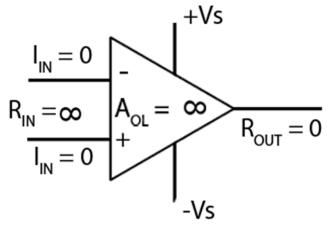
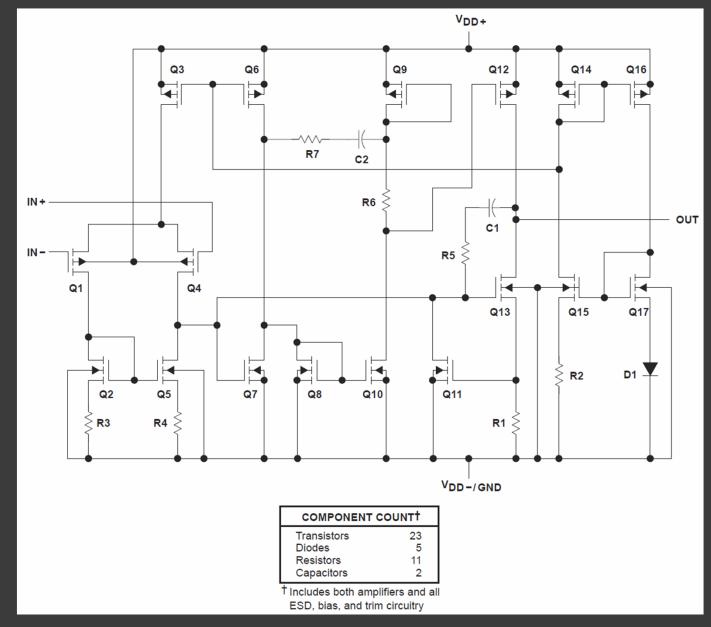
Operational Amplifiers: Part 2

Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation

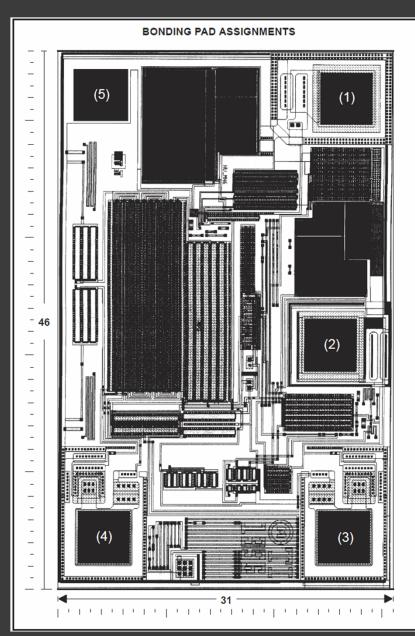

by

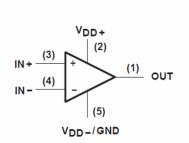
Tim J. Sobering


Analog Design Engineer & Op Amp Addict

Summary of Ideal Op Amp Assumptions

- Zero input offset voltage (V_{os})
- Zero input bias current $(I_{Bias}^{+}, I_{Bias}^{-})$
- Infinite slew rate
 - Infinite large-signal (or full-power) bandwidth
- Infinite output drive
- No voltage rail limits
- Zero output impedance (Z_o)
- Infinite input impedance (Z_i)
- Infinite small-signal bandwidth
- Infinite open-loop gain (A_v)
 - Actually, infinite gain for a differential input, zero gain for a common mode input




Op Amp Internals – TLV2721C (just for fun)

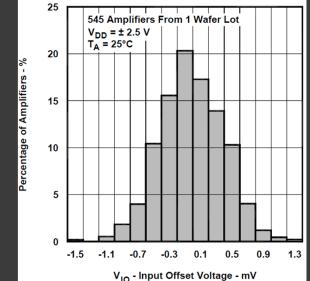
Copyright 2014 Tim J. Sobering

Op Amp Internals – TLV2721C (just for fun)

CHIP THICKNESS: 10 MILS TYPICAL BONDING PADS: 4×4 MILS MINIMUM T_Jmax = 150°C TOLERANCES ARE $\pm 10\%$.

