H.-P. Vornlocher, N. J. Richter-Cook, W.C. Merrick, A.G. Hinnebusch, and J.W.B. Hershey.  1997.  Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits: Possible roles in RNA binding and macromolecular assembly. J. Biol. Chem. 272: 27042-27052.

Home | Forms & Resources | Student Expectations