ALL DIMENSIONS ARE IN MILS.

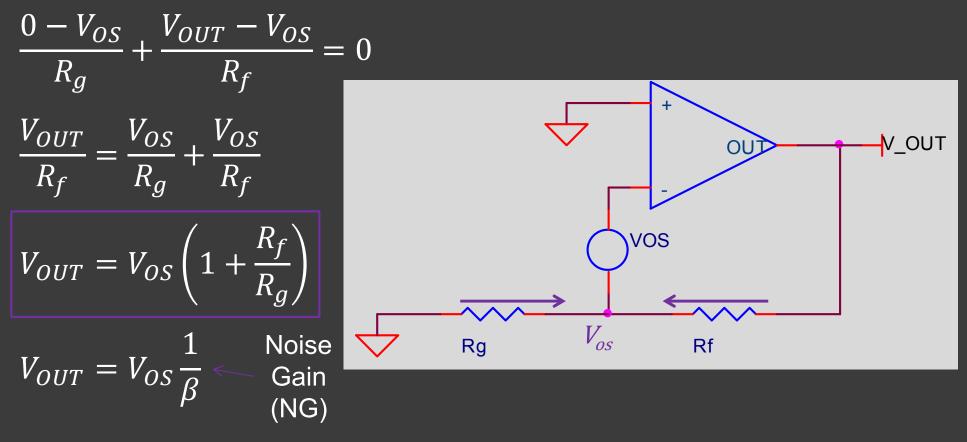
PIN (2) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP.


Copyright 2014 Tim J. Sobering

DC Errors

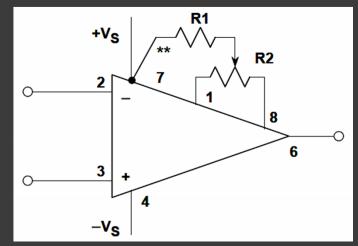
Input Offset Voltage

- Input Offset Voltage is the voltage that must be applied to the input to make the output equal to zero volts
 - Polarity is not predictable as it is a manufacturing variance
- V_{os} ranges from a few μV to typ. around 5 mV
 - Chopper-stabilized are lowest (< 1 μV)
 - "Precision" Op Amps have low V_{os}
 - Untrimmed CMOS amps can reach 50 mV
- V_{os} will drift with temperature and time
 - As low as 0.1 μ V/°C, typically 1 10 μ V/°C
 - Aging is proportional to the square root of time
 - $1 \,\mu\text{V}/1000 \,\text{hr} \rightarrow 3 \,\mu\text{V}/\text{year}$ (9000 hours)



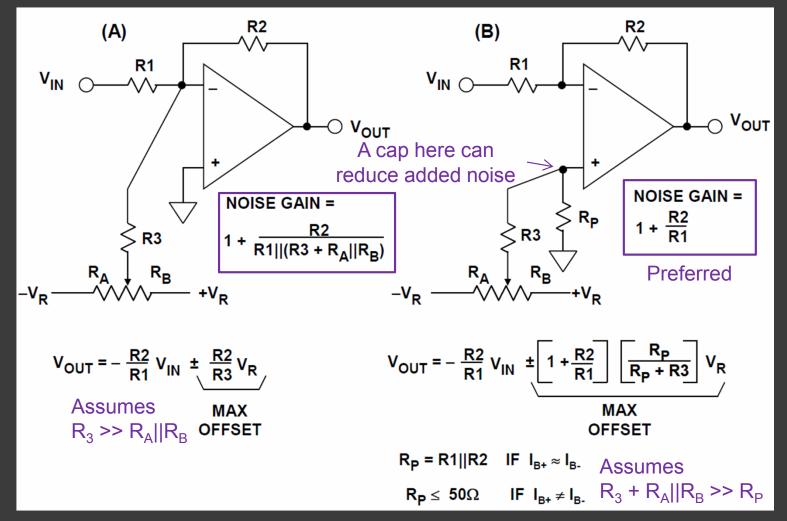
0.5 mV typ. 3 mV max.

Errors resulting from Input Offset Voltage

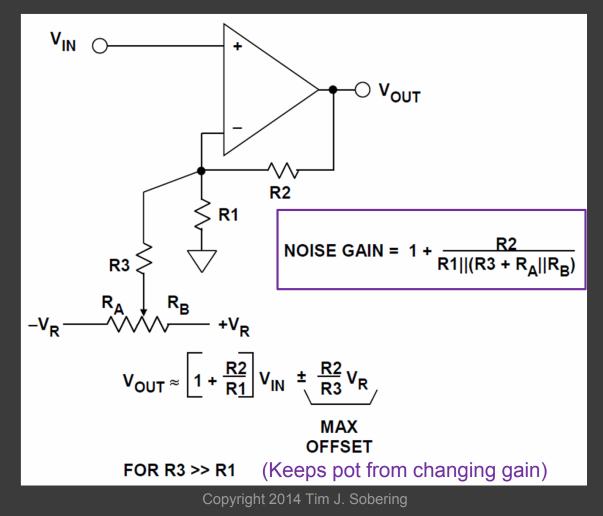

- Modeled as a voltage source in series with the inverting terminal
- Note: Inverting or Non-inverting result is the same

Nulling the Input Offset Voltage (internal)

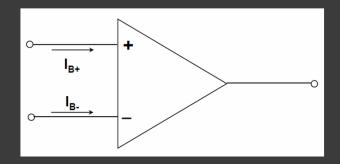
Null or trim pins


- Only for removing Op Amp offset
 - Do not use to correct system level errors
- Topology depends on specific Op Amp
 - Read the data sheet!
- Direct connection to differential pair
 - May have more gain than inputs
 - Use a tight layout for low-noise

- Null pin connections increases Op Amp temperature drift
- Generally, I avoid this method
 - Pots are generally poor devices (temperature effects, stability)
- Pick a "better" Op Amp if offset is a problem

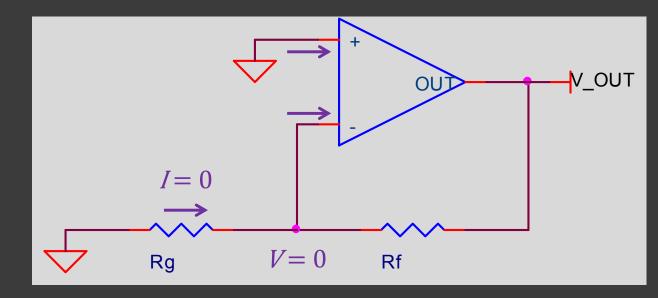

Nulling the Input Offset Voltage (external) Inverting amplifier

• Use a reference voltage (or a DAC), not the supply


Nulling the Input Offset Voltage (external) Non-inverting amplifier

- Pick components to minimize change in noise gain
- Pot/Reference can always be replaced by a DAC

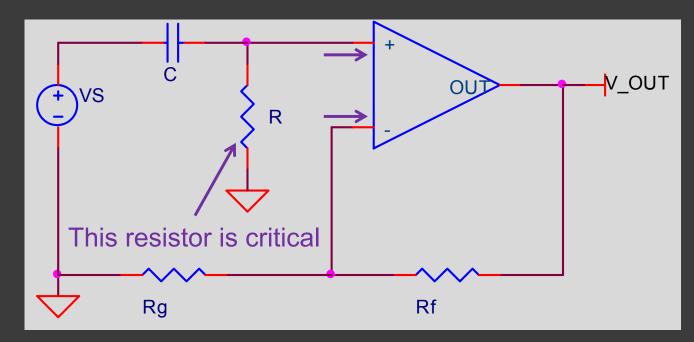
Input Bias Current


- As low as 60 fA to several μA
- Very variable
- Inputs can be well-matched...or not

- Can be stable with temperature or may double every 10 °C
- May flow in or out and can change direction with CM voltage
 - Depends on input structure and internal cancellation circuits
- Don't assume that both inputs currents flow the same direction
 - Look at Input Offset Current specification
 - I_{os} is the difference between I_{bias+} and I_{bias-}
 - If $I_{os} << I_{bias}$ currents probably flow the same direction
 - *I*_{os} is meaningless for current feedback amplifiers
- Pick a "better" opamp

Errors resulting from Input Bias Current (I)

- I_{bias+} contributes nothing because there is no resistance for it to flow through to convert it to a voltage
- I_{bias-} flows through R_f so $V_{out} = R_f I_{bias-}$
 - Note: direction of current flow is assumed depends on internal structure


Errors resulting from Input Bias Current (II)

- Addition of R_s converts I_{bias+} to a voltage that sees the amplifier's non-inverting gain
- I_{bias}^{-} still flows through R_{f}
- Again: direction of current flow is assumed

$$V_{OUT} = R_f I_{bias-} - R_s I_{bias+} \left(1 + \frac{R_f}{R_g}\right) + V_s \left(1 + \frac{R_f}{R_g}\right)$$

DC error due to
input bias currents
$$I = 0$$

Rg $V = 0$ Rf

Watch out for AC coupled circuits

- Op Amp inputs <u>must</u> have a DC part to ground
 - Applies to Instrumentation amps too!
- Without *R*, non-inverting node will drift until V_{out} saturates
 - For polarity shown, output will go to the negative rail
 - Time required: $dV/dt = I_{bias+}/C$

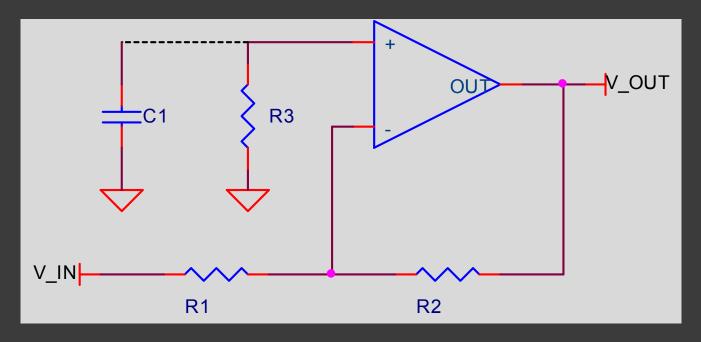
Cancelling the effects of Input Bias Current

• Recall the previous equation and set $V_s = 0$

$$V_{OUT} = R_f I_{bias-} - R_s I_{bias+} \left(1 + \frac{R_f}{R_g}\right)$$

• Proper selection of R_s will result in the cancellation of the errors caused by the Input Bias Currents

$$R_f I_{bias-} = R_s I_{bias+} \left(1 + \frac{R_f}{R_g}\right)$$
$$R_s = \frac{R_f}{1 + \frac{R_f}{R_g}} = \frac{R_f}{\frac{R_g + R_f}{R_g}} = \frac{R_f R_g}{R_f + R_g} = R_f \|R_g\|$$


• Lots of assumptions!

Requirements for Input Bias Current Cancellation

- Cancellation technique only works when Input Bias Currents are <u>well matched</u>
 - I_{bias+} and I_{bias-} must be (nearly) equal and flow in the same direction
- Key is to look at the Input Offset Current specification
 - Input Offset Current must be << Input Bias Current
 - Op Amps with internal bias current compensation have $I_{os} \approx I_{bias}$
 - Watch out for Rail-to-rail Op Amps
 - Direction can change with common-mode voltage
- If not well matched, this technique makes the error worse
- If you don't know what you are doing...don't try designing it
 - Or build the circuit and learn something!

Input Bias Current Cancellation Circuit

- Cancellation technique only works when Input Bias Currents are well matched
- Pick $R_3 = R_1 || R_2$
- C_1 is for noise reduction (discussed in a later lecture)
- Circuit still has an error from V_{os}

Copyright 2014 Tim J. Sobering

Output Drive

- Op Amp output swing is limited by load
- Most Op Amps can output 10 mA
 - If you need more, look closely at specs or add a current booster
- Greater loading can change performance
 - Increased distortion
 - Higher temperature (due to power dissipation)

OPA177 SPECIFICATIONS

At $V_S = \pm 15V$, $T_A = +25^{\circ}C$, unless otherwise noted.

	OPA177F			OPA177G			
CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{CM} = ±13∨	±13 130	±14 140		* 115	* *		∨ dB
$\begin{array}{l} R_{L} \geq 2k\Omega \\ V_{O} = \pm 10 V^{(5)} \end{array}$	5110	12,000		2000	6000		V/mV
$\begin{array}{l} R_{L} \geq 10 k\Omega \\ R_{L} \geq 2 k\Omega \\ R_{L} \geq 1 k\Omega \end{array}$	±13.5 ±12.5 ±12	±14 ±13 ±12.5 60]	* * *	* * * *		V V V Ω
	$V_{CM} = \pm 13V$ $R_{L} \ge 2k\Omega$ $V_{O} = \pm 10V^{(5)}$ $R_{L} \ge 10k\Omega$ $R_{L} \ge 2k\Omega$	$\begin{array}{c} \pm 13 \\ 130 \\ R_{L} \ge 2k\Omega \\ V_{O} = \pm 10V^{(5)} \\ \end{array} \\ \hline \\ R_{L} \ge 10k\Omega \\ R_{L} \ge 2k\Omega \\ \end{array} \\ \begin{array}{c} \pm 13.5 \\ \pm 12.5 \\ \end{array} \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline CONDITION & \hline MIN & TYP \\ \hline \hline & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c } \hline CONDITION & \hline MIN & TYP & MAX \\ \hline & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c } \hline CONDITION & MIN & TYP & MAX & MIN \\ \hline & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

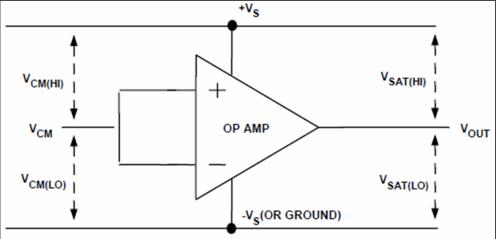
Slew Rate

- Large-signal AC parameter affecting output voltage
 - Maximum dV_{out}/dt the output can support
 - Dictated primarily by internal Miller compensation capacitor
- Differential input voltage can be large when slew-rate limited
- Full-power bandwidth (*FPBW*) is set by the SR specification
 - Maximum full-amplitude sinusoid $(\pm V_p)$ that can be output without slew rate limiting

$$FPBW = \frac{SR}{2\pi V_p}$$

- *FPBW* is typically much less than $f_{\tau}(A_v \text{ unity gain frequency})$
 - OP-27 has 8 MHz small signal bandwidth and 32 kHz FPBW
 - "Small-signal" amplitude (output) can be as low as $\pm 100 \text{ mV}$

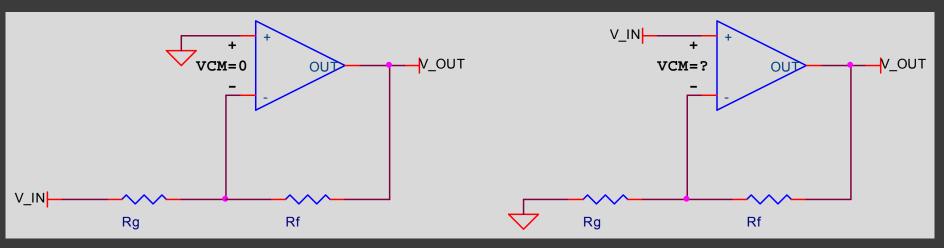
Input and Output Impedance


- Op Amp input impedance is typically a large resistance in parallel with a small capacitance
 - 10⁵ 10¹² Ω || 3 25 pF
 - CM impedance is from each input to ground
 - DM impedance is between inputs
 - BJT input stages typically have lower capacitance
 - CM input voltage can modulate input capacitance in non-inverting amplifiers and cause distortion
- Op Amp output impedance is typically treated as a resistance
 - $10 100 \Omega$ is typical, can be $1 k\Omega$
 - Reduced by $(1 + A_{\nu}\beta)^{-1}$ in closed loop designs
 - Can be an issue at high frequencies when $A_{\nu}\beta$ craps out
 - Can be an issue with capacitive loads

Input and Output Common Mode Range

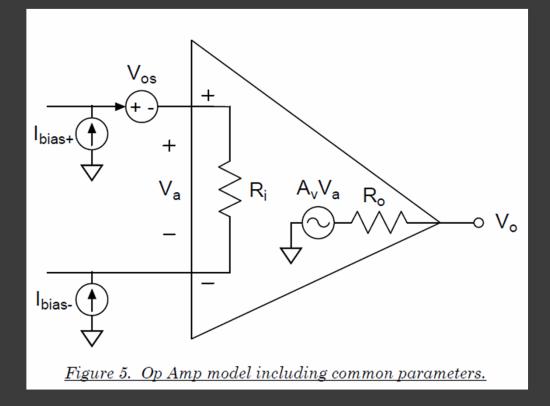
Input Common Mode Voltage is defined as:

$$V_{ICM} = \frac{V_{IN+} + V_{IN-}}{2}$$

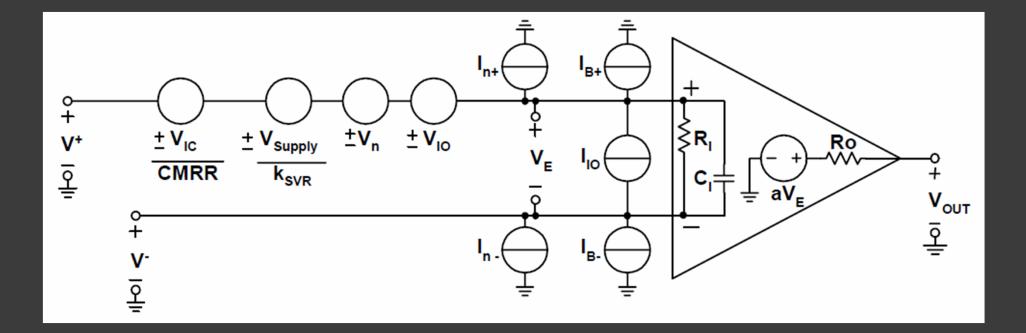

- More important is the input and output common mode <u>range</u>
 - The common-mode range is specified w.r.t the supply voltage
 - Defines how close the input or output can get to the rail before saturating
- Watch out for rail-to-rail
 - Last 50 mV is often nonlinear
- Single supply design!

Interesting Common Mode Issue

• Op Amps have differential mode and common mode gain


- High DM Gain (A_v)
- Low CM gain, aka high CM rejection (CMR)
- Instrumentation amplifiers and difference amplifiers are designed for very high CMR
 - 80 dB to 140 dB rejection is possible
- Not all amplifier configurations are created equal
 - Non-inverting amp sees large CM voltage \rightarrow distortion due to CM gain

Copyright 2014 Tim J. Sobering

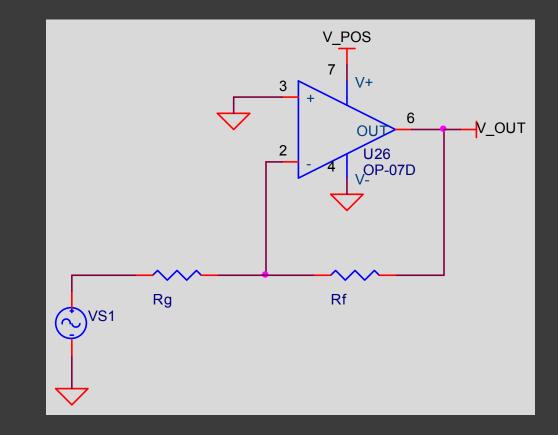

Op Amp Model (up to this point)

- Superposition allows you to analyze individual effects
- R_i and R_o are actually complex impedances

Source: "Technote 7 – Using Op Amps Successfully", Tim J. Sobering, 2006

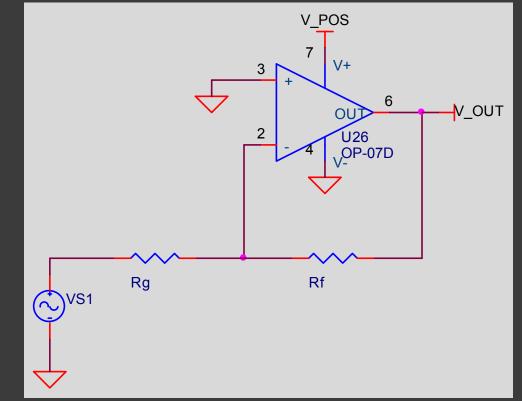
Full Op Amp Model (inc. noise sources)

Single Supply Design

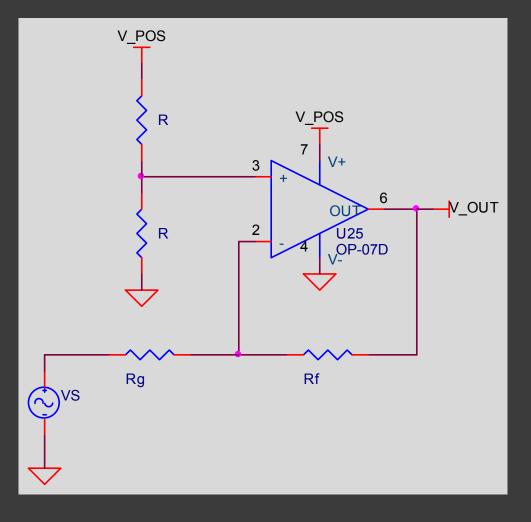

- No such thing as single supply...sort of
 - Op Amps do not have a ground terminal
 - LM324 has a ground pin! (not really)
 - <u>Any</u> Op Amp can be operated with a single-supply
- Single supply operation requires proper input biasing and output interfacing
 - Avoid common mode range violations
 - Don't accidentally amplify DC levels
 - Multi-stage DC coupled designs are tricky
- So why are some Op Amps called single-supply?
 - Rail-to-rail inputs and/or output
 - CMR includes one or both rails
 - Often low-power and/or low-supply voltage

Single Supply Design Issues

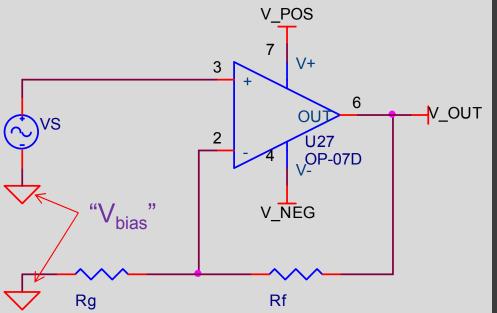
- Lowered supply rails:
 - Reduced dynamic range (reduced noise margin)
 - Reduced precision because open-loop gain may be lower
 - Bias currents can change with reduced supply voltage
 - Offset voltage is impacted (PSRR)
 - Reduced output drive (needs "lighter" loads)
- Example of how reduced supply affect an Op Amp:
 - OP177 has initial offset of \pm 20 μ V at \pm 15V with a PSRR of 1 μ V/V (- 120 dB Power Supply Rejection Ratio)
 - At \pm 5V, 20V reduction in supply changes offset by \pm 20 μ V
 - New offset voltage spec is $\pm 40 \mu V$
- Rail-to-rail inputs and outputs suffer linearity issues
 - May not actually get to the rail 50 mV seems to be common value
 - Generally, the last 50 100 mV before saturation is non-linear

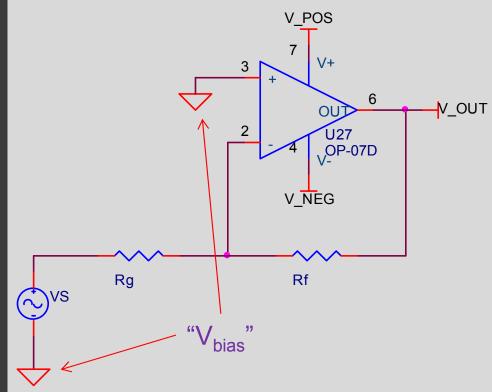

Selection/design of "ground" reference is critical

Is there a problem?


Circuit will only marginally function

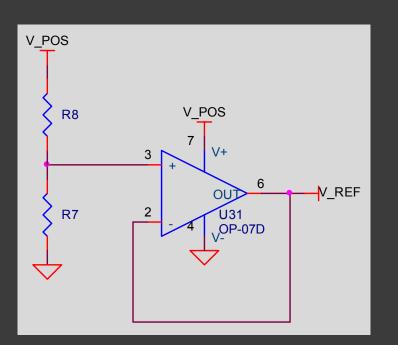
- Output cannot go negative when input is positive
- Output will have a small "dead-band" when going positive (~1.5V for OP-07)
- RRIO Op Amp reduces but doesn't eliminate the problems

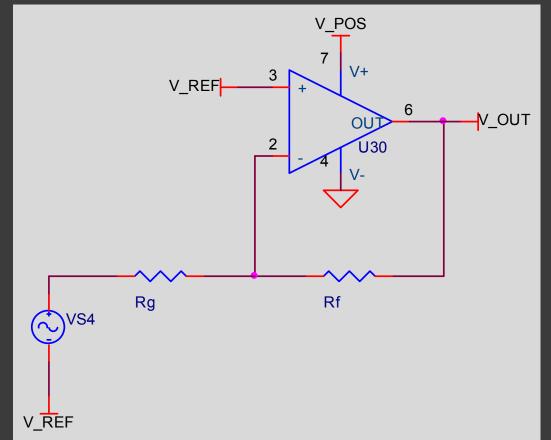

So lets bias the input away from the negative rail...


- Feedback will force inverting node to $V_{pos}/2$
 - Progress it might be inside the CMR
- V_s "sees" the inverting gain $-R_f/R_g$
- But...
 - Voltage on non-inverting terminal sees positive gain, so output could be saturated
 - Output only swings when input pulls output away from positive rail
 - Operation is still marginal

Go back to the basics

- Op Amp doesn't know what "ground" is
- "Ground" nodes are "biased" to $V_{bias} = (V_{pos} + V_{neg})/2$
 - It just "happens" to be 0 V





 So we can make a single supply design work by mimicking this biasing

Single Supply Alternatives

- Replace "ground" with V_{REF}
- Make sure V_{REF} is a lowimpedance source

Low-impedance reference

When in doubt, do the math!

• Replace "ground" with V_{REF}

$$V_{out} = \left(1 + \frac{R_f}{R_g}\right) V_{REF2} - \frac{R_f}{R_g} (V_s + V_{REF1})$$

$$V_{out} = V_{REF2} + \frac{R_f}{R_g} (V_{REF2} - V_{REF1}) - \frac{R_f}{R_g} V_s$$
If $V_{REF1} = V_{REF2} = V_{REF}$

$$V_{out} = V_{REF} - \frac{R_f}{R_g} V_s$$
Output swings relative to V_{REF}

$$V_{VS5} = V_{VS5}$$

V REF1

6

V_OUT

Key points for Single-Supply Design

- On't inadvertently amplify your DC bias
- Extra biasing resistors can add noise
 - Use filtering caps if not in signal path
- AC coupling works when biased correctly and DC response isn't needed
- Make sure your reference has a low source impedance
 - Source impedance can change circuit gain
- Watch out for CMR violations

Questions?